
Selection

Chapter 7

Chapter Contents
Objectives
7.1 Introductory Example: The Mascot
Problem
7.2 Selection: The if Statement Revisited
7.3 Selection: The switch Statement
7.4 Selection: Conditional Expressions
7.5 Graphical/Internet Java: Event-Driven
Programming
Part of the Picture: Boolean Logic and
Digital Design
Part of the Picture: Computer Architecture

Chapter Objectives
Expand concepts of selection begun in
Chapter 4
Examine the if statement in more detail
Study the switch statement,
multialternative selection
Introduce conditional expressions
Use event-driven program in GUIs
See Boolean expressions used to model
logical circuits
Look at architecture of computer systems

7.1 The Mascot
Problem

We seek a method, mascot()
given name of a Big 10 university
returns the mascot

Objects:
Object Type Kind Movement Name

Univ Name String varying received university

Mascot String varying returned none

Design

Class declaration
class Big10
{
 public static String mascot
 (String university)
 { … }
}

Operations
Compare university to
"Illinois"; if equal, return
"Fighting Illini"

Compare university to
"Indiana"; if equal return
"Hoosiers"
. . .
An if-else-if … structure can be
used

Coding
Note method source code, Figure 7.1 in
text -- Driver program, Figure 7.2
Note use of
school = theKeyboard.readLine()
instead of .readWord()

 .readLine() reads entire line of input,
including blanks
needed for schools like “Ohio State”

Note also the final else
returns an error message for a non Big-10 name

7.2 Selection: The if
Statement Revisited

1. Single-branch
if (Boolean_expression)
 statement

2. Dual-branch
if (Boolean_expression)
 statement
else
 statement

3. Multi-branch
if (Boolean_expression)
 statement
else if (Boolean_expression)
 statement . . .

Recall the three
forms of the if
statement from
Chapter 4

Multibranch if
The if-else-if is really of the form
 if (booleanExpression)
 statement1
 else
 statement2

Where statement2 is simply
another if statement
Thus called a “nested” if

The Dangling-else
Problem

Consider
if (x > 0)
 if (y > 0)
 z = Math.sqrt(x) + Math.sqrt(y);
 else
 System.err.println("Cannot compute z");

Which if does the else go with?
In a nested if statement, an else is matched
with the nearest preceding unmatched if

The Dangling-else
Problem

What if we wish to force the else to go with
the first if?
 if (x > 0)
 if (y > 0)
 z = Math.sqrt(x) + Math.sqrt(y);
 else
 System.err.println("Cannot compute z");

Enclose the second if statement in curly braces {}.
The else must then associate with the outer if.

Using Relational
Operators with

Reference Types
Recall that reference types have "handles"
that point to memory locations
String s1 = new String("Hi");
 s2 = new String("Hi");
 s3 = s2;
Thus s1 == s2 is false.

they point to different locations in memory
But s3 == s2 is true.

they point to the same location in memory

Using Relational
Operators with

Reference Types
When we wish to compare values instead of
addresses

use comparison methods provided by the classes

if (s1.equals(s2))
 aScreen.println("strings are equal");
else
 aScreen.println("strings are different");

7.3 Selection:
The switch Statement

The if-else-if is a
multialternative selection statement
The switch statement can be a
more efficient alternative
Consider our Temperature class

user may wish to specify which scale
the temperature value to be displayed

Object-Centered
Design

Behavior:
program displays
menu of possible
conversions
read desired
conversion from
keyboard
prompt for temp,
read temp from
keyboard
display result

To convert temps, choose:

A. To Fahrenheit

B. To Celsius

C. To Kelvin

Q. Quit

Enter choice -> A

Enter temp -> _

Problem Objects
Objects Types Kind Name

Program

Sceeen Screen varying theScreen

Menu String constant MENU

Prompt String constant

Conversion char varying menuChoice

Keyboard Keyboard varying theKeyboard

temperature Temperature varying temp

result Temperature varying

Operations
1. Send theScreen messages to

display MENU and a prompt
2. Send temp a message to read a

Temperature from theKeyboard
3. Send theKeyboard a message to

read a char and store it in
menuChoice

4. Send temp the conversion message
corresponding to menuChoice

Algorithm
Loop
1. Display MENU, read choice, terminate if
choice == 'Q'
2. Prompt, receive input for temp
3. If menuChoice is 'A' or 'a'

a. Send temp message to convert to Fahrenheit
b. Tell theScreen to display result

 Otherwise if menuChoice is 'B' or 'b'
c. Send temp a message to convert to Celsius
d. Tell theScreen to display result

. . .
End Loop

Coding
Instead of if-else-if selection, use switch

switch(menuChoice) {
case 'A': case 'a':
 theScreen.println(…);
 break;
case 'B': case 'b':
 theScreen.println(…);
 break;
case 'C': case 'c':
 . . .
default:
 System.err.println(…);
}

Expression evaluated

Value of expression
searched for in
case-list constants

If match found,
statement(s)
executed

If NOT found,
default clause
executed

The switch Statement
Evaluated expression must be of type
char, byte, short, or int (no float or
String)
Syntax in case list:
 case constantValue:

type of constantValue must match evaluated
expression

The default clause is optional
Once a constantValue is matched,
execution proceeds until …

 break statement
 return statement
end of switch statement

The break statement
Note each statement list in a
switch statement usually ends
with a break statement

this transfers control to first statement
following the switch statement

Drop-through behavior
if break is omitted, control drops
through to the next statement list

Example: Converting
Numeric Codes to Names

We seek a method which receives a
numeric code (1 – 5) for the year in
college

returns the name of the year
(Freshman, Sophomore, … , Graduate)
could be used in a class called
AcademicYear

We use a switch statement to do
this conversion

Year-code
Conversion Method

public static String academicYear
 (int yearCode)
{
switch (yearCode) {
case 1: return "Freshman";
case 2: return "Sophomore";
 . . .
default: System.err.println(…);
 return;
}
}

Note source code for
method and test driver,
Figures 7.4, 7.5

Cases with No Action
Occasionally no action is required
for specified values of the
expression

that feature not yet implemented
that value simply meant to be ignored

In that situation
insert the break or return statement
after the case list constant

Choosing the Proper
Selection Statement

 switch statement preferred over
 if-else-if when all of the
following occur:

1. equality == comparison is used
2. same expression (such as menuChoice)

is compared for each condition
3. type of expression being compared is

char, byte, short, or int

Examples:
Consider a class called AcademicYear:
class AcademicYear
{
 // constructor methods
private String myName; }

If a constructor takes an int parameter
(1 – 5) to initialize myName

use switch
Another constructor might take a
String parameter to initialize myName

here we cannot use switch

7.4 Selection:
Conditional Expressions

This is a trinary operator
it takes three operands

Syntax:
condition ? expression1 : expression2

Where:
condition is a Boolean expression
expression1 and expression2 are of
compatible types

Example:
To return the larger of two numbers:

public static largerOf(int v1, int v2)
{
 return ((v1 > v2) ? v1 : v2);
}

Value returned if
condition is true

Value returned if
condition is false

Condition

7.5 Graphical Internet
Java: Event-Driven

Programming
Traditional programming consists of:

Input
Processing
Output

GUI programs act differently
They respond to different events

mouse clicks, dragging
keys pressed on keyboard

Hence it is called “event driven” programming

Example:
A GUI Big-10-Mascot

Program
Behavior

Construct window with prompt for university
name
User enters name in a
 text field
Program responds with
proper mascot or error
 message

Big-10 University Mascots

University

Mascot

Ohio State

Buckeyes

GUI Design Principle
Only show the user what he needs to
see

Note that the label “Mascot” and the text
field with the mascot do not appear until
the name
of the
university is
entered
Otherwise
the user
might think
they can enter the mascot and get the univ.

Big-10 University Mascots

University

Objects
Objects Type Kind Name

The program

A window varying aGUI

Prompt for univ JLabel constant mySchoolLabel

First text field JTextField varying mySchoolField

Big-10 name String varying school

Mascot label JLabel constant myMascotLabel

Second text field JTextField varying myMascotField

A mascot String varying mascot

Operations
1. Construct GUI to do following

Display window frame
Position JLabel (prompt, mascot label)
Position JText fields (univ, mascot)
Set title of window frame

2. When user enters something in univ.
text field

Get text from JTextField (university name)
Set text in JTextfield (mascot name)
Make JLabel (mascot-label) disappear
Make JTextfield (univ name) disappear
Select between 2b, 2c, and 2d, based on
result of 2a

Coding and Testing
Note source code in Figure 7.7 in text
Note testing
Application provides continuous behavior

program does not terminate until user clicks
on window close box

Accomplished by using an event-
processing loop

Get event
If event is terminate, terminate repetition
Process the event

Java's Event Model

Building an event delegation model
Define the event source(s)
Define the event listener(s)
Register a listener with each source

that listener handles the events
generated by that source

Event Sources

Define an event-generating component
in the GUI

usually in its constructor
example is a JTextfield
mySchoolField = new JTextField (14);

a JTextfield “fires events” – it is an event
source

Java's Interface
Mechanism

Note declaration:
class GUIBig10Mascots extends
CloseableFrame
 implements ActionListener
{ . . . }

Note the extends ClosableFrame
inherits all its instance fields & methods

Note the implements ActionListener
this is not a class, it is an interface
contains only method headings, prototypes

Java's Interface
Mechanism

A class that implements an interface
must provide a definition for each
method whose heading is in the interface

Interface objects cannot be created
with new
When an interface is implemented
we can

create interface handles
send an interface message to an object
referred to by the handle

Event Listeners
To have a GUI respond to events

Create a listener for that event source
Register the listener with that event
source

In our example, when the main
method creates a GUIBig10Mascots
object, it also creates

a CloseableFrame object is specified by
the constructor
An ActionListener object

Registering Event Listeners
with Event Sources

Action event sources provide an
addActionListener() method

In GUIBig10Mascots constructor we have
mySchoolField.addActionListener(this);

this refers to the object being constructed
the object registers itself as an
ActionListener

Now the listener has been bound to the
event source

Usefulness of
Interfaces

A JTextfield object has a
listenerList field
The addActionListener()
method adds an ActionListener
handle to this list

listnerList

Handling an Event
Enter key pressed in the JTextField

an ActionEvent is built
sent to listener via actionPerformed()
message

listnerList

Enter

 actionPerformed(anEvent)

 { ... }

this

AnActionEvent

GUIBigTenMascots object

JTextField object

Constructor for GUI
Application

1. Create components & listeners, register
listeners with those that fire events

2. Create JPanel for components
3. Tell JPanel which layout manager to

use
4. Mount components on JPanel

usually using the add() method
5. Make JPanel the content panel of

window frame

Layout Managers
Sample layout managers:

 BorderLayout() – components added at
compass positions
 BoxLayout() – components added in
horizontal or vertical box
 FlowLayout() – components added L->R,
Top-> Bottom
 GridLayout(m,n) – components added L->R,
Top-> Bottom in a grid of m by n equal sized
cells

Inside the
actionPerformed() Method

This method invoked when
ActionEvent source fires ActionEvent

class must have been specified as the listener
Method must specify what to do when
the event occurs
 Big10Mascot example:

evaluate string in myMascotField
could be empty, valid, or invalid
respond accordingly

Big10 Mascot
An Applet Version

Make the class extend JApplet instead of
CloseableFrame

public class GUIBig10Mascots2 extends JApplet
 implements ActionListener

Change the main() method to a non-
static init() method

public void init (String [] args)
{ … }

Example 2: GUI
Temperature Converter

Application
 GUIBig10Mascots had single
source of ActionEvents
 GUITemperatureConverter lets
user enter any one of three types of
temperatures
Note source code, Figure 7.8

GUI Temperature
Converter

Constructor method builds the GUI
 getSource() message takes
ActionEvent as argument

returns the event source (as an object)
that fired the event

 actionPerformed() casts object
into JTextField

 JTextField messages can be sent to it
also checks for the object's type with
instanceof operator

GUI Temperature
Converter

Note use of if-else-if statement
using the equals() method

determines which JTextField is
source of event
Then the equivalent values in the other
two fields are displayed

32.0 Fahrenheit

273.15 Kelvin

0,0 Celsius

Temperature Converter

Applet Version of Temperature
Converter Program

Class extends JApplet instead of
CloseableFrame
Replace main() with non-static init()
Remove the call to setTitle()
Set dimensions of the applet frame in
the HTML file:

32.0 Fahrenheit

273.15 Kelvin

0,0 Celsius

AppletViewer: GUITemperatureCon...

Applet

Applet started.

Conclusions

Compare and contrast the textual
application versions and GUI
versions
Design principle:
Objects and their user interfaces
should be kept separate
Note that the Temperature class
was used for both versions

Part of the Picture:
Boolean Logic &
Digital Design

Arithmetic operations performed by
the CPU carried out by logic circuits
Logic circuits implement Boolean
(digital) logic in hardware

Early Work
Foundations for circuit design

English mathematician, George Boole
Early 1900s

Basic axioms of Boolean algebra seen in
computer language Boolean expressions
One of more useful axioms is DeMorgan's
law
!(x && y) == (!x || !y)
!(x || y) == (!x && !y)

helps simplify complicated Boolean expressions

Digital Circuits
Use three basic electronic
components which mimic logical
operators
AND gate

OR gate
NOT gate
(inverter)

AND

OR

NOT

Circuit Design:
A Binary Half-Adder

Truth table

Boolean expression equivalent:
Boolean carry = digit1 && digit2,
 sum = (digit1 || digit2) &&
 !(digit1 && digit2);

digit1 digit2 sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Circuit Design:
A Binary Half-Adder

Digital circuit equivalent:

Note binary half-adder class, source
code, Figure 7.9, test driver Figure 7.10

AND

OR

NOT

AND

digit1

digit2

sum

carry

Part of the Picture:
Computer Architecture

Four main structural elements of a computer:
Processor: controls operation, performs
data processing
Main Memory: stores data and program, it
is volatile
I/O Modules: move data between
computer and external environment
System Interconnection: provides
communication among processors,
memory, I/O devices

Processor Registers
Provide memory that is faster and
smaller
Functions:

enable assembly-language programmer
to minimize main memory references
provide the processor with capability to
control and monitor status of the
system

User-Visible
Registers

Data registers
some general purpose
some may be dedicated to floating-
point operations

Address registers
index register
segment pointer
stack pointer

Control and Status
Registers

Program Status Word (PSW) contains:
sign of the last arithmetic operation
zero – set when result of an arithmetic
operation is zero
carry – set when operation results in carry or
borrow
equal – set if logical compare result is equality
overflow
interrupt enable/disable
supervisor – indicates whether processor is in
supervisor or user mode

Instruction Execution
Processor reads instructions from memory

program counter keeps track of which
instruction is to be read
instruction loaded into instruction register

Categories of instructions
move data to/from memory and processor
move data to/from I/O devices and processor
perform data processing (arithmetic, logic)
alter sequence of execution (loop, branch,
jump)

I/O Function
I/O modules can exchange data
directly with processor

disk controllers have memory locations
to be accessed

I/O modules may be granted
authority to read/write directly
from/to memory

this frees up processor to do other
things

Memory Hierarchy
Design constraints

how much?
how fast?
how expensive?

Relationships:
faster access time, greater cost per bit
greater capacity, smaller cost per bit
greater capacity, greater (slower) access time

Memory Hierarchy
Solution:

do not rely on a single memory
component or technology
employ memory hierarchy

Registers

Cache

Main Memory

Magnetic Media

Removable Media

As we go down the

hierarchy:

• Decrease cost/bit

• Increase capacity

• Increase access time

• Decreasing

frequency of access

by processor

I/O Organization
I/O modules interface to system bus
More than just a mechanical
connection

contains "intelligence" or logic
Major functions

interface to processor and memory via
system bus
interface to one or more external devices

I/O Module Function
Categories of I/O module
functions:
Control and timing
Communication with processor
Communication with external
device
Data buffering
Error detection

Typical sequence of steps when
processor wants to read an I/O device:

Control and Timing

1. Processor interrogates module for
status of a peripheral

2. I/O module returns status
3. Processor requests transfer of data
4. Module gets byte (or word) of data

from external device
5. Module transfers data to processor

I/O Module
Communication with

Processor
Receive and decode commands
Exchange data between processor
and module via data bus
Report status – I/O devices are slow,
module lets processor know when it
is ready
Address recognition – recognizes
addresses of peripherals it controls

Data Buffering

Contrast transfer rate of data
to/from main memory is high
to/from peripheral devices low

Data buffered in I/O module
data moved to/from processor much
faster

Error Detection
Detect and report errors in I/O
process

mechanical, electrical malfunctions in
the device

floppy disk not fully inserted
paper jam, out of paper in printer

invalid data transmission (found by
parity check, etc.)

8th bit of a byte used as a check bit for the other 7 bits

