
Repetition
Structures

Chapter 8

Chapter Contents
8.1 Intro Example: The Punishment of Gauss
8.2 Repetition: The While Loop
8.3 Repetition: The Do Loop
8.4 Input Loops
8.5. Guidelines for Using Loops
8.6 Intro to Recursion
8.7 Graphical/Internet Java: A Guessing
Game
Part of the Picture: Intro to Algorithm
Analysis

Chapter Objectives
Expand on intro to repetition, Chapter 4
Examine for loops in more detail
Compare, contrast while and do loops
Introduce recursion
Look at event-driven programming and
state diagrams
Take a first look at algorithm analysis

8.1 Introductory Example:
the Punishment of Gauss

Problem:
As a young student, Gauss was
disciplined with the task of
summing the numbers from 1
through 100. He solved the problem
almost immediately. We will learn his
strategy later.
We will construct a method, that given n,
will sum 1 + 2 + … + n

Object Centered
Design

Objects:

Specification of method
public class Formula
{ public static int summation(int n)
 { . . . }
}

Objects Kind Type Movement Name

limit value, n varying int received n

1+2+...+n varying int returned

Operations/
Algorithm

1. Initialize runningTotal to 0
2. Initialize count to 1
3. Loop as long as count <= n

a. Add count to runningTotal
b. Add 1 to count

4. Return runningTotal

for Loop Version of
summation() Method

public static int summation(int n)
{
int runningTotal = 0;

for (int count = 1; count <= n; count++)
 runningTotal += count;

return runningTotal;
}

Note driver program for
summation(), Figure 8.2

8.2 Repetition:
The for Loop Revisited

Counter-controlled loops: loops where
a set of statements is executed once
for each value in a specified range

for (int count = n; count >= 0; count--)
runningTotal += count; // descending form

Initialization
expression

Loop body

Loop
condition

Step
expression

The statement that appears within a for
statement may itself be a for statement

for (int x = 1; x < lastX; x++)
 for (int y = 1; y <= lastY; y++)
 { product = x * y;
 theScreen.println("x * y = "+product);
 }

Nested Loops: Displaying
a Multiplication Table

Inner loop

Outer loop

Warning
If the body of a counting loop alters
the values of any variables involved in
the loop condition, then the number
of repetitions may be changed

for (int I = 0; I <= limit; I++)
{
 theScreen.println(I);
 limit++;
} What happens

in this situation?

Forever Loops
Occasionally a need exists for a loop that
runs for an indefinite number of times
for (; ;)
 statement;

The above statement will do this … it will
run forever … unless …
The body of the loop contains a
statement that will terminate the loop
when some condition is satisfied

The break Statement
Two forms
break;
break identifier;
First form used to terminate execution
of an enclosing loop or switch
statement
Second form used to transfer control to
a statement with identifier as the
label
 identifier : Statement;

Use of the break
Statement

for (; ;)
 { statement;
 . . .
 if (termination_condition)
 break;
 . . .
 statement;
 }

In either case, when the user enters 'Q' to Quit, the
termination condition is met and the loop terminates

Could be statements which
offer a menu choice.
Termination condition would
be choice == 'Q'

Then these would be
statements which
process the menu
choice when it is not 'Q'

The continue
Statement

Two forms:
continue;
continue label;

First form transfers control to the
innermost enclosing loop

current iteration terminated, new one begins
Second form transfers control to
enclosing labeled loop

current iteration terminated, new one begins

Returning From a Loop
for (; ;)
 {theScreen.print(MENU);
 choice = theKeyboard.readChar()
 if (choice >=0 && choice <= 5)
 return choice;
 theScreen.println("error .. "); }

Assuming this forever loop is in a value
returning method when one of options
0 – 5 is chosen.

the loop is terminated and …
the menu choice returned by the function
invalid choices keep the loop running

8.3 Repetition:
The while loop

This is a looping structure that tests
for the termination condition at the
top of the loop

also called a pretest loop
a simpler syntax than placing a break in
an if statement at the beginning of a
forever loop

Example: Follow the
Bouncing Ball

Consider a ball that when
dropped, it bounces to a height
one-half to its previous height.

We seek a program which displays
the number of the bounce and
the height of the bounce, until
the height of the bounce is very
small

Behavior

Prompt for and receive height of drop
Display bounce number and height of
bounce

For ball bounce results:
Enter height of ball drop -> 10

Bounce 1 = 5
Bounce 2 = 2.5
 . . .

Objects

Objects Kind Type Name

current height varying real height

bounce number varying int bounce

a very small
number constant real SMALL_NUM

Operations/
Algorithm

1. Initialize bounce to 0
2. Prompt, read value for height
3. Display original height value with label
4. Loop:

a. if height < SMALL_NUM, terminate loop
b. replace height with height/2
c. add 1 to bounce
d. display bounce and height

 End Loop

Coding and Trial

Note source code, Figure 8.4
sample run
Note use of while statement
while (height >= SMALL_NUMBER)
 { height *= REBOUND_FACTOR;
 bounce++;
 theScreen.println(…);
 }

Syntax

while (loop_condition)
 statement;

Where
 while is a keyword
 loop_condition is a boolean expression
 statement is a simple or compound
statement

while Statement
Behavior

while (loop_condition)
 statement;

1. loop_condition evaluated
2. If loop_condition is true

 statement executed
control returns to step 1

 Otherwise:
Control transferred to statement
following the while

Note – possible that statement is never executed –
called "zero-trip behavior"

Loop Conditions vs.
Termination Conditions

Forever loop
continues repetition when condition is false
terminates when condition is true

 while loop is exactly opposite
continues repetition while condition is true
terminates when it goes false

Warning for either case:
Make sure condition is affected by some
statement in the loop to eventually result in
loop termination

8.4 Repetition:
The do Loop

 while loop evaluates loop condition
before loop body is executed
We sometimes need looping with a
posttest structure

the loop body will always execute at least
once

Example: Making a Program Pause
We seek a method that, given a length
of time will make a program pause for
that length of time

Preliminary Analysis
 System class from java.lang provides
a method currentTimeMillis()

returns number of millisec since 1/1/1970
We will record the results of the function
at the start of our pause method

repeatedly view results to determine elapsed
time

Called “busy-waiting” technique

Objects

Method specification:

public class Controller
{ public static void pause(double seconds)
 { . . . }
}

Objects Kind Type Movement Name

num sec varying double received seconds

num millsec varying long milliseconds

starting time constant long START_TIME

current time varying long currentTime

Operations/Algorithm
1. Receive seconds
2. Initialize START_TIME
3. If seconds > 0

a. compute milliseconds from seconds
b. loop

get currentTime
if currentTime–START_TIME > milliseconds
 terminate repetition
End loop

 else
 display error message

Coding and Testing

Note source code Figure 8.5,
driver Figure 8.6
Note looping mechanism
do
 currentTime = System.currentTimeMillis();
while (currentTime – START_TIME <=
 milliSeconds);

Syntax
do
 statement

while (loop_condition);
Where

 do and while are keywords
 statement is simple or compound
 loop_condition is a boolean
expression
note requirement of semicolon at end

Behavior

When execution reaches a do loop:
1. statement is executed
2. loop_condition is evaluated
3. if loop_condition is true

 control returns to step 1.
otherwise
 control passes to 1st statement following
 loop structure

Loop Conditions vs.
Termination
Conditions

 do loop and while loop both use
loop condition that

continues repetition as long as it is true
terminates repetition when false

forever loop does the opposite
If do loop or while loop used x <= 7
then forever loop would use x > 7
(exact opposite comparison)

Input do Loops:
The Query Approach
Recall two different types of input loops

counting approach
sentinel approach

Counting approach asked for number of
inputs to be entered, used for() loop

requires foreknowledge of how many inputs
Sentinel approach looked for special
valued input to signify termination

requires availability of appropriate sentinel
value

Query Approach
Use a do loop

loop body always executed at least one time
Query user at end of loop body

user response checked in loop condition
do {
 // whatever …
 . . .
 theScreen.print("More inputs? (Y/N) : ");
 response = theKeyboard.readChar();
} while (response=='y' || response =='Y');

Query Methods
Note the excess code required in the loop

to make the query
to check results

This could be simplified by writing a
method to do the asking

method returns boolean result
use call of query method as the loop condition

do { …
 … } while (Query.moreValues());

8.5 Choosing the
Right Loop

Determined by the nature of the problem
Decisions to be made:

1. Counting or general loop?
Ask: does algorithm require counting through fixed range of values?

2. Which general loop?
pretest or posttest
forever loop with test in mid-loop

Introduction to
Recursion

We have seen one method call
another method

most often the calling method is
main()

It is also possible for a method to
call itself

this is known as recursion

Example: Factorial
Problem Revisited

Recall from section 5.3
Given an integer n, calculate n-factorial
1 * 2 * 3 * … * (n – 1)*n
One way to define factorials is

This is a recursive definition

n! =

{
1 n = 0
n × (n − 1)! n > 0

Recursive Definitions

An operation is defined recursively if:
it has an anchor or base case
it has an inductive or recursive step where
the current value produced define in terms
of previously define results

n! =

{
1 n = 0
n × (n − 1)! n > 0

Recursive Method for
n!

public static int factorial(int n)
{
 if (n == 0)
 return 1;
 else
 return n * factorial(n – 1); }

• Consider: what happens when n < 0?
• Why is this called infinite recursion?

Anchor case

Inductive step

Example 2: Recursive
Exponentiation

Raising a number to an integer power
can be also be done with recursion

Objects Type Kind Movement Name

base value double varying received x

exponent int varying received n

xn double varying returned

x
n

=

{
1 n = 0

x
n−1

× x n > 0

Recursive
Exponentiation

Method
public static double power(double x, int n)
{ if (n == 0)
 return 1.0;
 else if (n > 0)
 return power(x, n – 1)*x;
 else { theScreen.println("error");
 return 1.0; }
}

What keeps this method from infinite recursion?

Anchor case

Inductive step

8.7 Graphical/Internet
Java: A Guessing Game

Twenty Guesses:
One player thinks of an integer
Second player allowed up to 20
guesses to determine the integer
Incorrect guess:

tell the other player whether guess is
high or low
other player uses this information to
improve guess

Problem: Twenty
Guesses

We seek a program using GUI to
play the role of the guesser
Strategy used is binary-search

guesser knows high and low bounds of
search
guesses half way
use high/low feedback to guess halfway
of smaller bound

Behavior of Program:
Transition Diagram

Twenty Guesses

Lower Equal Higher

Reset Quit

My guess is X

Twenty Guesses

Begin Quit

Think of an integer
Twenty Guesses

Reset Quit

I win!

Twenty Guesses

Reset Quit

I lose!

Quit

Quit

QuitQuit

Begin
Reset

Exceed 20
Questions

Equal Reset

Reset

Higher,
Lower

Objects
Object Type Kind Name
program varying
prompt Jlabel varying myPromptLabel

Prompt message String varying
"Begin" button JButton varying myBeginButton
"Quit" button JButton varying myQuitButton

"Lower" button JButton varying myLowerButton
"Equal" button JButton varying myEqualButton

"Higher" button JButton varying myHigherButton
"Reset" button JButton varying myResetButton

a guess int varying myGuess
Count of guesses int varying myGuessCount

low bound int varying myLoBound
high bound int varying myHiBound

Operations
1. We need a constructor to build the GUI
2. An actionPerformed() method

a. implement the ActionListener interface
b. register itself as listener for each button
c. send addActionListener() message to

each button
3. A main() method

a. create an instance of the class
b. make it visible

State Diagram
A transition diagram with most
details removed

Quit

Quit

Quit
Quit

Begin
Reset

Exceed 20
Questions

Equal
Reset

Reset

Higher,
Lower

Starting State

Guessing
State

Lose State

Win State

Coding
Write a method for each state

define its appearance in that state
 JButtons have setText() method
for setting label attribute

button with “Begin” in starting state has
“Reset” in the other states

Note full source code Figure 8.14

Applet Version of GUI
Guessing Program
Make the class extend JApplet
instead of CloseableFrame
Replace main() with non-static
init() method
Adjust dimensions of applet frame
in HTML file to resemble frame for
application

Part of the Picture:
Intro to Algorithm Analysis

How did Gauss figure the sum so quickly?
Consider
sum = 1 + 2 + … + 99 + 100
sum = 100 + 99 + + 2 + 1
Thus
2 * sum = 101 + 101 + … + 101 + 101

So
100 terms

sum =
100 × 101

2
= 5050

Analyzing the Algorithms
In general, the formula is:

This is more efficient than the looping
algorithm

many less operations (additions, assignments,
increments, comparisons)
This algorithm actually has same number of
operations regardless of the value of n

Important to analyze algorithms for
efficiency

evaluate number of operations required

sum =
n × (n − 1)

2

