Chapter 11
Buses and I/O Devices

Arthur B. Maccabe
Department of Computer Science
The University of New Mexico

Overview

- Synchronous protocols
 - synchronous protocols use a clock
 - asynchronous protocols don’t have a clock
 * typically, faster (no waiting for the clock to strike)
 * typically more complicated
- Timing considerations
- Arbitration
Bus Signals

<table>
<thead>
<tr>
<th>Line/signal</th>
<th>Established by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Initiator (Master)</td>
</tr>
<tr>
<td>Data</td>
<td>Initiator/responder (Master/slave)</td>
</tr>
<tr>
<td>Address</td>
<td>Initiator (Master)</td>
</tr>
<tr>
<td>R/W</td>
<td>Initiator (Master)</td>
</tr>
<tr>
<td>Done</td>
<td>Responder (Slave)</td>
</tr>
<tr>
<td>Clock</td>
<td>Bus</td>
</tr>
</tbody>
</table>

Timing for a Write Transaction

Slide 3
Timing for a Read Transaction

Slide 4

Wait States

Slide 5
Timing Considerations

1. *Transaction access time*: from when *responder* recognizes *start* signal until *responder* asserts *done* signal

2. *Transaction cycle time*: interval between consecutive requests

3. Calculating wait states

<table>
<thead>
<tr>
<th>a</th>
<th>access time</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>bus stabilization time</td>
</tr>
<tr>
<td>b</td>
<td>bus clock cycle time</td>
</tr>
<tr>
<td>w</td>
<td>number of wait states</td>
</tr>
</tbody>
</table>

\[a \leq 1.5 \cdot b + w \cdot b - 3 \cdot s \]

\[w \geq \frac{a - 1.5 \cdot b + 3 \cdot s}{b} \]
Example 1

- Assumptions
 - bus clock 16.67 MHz
 - bus stabilization time is 10 nanoseconds
 - access time is 80 nanoseconds

Slide 8

- Bus cycle time
 \[
 \frac{1}{16,670,000 \text{ cycle}} = \frac{1,000,000,000 \text{ nanosec}}{16,670,000 \text{ cycle}} \approx \frac{60 \text{ nanosec}}{\text{cycle}}
 \]

- Number of wait states
 \[
 w \geq \frac{80 - 1.5 \cdot 60 + 30}{60} = \frac{20}{60}
 \]

 \[
 \Rightarrow w = 1
 \]

Example 2

- Assumptions
 - bus clock 12.5 MHz (80 nanosecond cycle time)
 - bus stabilization time is 10 nanoseconds
 - access time is 80 nanoseconds

Slide 9

- Number of wait states
 \[
 w \geq \frac{80 - 1.5 \cdot 80 + 30}{80} = \frac{-10}{80}
 \]

 \[
 \Rightarrow w = 0
 \]
The Effect of Cycle Time

- Access time identifies the minimum number of wait states
- Assumptions
 - bus stabilization time, 10 nanoseconds
 - 25 MHz clock (40 nanoseconds)
 - access time (read or write) is 20 nanoseconds
 - write cycle time is 160 nanoseconds

\[
w \geq \frac{20 - 1.5 \cdot 40 + 30}{40} = -\frac{10}{40}
\]

- Cycle time
 - could be as low as 80 nanoseconds (two bus cycles)
 - needs to be 160 nanoseconds, when to add wait states?