
On the Appropriateness of Commodity Operating Systems for Large-Scale,
Balanced Computing Systems

Ron Brightwell
Scalable Systems Integration Department

Sandia National Laboratories
�

PO Box 5800
Albuquerque, NM 87185-1110

bright@cs.sandia.gov

Arthur B. Maccabe
Computer Science Department

University of New Mexico
Albuquerque, NM 8731-1386

maccabe@cs.unm.edu

Rolf Riesen
Scalable Computing Systems Department

Sandia National Laboratories
�

PO Box 5800
Albuquerque, NM 87185-1110

rolf@cs.sandia.gov

Abstract

In the past five years, we have been involved in the de-
sign and development of Cplanttm. An important goal was
to take advantages of commodity approaches wherever pos-
sible. In particular, we selected Linux, a commonly avail-
able operating system, for the compute nodes of Cplanttm.
While the use of commodity solutions, including Linux, was
critical to the success of Cplanttm, we believe that such an
approach will not be viable in the development of the next
generation of very large-scale systems.

We present our definition of a balanced system and dis-
cuss several limitations of commodity operating systems in
the context of balanced systems. These limitations are cat-
egorized into technical limitations (e.g., the structure of the
virtual memory system) and social limitations (e.g., the ker-
nel development process). While our direct experience is
based on Linux, issues we have identified should be rele-
vant to all commodity operating systems.

1. Introduction

With the introduction of Beowulf systems [18] in 1995,
commodity solutions have become popular in high perfor-
mance computing systems. The early Beowulf systems

�

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

demonstrated that a large number of computations which
were previously run on special purpose supercomputers
could be run on systems built from commonly available
components at a fraction of the cost. Since their introduc-
tion, developers have explored many variations on the Be-
owulf theme. The “Stone Souper” project [9] which was
assembled entirely from PCs that had been scheduled for
reapplication, represents one extreme. Cplanttm [4], the
Los Lobos Cluster at the Albuquerque High Performance
Computing Center, the NSF Terascale Cluster at the Pitts-
burgh Supercomputer Center, machine, and the NSF Dis-
tributed Terascale Facility (DTF) [2], which combine high-
end commodity compute nodes with specialized networks
(e.g., Myrinet), represent another extreme.

While Beowulf systems spurred a great deal of interest in
commodity solutions; by 1995, the use of commodity oper-
ating systems in high-performance computing systems was
already well established. In 1993, rather than continue de-
velopment of the NX [15] operating system, Intel adopted
OSF/1 AD [20] as the operating system to run on all of
the nodes of the Paragon. OSF/1 AD, based on the Mach
microkernel [16], represents an early example of adapting
a commodity operating system to the compute nodes of a
massively parallel systems. In 1994, the NOW [1] project at
UC Berkeley took a different approach. Rather than adapt-
ing the operating system, GLUnix [14, 6] was designed to
run on top a commodity operating system without making
any modifications to the underlying operating system.

As with many early systems, there were a number of



problems in the initial deployment of OSF/1 AD on the In-
tel Paragon. These problems led Sandia management to de-
ploy SUNMOS (the Sandia/UNM Operating System) [11],
a “light-weight,” custom operating system, on the compute
nodes of their 1842 node Intel Paragon. The success of
this effort led to the development of Puma/Cougar [17], the
compute node operating system for the Intel Tflops system
and, in particular, on the 9000 processor ASCI/Red machine
at Sandia National Laboratories.

In 1997 Sandia National Laboratories embarked on
Cplanttm, a project aimed at building a massively paral-
lel computing system from commodity, or near-commodity
components. As we will discuss, there were several issues
that lead us to adopt Linux as the compute node operating
system for Cplanttm. Overall, our use of Linux in this envi-
ronment should be viewed as a success; however, as we look
to future systems, our experiences with Linux have led us to
conclude that the direct use of Linux will not be appropriate
in these systems.

The remainder of this paper is organized as follows: The
next section provides additional background for the rest
of this paper. In particular, this section defines the basic
system architecture for the systems we are interested in,
the class of applications we are interested in, and the rea-
sons that we selected a commodity operating system for
Cplanttm. Section 3 presents our definition of a balanced
system. Section 4 considers technical issues that we have
encountered in using commodity operating systems. Sec-
tion 5 considers the social issues associated with using com-
modity operating systems in high-performance computing
environments. Finally, Section 6 summarizes our concerns
with the appropriateness of commodity operating systems
for high-performance computing.

2. Background

Before presenting our definition of balanced system and
describing the issues we have encountered with commodity
operating systems, we need to describe the context for our
work.

2.1. Target Architecture

Our target system architecture partitions the nodes of a
massively parallel system based on functional considera-
tions [8]. Typically, we partition the nodes into three sets:
compute nodes, service nodes, and I/O nodes.

The compute partition is dedicated to delivering proces-
sor cycles and interprocessor communication for parallel
applications. Nodes in the compute partition are managed
in a space-shared fashion. That is, a group of nodes is dedi-
cated to running only a single application.

Nodes in the service partition provide access to the com-
pute partition. As a minimum, nodes in the service par-
tition support user logins (authentication) and application
launch. More typically, these nodes also perform a vari-
ety of other activities such as compiling codes, editing files,
sending email, and checking the status of the nodes in the
compute partition.

The I/O partition provides access to a global parallel
filesystem, and may also contain nodes that provide access
to secondary storage systems or high performance network
interfaces to other systems.

In the context of systems software design, the primary
advantage of partitioning is that it allows the system soft-
ware to be tailored to specific needs. For example, compute
nodes only require a small subset of the functionality pro-
vided by common operating systems.

2.2. Target Applications

In designing massively parallel computing systems, our
primary goal is to provide support for resource constrained
applications, applications that can scale to consume all of
at least one type of resource (e.g., memory, processing, IPC
communication, I/O communication, etc.) provided by the
system.

In considering these applications, the primary concern is
execution time. A single run of a resource constrained ap-
plication may use the full system (in dedicated operation)
for several days. Many of these applications have exten-
sive code to manage the resources provided by the machine.
Examples of resource constrained applications include: cli-
mate modeling, fire simulation, and traffic simulation.

2.3. Why Linux for Cplanttm

Linux was not our first choice as the compute node op-
erating system for Cplanttm. Based on our experiences with
the Paragon and Tflops systems we decided that the com-
pute nodes should run a light weight kernel, like Puma,
while the service and I/O nodes would run a full fledged
operating system. Because Puma had not been ported to
the Alpha processor, we decided that we would start with a
system that ran the same OS on all partitions with the under-
standing that we would eventually port Puma to the Alpha
architecture and would then replace Linux on the compute
nodes with a light weight kernel.

Access to the source code was an important considera-
tion in selecting the operating system that would run on the
service and I/O nodes. While we did not expect to make sig-
nificant modifications to the OS running on the service and
I/O partitions, we would need to modify this OS to enable
communications with the compute node OS. In addition to
wanting source code access for our own work, we felt it

2



would be important that others also have access to the code
to enhance collaborations. This effectively ruled out com-
mercial operating systems such as Tru64 and OSF/1 AD.

Given this context, we started looking at open source
projects. Several of us had used Linux on our personal
workstations and were familiar with it from a user point of
view. At the time Linux, especially the RedHat distribution,
was the most advanced open source project supporting the
Alpha processor. DEC (now Compaq) had given Linus Tor-
valds a development machine early on and dedicated two
engineers in helping to port Linux to the chipsets used in its
machines.

Linux was evolving rapidly and the community of ker-
nel developers grew almost daily. Together with DEC’s
support of Linux, this promised continued and increasing
support even though Alpha processor based systems were
not as common as the Intel based systems. Choosing Linux
also made it possible to move Cplanttm to other architec-
tures later on, whereas an operating system which only runs
on a few select systems, would have imposed limitations in
future hardware selections.

Using an operating system which already ran on our plat-
form of choice meant that we could devote our limited re-
sources to the message passing infrastructure and the sys-
tem software which turns a group of PCs into a single su-
percomputer.

Linux is a monolithic kernel, but through its support for
kernel modules, it is fairly easy to extend. This is especially
important during development where this capability lets us
change a running kernel without having to reboot for every
small change.

After five years of development on Cplanttm, we are fi-
nally in the process of porting our lightweight operating sys-
tem, Puma, to the compute nodes of Cplanttm. Interestingly,
we view this more as an experiment for the development of
future systems rather than something that will become part
of the production Cplanttm system.

In retrospect, three factors led to our selection and con-
tinued use of Linux on the compute, service and I/O nodes
on Cplanttm. First, Linux was available on a wide variety
of systems, including the DEC Alpha systems we were us-
ing in Cplanttm. Second, by using Linux we would have
access to the source code and could easily modify it to suit
our needs. Third, and perhaps most importantly, we would
be part of a growing community of developers who were
actively developing high-performance computing systems
based on Linux.

3. Balanced Systems

In this section we introduce the notion of a balanced sys-
tem to motivate the discussion of commodity versus custom
operating systems. It is our contention that once balance

in a system has been compromised at a low level, attempts
to overcome the imbalance at a higher level have little or
no impact. For example, a high-performance operating sys-
tem may have little impact on application performance in a
machine that has an imbalance at the hardware level.

For most scientific and engineering applications, the per-
formance of a large-scale parallel computing platform is de-
termined by the parallel efficiency of the entire system and
not by the peak performance of the individual processors in
the machine. In order to achieve and maintain a high degree
of parallel efficiency, there must be a balance over the entire
system, including: the processors, the memory subsystem,
the interconnect, the I/O subsystem, and the systems soft-
ware. In this section, we describe the hardware character-
istics of a computing platform required to provide scalable
performance to thousands of processors for a large collec-
tion important applications.

The criteria we describe are based on experience in eval-
uating the performance of real applications on production
platforms. Evaluation in terms of real applications is ex-
tremely important, especially when considering that some
advanced features of a platform cannot be reliably exploited
by all applications. In the interest of brevity, we only con-
sider the balance between the processor(s), memory band-
width, and network bandwidth. Other factors, such as mem-
ory size, memory latency, network latency, and processor
availability are also considerations. Below we consider
peak memory bandwidth and peak network bandwidth as a
ratio to the peak CPU floating-point operations per second
(FLOPS).

3.1. Memory Bandwidth

The bandwidth between the processor(s) and the main
memory must be sufficient to feed data to the processors.
In our experience, our important large-scale applications do
not benefit from caching. Because they are floating-point
bound, there is little excess time to fill or empty caches.
As such, we would like the memory system to be capa-
ble of two loads and one store per floating-point opera-
tion. This suggests that the ideal ratio would be 24 B/s per
FLOPS. Recognizing that modern architectures use regis-
ters because they are unable to sustain such a memory rate,
we relax this criteria to 4 B/s per FLOPS, which is a more
realistic goal for modern computing systems. As an exam-
ple, if the processor is capable of delivering a peak perfor-
mance of 2 GFLOPS, the memory system should be able to
deliver 8 GB/s.

We have observed the importance of this ratio in sev-
eral real systems. As an example, the compute nodes for
an early Cplanttmused 500 MHz Alpha EV56. These nodes
have a peak of 1 GFLOPS and 800 MB/s memory band-
width, i.e., a ratio of .8. The compute nodes of a subsequent

3



Cplanttmused 500 MHz Alpha EV67 nodes. These nodes
also have a peak of 1 GFLOPS; however, the memory sub-
system is capable of delivering 2.6 GB/s of memory band-
width. Most applications saw at least a 50% performance
improvement and several applications saw a factor of two
increase in performance.

3.2. Network Bandwidth

Balance in peak network performance is also critical for
sustained parallel efficiency. This is especially important
in large-scale systems where compute nodes will need to
be interconnected by a high-performance networking fab-
ric. We consider three aspects of network bandwidth: bi-
directional bandwidth for a single compute node, link band-
width within the network, and bisection bandwidth.

Bi-directional bandwidth is the maximum bytes per sec-
ond that can be communicated into and out of a single node.
While the desired ratio is highly dependent on the structure
of the application and, in some cases dependent on the ap-
plication’s data set, a ratio of 1.5 B/s per FLOPS is adequate
to allow efficient scaling for most of our applications. For
a compute node capable of delivering 2 GFLOPS, network
bandwidth into the processor should be at least 3 GB/s.

Since links within the network fabric are typically
shared, the link bandwidth needs to be greater than the bi-
directional bandwidth of a single node to accommodate net-
work traffic between multiple compute nodes. Our balance
criteria for link bandwidth is 2 B/s per FLOPS, e.g., 4 GB/s
for a compute node with a peak performance of 2 GFLOPS.

Bisection bandwidth is a succinct characterization of the
network topology. In particular, the ability of the network
to support multi-node communication, including collective
operations. The balance metric for bisection bandwidth is
0.75 B/s per nodes � FLOPS, e.g., 1.5 TB/s for 20,000 1
GFLOPS processors.

3.3. A Comparative Example

Table 1 shows the network bi-directional link bandwidth
balance ratios for several large-scale computing platforms.
The ASCI/Red machine originally contained 200 MHz In-
tel Pentium Pro processors when it was deployed in 1997,
but was subsequently upgraded to 333 MHz Intel Pentium
II processors in 1999. The numbers for Cplanttm are for a
system based on 466 MHz Compaq Alpha EV67 processors
and 2.4 Gb/s Myrinet links. The numbers for the Platinum
cluster at NCSA are based on dual 1 GHz Intel Pentium III
processors and Myrinet 2000, which has 4 Gb/s links.

It is interesting to note that the first two platforms,
ASCI/Red and the Cray T3E, both run lightweight compute
node operation systems: Puma/Cougar on ASCI/Red and

Table 1. Comparison of Link Bandwidth /
MFLOPS

Machine Node Peak Link BW Ratio
(MFLOPS) (MB/s)

ASCI/Red (1997) 400 800 2.0
ASCI/Red (1999) 666 800 1.2
Cray T3E 1200 1200 1.0
Cplanttm (Alaska) 1000 300 0.33
Cplanttm (Antarctica) 932 300 0.32
NCSA Platinum 2000 500 0.25
ASCI/Q 8000 1360 0.17
ASCI/White 24000 2000 0.083

Unicos/Mk on the T3E. The remaining systems use full-
featured, UNIX-based operating system: Linux on Cplanttm

and Platinum, AIX on ASCI/White, and Tru64 UNIX on
ASCI/Q.

4. Technical Issues

In this section, we consider the technical issues associ-
ated with using full-featured, commodity operating systems
on the compute nodes of a large-scale, balanced system.

4.1. Blocking System Calls

Most Linux system calls are blocking. That is, the re-
questing process is blocked until the kernel provides the re-
quested service. Historically, blocking system calls were
introduced to support efficient multiprogramming. While
the blocked process is waiting for an I/O operation to com-
plete, the OS can run another process, increasing the overall
system utilization and throughput.

While this approach is appropriate in a full-featured,
commodity OS, it is contrary to the goals of a compute node
operating system. From the space-sharing model we can as-
sume that the resources of a compute node are dedicated to
a single application and, as such, any competition for the
CPU is limited to a single application. Moreover, because
they are very aware of resource management issues, many
resource constrained applications are designed to perform
meaningful work while they are waiting for slow requests
to be completed, i.e., they can overlap computation and I/O.

4.2. Daemon Processes

Daemon processes, represent another example of an in-
appropriate resource management strategy commonly used
in full-featured, commodity operating systems. Modern op-
erating systems delegate many of their resource manage-
ment activities to daemon processes that run periodically.
Examples include daemons that provide network services

4



(e.g., httpd), printing services (e.g., lpd), and periodic ex-
ecution services (e.g., atd). This approach can introduce
a great deal of variability in execution times depending on
how many times the daemon processes run.

This variability introduces two problems for resource
constrained applications. First, this variability makes it dif-
ficult to obtain the accurate timing information needed to
tune application performance. Second, it can have a sig-
nificant impact on tightly coupled applications in which ac-
tivities on the compute nodes are highly synchronized. This
problem is exacerbated in very-large scale systems. While it
is possible to remove most of the traditional, user-level dae-
mons from a commodity operating system, recently there
has been a trend toward introducing daemons in the OS ker-
nel, e.g., the kswap daemon in the Linux kernel which man-
ages the pool of free page frames for the virtual memory
system.

4.3. File Systems (Exec)

Modern operating systems, especially Unix derivatives,
are filesystem centric. This is most easily seen in the
way that applications are loaded into memory. Like most
Unix derived operating systems, Linux uses the “fork-exec”
model to load processes. According to this model, a new
process is created using the fork system call. The new,
child, process is clone of the parent. To execute a differ-
ent program, the child uses the exec system call. The first
argument to exec is a string which has the name of the file
containing the executable image to be loaded over the cur-
rent process image. While this model has worked well for
general purpose environments, it is at odds with our usage
model for compute nodes.

The compute nodes of Cplanttm do not have disks and,
as such, they do not have a “natural” local file system. The
technology for “diskless” workstations is well established
and involves the use of NFS (network file system) to let
the compute nodes pull the image from a remote file server.
The NFS pull strategy works well in a general network en-
vironment because there is little synchronization among the
workstations that are using NFS to load applications. When
an application is launched on thousands of nodes and they
all try to read the image file from the same NFS server, this
strategy fails spectacularly.

There are several solutions to this problem. Our ap-
proach is to push the executable image to the compute nodes
(using a spanning tree) as the application is launched. This
strategy is both scalable and efficient [3], but it does not
map directly to the exec model. To make our push strategy
work with the exec model, each compute node has a small
RAM disk. When the compute node receives a process im-
age (through the message passing system), it writes the im-
age to the RAM disk and starts the fork-exec sequence. This

is not a major inconvenience; however, we have had to ad-
just the size of the RAM disk to accommodate very large
applications.

4.4. Virtual Memory

Even though memory is relatively inexpensive, it still
tends to be the resource that generates the most contention
among the processes running on a desktop or server sys-
tem. As such, commodity operating systems tend to place a
great deal of emphasis on their implementation of demand-
page virtual memory. These implementations assume that
processes come and go fairly often and that their access to
memory pages is fairly dynamic. In contrast, the compute
nodes of a massively parallel computing system have highly
static memory access patterns. Upon booting these nodes
launch a daemon process to manage the node. This process
responds to “ping” requests and launches applications (this
is the process that receives process images and initiates the
fork-exec sequence). Because the compute nodes are space-
shared, applications are run serially. Because the nodes do
not have local disks, we do not support demand paging. In
essence, the memory allocation pattern is a stack with at
most two processes at any time.

While having a complex virtual memory system does
not, in and of itself, have a direct impact on application scal-
ability, it does limit our ability to take advantage of the rel-
atively simple memory access patterns on compute nodes.
For example, on the Intel Paragon switching the page sizes
for applications from 4KB to 4MB decreased run times by
approximately 25%. Although we do not have direct per-
formance data, our communication layers would be greatly
simplified if we could assume that logically contiguous ad-
dresses mapped to physically contiguous addresses. Given
the complexity of the Linux virtual memory system it would
be very difficult to make the modification needed to make
this assumption.

4.5. Communication

High-performance, zero-copy communication is also
critical to the performance of a large-scale massively par-
allel computing platform. While there have been several ef-
forts to develop true zero-copy networking [10, 5, 7], none
of these has had a significant impact on Linux kernel de-
velopment. Within the Linux community, zero-copy is fo-
cused on the ability to move disk blocks directly to the net-
work interface without the need to copy data to and from
application space [13]. Importantly, Linux kernel develop-
ers seem focused on the needs of servers to send efficiently
and have largely ignored to difficulties with zero-copy re-
ceiving. This asymmetry is inappropriate for HPC commu-
nication requirements.

5



4.6. Time to Solution

In many instances, time to solution is an important rea-
son for selecting an commodity approach. In the case
of Cplanttm, Linux provided most of the solution that we
needed and we were able to adapt it to serve our purposes in
a timely fashion. However, there are other cases where the
use of commodity components actually increase the time
to solution. In 1993, the developers of OSF/1 AD on the
Intel Paragon faced the exec problem that we described ear-
lier. Rather than use the push approach that we have used,
the developers of OSF/1 AD chose to implement paging
trees [12]. While this solution is quite elegant; by the time it
was implemented, we had ported SUNMOS to the Paragon
and were running applications on all 1842 nodes.

As a second counter example, we consider the addition
of “virtual node” mode to Puma/Cougar (the lightweight OS
on ASCI/Red). Like the Intel Paragon, the Intel ASCI/Red
architecture has two processors per node. In concept, one
processor is supposed to be used for running applications
while the other is used to manage the network. In Puma, we
call this mode “message co-processor” mode. Puma also
provides “compute co-processor” mode, in which one pro-
cessor is used to manage the network and run application
code while the other processor is used as a co-processor.
Based on demand from application developers, a new mode,
“virtual node” mode, was added to Puma. In this mode,
each processor is treated as a virtual node. Two program-
mers working for less than six months were able to extend
Puma to add this mode. This is even more impressive when
we consider that neither of these programmers had had prior
experience in Puma development.

5. Social Issues

In this section, we consider social issues surrounding the
use of commodity operating systems on the compute nodes
of a large-scale, balanced system. In some cases, these is-
sues can be more challenging to overcome than the techni-
cal issues above.

5.1. Staying Current

As stated in Section 2.3, being part of a growing commu-
nity actively developing high-performance computing sys-
tems based on Linux was an important factor in our choice
of Linux for Cplanttm.

In reality, the development surrounding the Linux kernel
has moved too quickly for us to be able to keep pace. Be-
ing part of the Linux development community means that,
to some extent, you have to move at the pace of Linux. The
earliest Cplanttm clusters continued to run a Linux 2.0 ker-
nel long after 2.2 was available. We finally moved to using

a 2.2 kernel, not because of any enhancements in the later
version, but because we purchased nodes whose PCI chipset
was only supported by the 2.2 kernel.

We are currently experiencing the same situation in mov-
ing from 2.2 to 2.4. However, this time there are several
features in 2.4 that we would like to use, but there are also
features that we would like to avoid. Since Linux is mono-
lithic, we are forced to take the bad with the good.

Consider the example of the the changes to the virtual
memory subsystem that occurred in the middle of the Linux
2.4 kernels. We had been working closely with a third party
software vendor to add support for using larger memory
pages in the VM system of the 2.2 kernel. By the time
we were able to evaluate the performance implications of
the enhancement in the 2.2 kernel, the 2.4 kernel had been
released. We received an estimate for adding this function-
ality into the 2.4 kernel, but we did not immediately go for-
ward with the enhancements. Luckily, the change to the
VM system in 2.4 happened before we contracted to have
the proposed work done. Had the work already begun, it
would have been made obsolete by the new 2.4 VM system.

In addition to the kernel proper, we also needed to keep
pace with a particular Linux distribution, which in our case
was RedHat. We continually find ourselves being forced
into using a later distribution sooner than we would like.

In short, a compute node operating system has a fairly
fixed set of requirements that need to be met. We find the
rapidly advancing functionality and enhancements in Linux
and the Linux development environment does not allow us
the time needed to concentrate on optimizing a particular
snapshot of the system software. Slowing down to focus on
a particular version or release has the potential to make us
unique within the community, which directly counters one
of the main advantages we saw in using Linux.

5.2. Staying Focused

Another drawback to being part of the Linux community
is that they are not focused on solving problems related to
high-performance parallel computing systems. The trend
for Linux, and to some extent other commodity operating
systems as well, has been toward the desktop and server
markets. While there is some commonality, to a large extent
the problems of HPC are unique, especially for our target
architecture.

We discovered that the sheer number of development
projects surrounding Linux became a problem. Rather than
first implementing something ourselves, we had to spend
resources evaluating what others were working on. In a few
cases we were able to save some resources by leveraging
previous or ongoing work. However, in nearly all cases, our
specific needs and requirements were not being addressed,
so the evaluation effort was largely unproductive.

6



There are several examples of functionality that is con-
tinually being added to Linux which directly contradicts the
environment that we would like to support on our system.
For example, consider the Out-Of-Memory (OOM) killer
[19]. This feature is used to protect the Linux kernel from
becoming unresponsive due to exhaustion of virtual mem-
ory resources. When virtual memory becomes threateningly
scarce, the OOM killer selects a process to eliminate to
free up memory resources. The main criteria that the OOM
killer uses in determining which process to kill is memory
use – the user process consuming the most memory will be
killed. This particular example demonstrates a fundamental
difference in philosophy between a desktop or server oper-
ating system and the operating system on the compute node
of a parallel machine. For the compute node, we expect pro-
cesses to consume all of the resources on a node and design
the operating system to allow and encourage that.

Efforts to steer Linux development toward addressing
HPC problems have largely been unsuccessful. The now
defunct Extreme Linux Forum, which was started by re-
searchers at Los Alamos National Laboratory, was an effort
founded to do just that. While Extreme Linux did provide
a forum for the HPC community to exchange ideas and ap-
proaches, it had little real impact on the direction of Linux.

6. Summary and Future Directions

In this paper we have discussed some of the character-
istics of a balanced, large-scale parallel computing system.
We believe that the balance of the entire system with respect
to the major architectural components is the key to achiev-
ing overall system performance for a variety of scientific
and engineering applications. We view the system software
as one of these important components.

As we noted in the introduction, we consider our use of
Linux in Cplanttmto be a success. To a large extent this
is because the base hardware for Cplanttm is not balanced
(see Table 1). In essence, Linux did not increase the dam-
age done by the base hardware. For platforms whose hard-
ware architecture already imposes a restriction on the bal-
ance of the system, it is less critical that the system software
be optimized to deliver to the maximum capability of the
hardware. In contrast, for platforms whose hardware archi-
tecture exhibits good balance characteristics, system soft-
ware becomes a critical factor in determining the overall
efficiency of the system.

What are the costs if we move away from commodity op-
erating systems and back to specialized operating systems
for the compute nodes of a massively parallel system? The
most significant costs include development time, cross plat-
form porting, limitations to functionality, and potential loss
of third party tool support. While these costs are not in-
significant, we must compare them to the costs associated

with adapting commodity solutions. Moreover, we must
take into consideration that commodity operating systems
are drifting further and further from the needs of HPC sys-
tems.

It is important to keep in mind that, in contrast to com-
modity operating systems, our goal is to develop a solution
for a limited set of platforms and applications. As such,
our development and ongoing support costs are much less.
While a commercial operating system may involve the ef-
fort of hundreds of person years and millions of dollars for
supporting a vast array of hardware and applications, our
costs for developing and maintaining specialized operating
systems have been much more modest.

References

[1] T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for
NOW (network of workstations). IEEE Micro, 15(1):54–64,
Feb. 1995.

[2] F. Berman. Viewpoint: From TeraGrid to knowledge grid.
Communications of the ACM, 44(11):27–28, Nov. 2001.

[3] R. Brightwell and L. A. Fisk. Scalable parallel application
launch on Cplant(tm). In ACM, editor, SC2001: High Per-
formance Networking and Computing. Denver, CO, Novem-
ber 10–16, 2001, New York, NY 10036, USA and 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA,
2001. ACM Press and IEEE Computer Society Press.

[4] R. B. Brightwell, , L. A. Fisk, D. S. Greenberg, T. B. Hud-
son, M. J. Levenhagen, , A. B. Maccabe, and R. Riesen.
Massively parallel computing using commodity compo-
nents. Parallel Computing, 26:243–266, February 2000.

[5] A. Gallatin, J. Chase, and K. Yocum. Trapeze/IP: TCP/IP
at Near-Gigabit Speeds. In Proceedings of the FREENIX
Track (FREENIX-99), pages 109–120, Berkeley, CA, June
1999. USENIX Association.

[6] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat,
and T. E. Anderson. GLUnix: A Global Layer Unix for
a network of workstations. Software–Practice and Experi-
ence, 28(9):929–961, July 1998.

[7] P. Gilfeather and T. Underwood. Fragmentation and High
Performance IP. In Proceedings of the 2001 Workshop on
Communication Architecture for Clusters, April 2001.

[8] D. S. Greenberg, R. Brightwell, L. A. Fisk, A. B. Maccabe,
and R. Riesen. A system software architecture for high-
end computing. In ACM, editor, SC’97: High Performance
Networking and Computing: Proceedings of the 1997 ACM/
IEEE SC97 Conference: November 15–21, 1997, San Jose,
California, USA., New York, NY 10036, USA and 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1997. ACM Press and IEEE Computer Society Press.

[9] W. W. Hargrove, F. M. Hoffman, and T. Sterling. The do-
it-yourself supercomputer: Scientists have found a cheaper
way to solve tremendously difficult computational prob-
lems: connect ordinary PCs so that they can work together.
Scientific American, 285(2):72–79, Aug. 2001.

7



[10] C. Kurmann, M. Müller, F. Rauch, and T. M. Stricker. Spec-
ulative Defragmentation–A Technique to Improve the Com-
munication in Software Efficiency for Gigabit Ethernet. In
Proceedings of the 9th International Symposium on High
Performance Distributed Computing (HPDC), August 2000.

[11] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat.
SUNMOS for the Intel Paragon: A brief user’s guide. In
Proceedings of the Intel Supercomputer Users’ Group. 1994
Annual North America Users’ Conference., pages 245–251,
June 1994.

[12] D. S. Milojicic, D. L. Black, and S. Sears. Operating system
support for concurrent remote task creation. In IEEE, editor,
Proceedings 9th International Parallel Processing Sympo-
sium, Santa Barbara, CA, USA, April 25–28, 1995, pages
486–492, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1995. IEEE Computer Society Press.

[13] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A Uni-
fied I/O Buffering and Caching System. In Proceedings of
the Third Symposium on Operating Systems Design and Im-
plementation, pages 15–29. USENIX Association, February
1999.

[14] D. A. Patterson and T. P. Anderson. GLUnix: A New Ap-
proach to Operating Systems for Networks of Workstations.
In Proceedings of the First Workshop on Networks of Work-
stations, San Jose, Oct. 1994.

[15] P. Pierce. The NX/2 operating system. In 3rd Conference
on Hypercube Concurrent Computers and Applications, vol-
ume I, Architecture, Software, Computer Systems and Gen-
eral Issues, pages 384–390, Pasadena, CA, Jan. 1988. ACM.
Intel.

[16] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Orr,
and R. Sanzi. Mach: a foundation for open systems (oper-
ating systems). In IEEE, editor, Workstation operating sys-
tems: proceedings of the Second Workshop on Workstation
Operating Systems (WWOS-II), September 27–29, 1989, Pa-
cific Grove, CA, pages 109–113, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 1989. IEEE Computer
Society Press.

[17] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Mac-
cabe, L. A. Fisk, and T. M. Stallcup. The Puma operating
system for massively parallel computers. In Proceeding of
the 1995 Intel Supercomputer User’s Group Conference. In-
tel Supercomputer User’s Group, 1995.

[18] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A.
Ranawake, and C. V. Packer. BEOWULF: A parallel work-
station for scientific computation. In Proceedings of the 24th
International Conference on Parallel Processing, volume I,
Architecture, pages I:11–14, Boca Raton, FL, Aug. 1995.
CRC Press.

[19] R. van Riel. Linux-MM docs: the OOM killer. http://
linux-mm.org/docs/oom-killer.shtml.

[20] R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp,
J. LoVerso, M. Leibensperger, M. Barnett, F. Rabii, and
D. Netterwala. An OSF/1 UNIX for massively parallel mul-
ticomputers. In Proceedings of the 1993 Winter USENIX
Technical Conference, pages 449–468, Jan. 1993.

8


