% These 12 noncommutative structures eliminate all but 18 of % the 356 most general Sheffer stroke Boolean identities of % length 15 or less. interpretation( 2, [ % right projection function(f(_,_), [ 0,1, 0,1 ]) ]). interpretation( 2, [ % left projection function(f(_,_), [ 0,0, 1,1 ]) ]). interpretation( 4, [ % M1 function(f(_,_), [ 0,2,0,2, 0,2,0,2, 1,3,1,3, 1,3,1,3 ]) ]). interpretation( 3, [ % M2 function(f(_,_), [ 0,1,2, 2,0,1, 1,2,0 ]) ]). interpretation( 3, [ % M3 function(f(_,_), [ 0,2,1, 1,0,2, 2,1,0 ]) ]). interpretation(4, [ % M4 function(f(_,_), [ 0,2,3,1, 1,3,2,0, 2,0,1,3, 3,1,0,2 ]) ]). interpretation(4, [ % M5 function(f(_,_), [ 1,0,1,2, 2,3,0,2, 1,0,3,2, 1,2,2,2 ]) ]). interpretation(4, [ % M6 function(f(_,_), [ 1,2,0,0, 0,2,2,0, 0,2,1,3, 0,2,3,1 ]) ]). interpretation(4, [ % M7 function(f(_,_), [ 2,0,2,0, 2,3,3,2, 2,3,0,1, 2,2,1,1 ]) ]). interpretation( 5, [ % M8 function(f(_,_), [ 0,2,3,4,1, 3,1,4,2,0, 4,0,2,1,3, 1,4,0,3,2, 2,3,1,0,4 ]) ]). interpretation( 6, [ % M9 function(f(_,_), [ 1, 1, 1, 1, 1, 1, 1, 0, 3, 2, 5, 4, 1, 3, 3, 1, 3, 3, 1, 2, 1, 2, 2, 2, 1, 5, 5, 5, 5, 1, 1, 4, 4, 4, 1, 4 ]) ]). interpretation( 8, [ % M10 function(f(_,_), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 4, 5, 6, 7, 2, 1, 7, 1, 1, 1, 7, 7, 7, 1, 2, 3, 3, 1, 7, 7, 2, 1, 3, 3, 3, 1, 1, 1, 3, 1, 4, 3, 4, 5, 5, 1, 3, 1, 5, 1, 5, 5, 5, 1, 1, 1, 6, 1, 5, 5, 6, 7, 7 ]) ]).