;; ----- Otter 3.0.4, August 1995 ----- ;; The job was started by mccune on gyro, Wed Nov 1 21:15:00 1995 ;; ;;;; -> x=x. ;;;; e*e=e, e*A=A*e, A* (B*A)=B -> . ;;;; -> (x* ((z* (x*y))* (e*y)))* (e*e)=z. ;; ;; -----> EMPTY CLAUSE at 0.56 sec ----> 112 [back_demod,46,demod,109,unit_del,77,1] -> . ;; ( (1 (input) ((= v0 v0))) (2 (input) ((not (= (* (e) (e)) (e))) (not (= (* (e) (A)) (* (A) (e)))) (not (= (* (A) (* (B) (A))) (B))))) (3 (input) ((= (* (* v0 (* (* v1 (* v0 v2)) (* (e) v2))) (* (e) (e))) v1))) (4 (instantiate 3 ((v0 . (e))(v1 . (* v0 (* (* v1 (* v0 v2)) (* (e) v2))))(v2 . (e)))) ((= (* (* (e) (* (* (* v0 (* (* v1 (* v0 v2)) (* (e) v2))) (* (e) (e))) (* (e) (e)))) (* (e) (e))) (* v0 (* (* v1 (* v0 v2)) (* (e) v2)))))) (5 (paramod 3 (1 1) 4 (1 1 1 2 1)) ((= (* (* (e) (* v1 (* (e) (e)))) (* (e) (e))) (* v0 (* (* v1 (* v0 v2)) (* (e) v2)))))) (6 (instantiate 5 ((v0 . v1)(v1 . v0))) ((= (* (* (e) (* v0 (* (e) (e)))) (* (e) (e))) (* v1 (* (* v0 (* v1 v2)) (* (e) v2)))))) (7 (instantiate 6 ((v0 . v64))) ((= (* (* (e) (* v64 (* (e) (e)))) (* (e) (e))) (* v1 (* (* v64 (* v1 v2)) (* (e) v2)))))) (8 (instantiate 6 ((v0 . v64)(v1 . v65)(v2 . v66))) ((= (* (* (e) (* v64 (* (e) (e)))) (* (e) (e))) (* v65 (* (* v64 (* v65 v66)) (* (e) v66)))))) (9 (paramod 7 (1 1) 8 (1 1)) ((= (* v1 (* (* v64 (* v1 v2)) (* (e) v2))) (* v65 (* (* v64 (* v65 v66)) (* (e) v66)))))) (10 (instantiate 9 ((v1 . v0)(v64 . v1)(v65 . v3)(v66 . v4))) ((= (* v0 (* (* v1 (* v0 v2)) (* (e) v2))) (* v3 (* (* v1 (* v3 v4)) (* (e) v4)))))) (11 (instantiate 3 ((v0 . (e))(v2 . (e)))) ((= (* (* (e) (* (* v1 (* (e) (e))) (* (e) (e)))) (* (e) (e))) v1))) (12 (instantiate 6 ((v0 . (* v1 (* (e) (e))))(v1 . v65)(v2 . v66))) ((= (* (* (e) (* (* v1 (* (e) (e))) (* (e) (e)))) (* (e) (e))) (* v65 (* (* (* v1 (* (e) (e))) (* v65 v66)) (* (e) v66)))))) (13 (paramod 11 (1 1) 12 (1 1)) ((= v1 (* v65 (* (* (* v1 (* (e) (e))) (* v65 v66)) (* (e) v66)))))) (14 (flip 13 (1)) ((= (* v65 (* (* (* v1 (* (e) (e))) (* v65 v66)) (* (e) v66))) v1))) (15 (instantiate 14 ((v65 . v0)(v66 . v2))) ((= (* v0 (* (* (* v1 (* (e) (e))) (* v0 v2)) (* (e) v2))) v1))) (16 (instantiate 3 ((v0 . (e))(v1 . (* (e) (* v0 (* (e) (e)))))(v2 . (e)))) ((= (* (* (e) (* (* (* (e) (* v0 (* (e) (e)))) (* (e) (e))) (* (e) (e)))) (* (e) (e))) (* (e) (* v0 (* (e) (e))))))) (17 (paramod 6 (1 1) 16 (1 1 1 2 1)) ((= (* (* (e) (* (* v1 (* (* v0 (* v1 v2)) (* (e) v2))) (* (e) (e)))) (* (e) (e))) (* (e) (* v0 (* (e) (e))))))) (18 (instantiate 3 ((v0 . v1)(v1 . v0)(v2 . v2))) ((= (* (* v1 (* (* v0 (* v1 v2)) (* (e) v2))) (* (e) (e))) v0))) (19 (paramod 18 (1 1) 17 (1 1 1 2)) ((= (* (* (e) v0) (* (e) (e))) (* (e) (* v0 (* (e) (e))))))) (20 (instantiate 3 ((v0 . (e)))) ((= (* (* (e) (* (* v1 (* (e) v2)) (* (e) v2))) (* (e) (e))) v1))) (21 (instantiate 19 ((v0 . (* (* v1 (* (e) v2)) (* (e) v2))))) ((= (* (* (e) (* (* v1 (* (e) v2)) (* (e) v2))) (* (e) (e))) (* (e) (* (* (* v1 (* (e) v2)) (* (e) v2)) (* (e) (e))))))) (22 (paramod 20 (1 1) 21 (1 1)) ((= v1 (* (e) (* (* (* v1 (* (e) v2)) (* (e) v2)) (* (e) (e))))))) (23 (flip 22 (1)) ((= (* (e) (* (* (* v1 (* (e) v2)) (* (e) v2)) (* (e) (e)))) v1))) (24 (instantiate 23 ((v1 . v0)(v2 . v1))) ((= (* (e) (* (* (* v0 (* (e) v1)) (* (e) v1)) (* (e) (e)))) v0))) (25 (instantiate 19 ((v0 . (* v64 (e))))) ((= (* (* (e) (* v64 (e))) (* (e) (e))) (* (e) (* (* v64 (e)) (* (e) (e))))))) (26 (instantiate 3 ((v0 . v64)(v1 . (e))(v2 . (e)))) ((= (* (* v64 (* (* (e) (* v64 (e))) (* (e) (e)))) (* (e) (e))) (e)))) (27 (paramod 25 (1 1) 26 (1 1 1 2)) ((= (* (* v64 (* (e) (* (* v64 (e)) (* (e) (e))))) (* (e) (e))) (e)))) (28 (instantiate 27 ((v64 . v0))) ((= (* (* v0 (* (e) (* (* v0 (e)) (* (e) (e))))) (* (e) (e))) (e)))) (29 (instantiate 19 ((v0 . (* (e) (e))))) ((= (* (* (e) (* (e) (e))) (* (e) (e))) (* (e) (* (* (e) (e)) (* (e) (e))))))) (30 (instantiate 15 ((v0 . (e))(v1 . (e))(v2 . (e)))) ((= (* (e) (* (* (* (e) (* (e) (e))) (* (e) (e))) (* (e) (e)))) (e)))) (31 (paramod 29 (1 1) 30 (1 1 2 1)) ((= (* (e) (* (* (e) (* (* (e) (e)) (* (e) (e)))) (* (e) (e)))) (e)))) (32 (instantiate 19 ((v0 . (e)))) ((= (* (* (e) (e)) (* (e) (e))) (* (e) (* (e) (* (e) (e))))))) (33 (paramod 32 (1 1) 31 (1 1 2 1 2)) ((= (* (e) (* (* (e) (* (e) (* (e) (* (e) (e))))) (* (e) (e)))) (e)))) (34 (instantiate 19 ((v0 . (* (e) (* (e) (* (e) (e))))))) ((= (* (* (e) (* (e) (* (e) (* (e) (e))))) (* (e) (e))) (* (e) (* (* (e) (* (e) (* (e) (e)))) (* (e) (e))))))) (35 (paramod 34 (1 1) 33 (1 1 2)) ((= (* (e) (* (e) (* (* (e) (* (e) (* (e) (e)))) (* (e) (e))))) (e)))) (36 (instantiate 19 ((v0 . (* (e) (* (e) (e)))))) ((= (* (* (e) (* (e) (* (e) (e)))) (* (e) (e))) (* (e) (* (* (e) (* (e) (e))) (* (e) (e))))))) (37 (paramod 36 (1 1) 35 (1 1 2 2)) ((= (* (e) (* (e) (* (e) (* (* (e) (* (e) (e))) (* (e) (e)))))) (e)))) (38 (instantiate 19 ((v0 . (* (e) (e))))) ((= (* (* (e) (* (e) (e))) (* (e) (e))) (* (e) (* (* (e) (e)) (* (e) (e))))))) (39 (paramod 38 (1 1) 37 (1 1 2 2 2)) ((= (* (e) (* (e) (* (e) (* (e) (* (* (e) (e)) (* (e) (e))))))) (e)))) (40 (instantiate 19 ((v0 . (e)))) ((= (* (* (e) (e)) (* (e) (e))) (* (e) (* (e) (* (e) (e))))))) (41 (paramod 40 (1 1) 39 (1 1 2 2 2 2)) ((= (* (e) (* (e) (* (e) (* (e) (* (e) (* (e) (* (e) (e)))))))) (e)))) (42 (instantiate 24 ((v0 . v64)(v1 . (* (* (* v0 (* (e) v1)) (* (e) v1)) (* (e) (e)))))) ((= (* (e) (* (* (* v64 (* (e) (* (* (* v0 (* (e) v1)) (* (e) v1)) (* (e) (e))))) (* (e) (* (* (* v0 (* (e) v1)) (* (e) v1)) (* (e) (e))))) (* (e) (e)))) v64))) (43 (paramod 24 (1 1) 42 (1 1 2 1 1 2)) ((= (* (e) (* (* (* v64 v0) (* (e) (* (* (* v0 (* (e) v1)) (* (e) v1)) (* (e) (e))))) (* (e) (e)))) v64))) (44 (paramod 24 (1 1) 43 (1 1 2 1 2)) ((= (* (e) (* (* (* v64 v0) v0) (* (e) (e)))) v64))) (45 (instantiate 44 ((v0 . v1)(v64 . v0))) ((= (* (e) (* (* (* v0 v1) v1) (* (e) (e)))) v0))) (46 (instantiate 15 ((v0 . (e))(v1 . v65)(v2 . (* (* (* v0 v1) v1) (* (e) (e)))))) ((= (* (e) (* (* (* v65 (* (e) (e))) (* (e) (* (* (* v0 v1) v1) (* (e) (e))))) (* (e) (* (* (* v0 v1) v1) (* (e) (e)))))) v65))) (47 (paramod 45 (1 1) 46 (1 1 2 1 2)) ((= (* (e) (* (* (* v65 (* (e) (e))) v0) (* (e) (* (* (* v0 v1) v1) (* (e) (e)))))) v65))) (48 (paramod 45 (1 1) 47 (1 1 2 2)) ((= (* (e) (* (* (* v65 (* (e) (e))) v0) v0)) v65))) (49 (instantiate 48 ((v0 . v1)(v65 . v0))) ((= (* (e) (* (* (* v0 (* (e) (e))) v1) v1)) v0))) (50 (instantiate 45 ((v1 . (e)))) ((= (* (e) (* (* (* v0 (e)) (e)) (* (e) (e)))) v0))) (51 (instantiate 28 ((v0 . (* v0 (e))))) ((= (* (* (* v0 (e)) (* (e) (* (* (* v0 (e)) (e)) (* (e) (e))))) (* (e) (e))) (e)))) (52 (paramod 50 (1 1) 51 (1 1 1 2)) ((= (* (* (* v0 (e)) v0) (* (e) (e))) (e)))) (53 (instantiate 52 ((v0 . (e)))) ((= (* (* (* (e) (e)) (e)) (* (e) (e))) (e)))) (54 (instantiate 52 ((v0 . (* (e) (e))))) ((= (* (* (* (* (e) (e)) (e)) (* (e) (e))) (* (e) (e))) (e)))) (55 (paramod 53 (1 1) 54 (1 1 1)) ((= (* (e) (* (e) (e))) (e)))) (56 (paramod 55 (1 1) 41 (1 1 2 2 2 2 2)) ((= (* (e) (* (e) (* (e) (* (e) (* (e) (e)))))) (e)))) (57 (paramod 55 (1 1) 56 (1 1 2 2 2)) ((= (* (e) (* (e) (* (e) (e)))) (e)))) (58 (paramod 55 (1 1) 57 (1 1 2)) ((= (* (e) (e)) (e)))) (59 (paramod 58 (1 1) 52 (1 1 2)) ((= (* (* (* v0 (e)) v0) (e)) (e)))) (60 (paramod 58 (1 1) 49 (1 1 2 1 1 2)) ((= (* (e) (* (* (* v0 (e)) v1) v1)) v0))) (61 (paramod 58 (1 1) 45 (1 1 2 2)) ((= (* (e) (* (* (* v0 v1) v1) (e))) v0))) (62 (paramod 58 (1 1) 19 (1 1 2)) ((= (* (* (e) v0) (e)) (* (e) (* v0 (* (e) (e))))))) (63 (paramod 58 (1 1) 62 (1 2 2 2)) ((= (* (* (e) v0) (e)) (* (e) (* v0 (e)))))) (64 (paramod 58 (1 1) 3 (1 1 2)) ((= (* (* v0 (* (* v1 (* v0 v2)) (* (e) v2))) (e)) v1))) (65 (paramod 58 (1 1) 2 (1 1 1)) ((not (= (e) (e))) (not (= (* (e) (A)) (* (A) (e)))) (not (= (* (A) (* (B) (A))) (B))))) (66 (instantiate 1 ((v0 . (e)))) ((= (e) (e)))) (67 (resolve 65 (1) 66 (1)) ((not (= (* (e) (A)) (* (A) (e)))) (not (= (* (A) (* (B) (A))) (B))))) (68 (instantiate 60 ((v0 . (* (* v0 (e)) v0))(v1 . v65))) ((= (* (e) (* (* (* (* (* v0 (e)) v0) (e)) v65) v65)) (* (* v0 (e)) v0)))) (69 (paramod 59 (1 1) 68 (1 1 2 1 1)) ((= (* (e) (* (* (e) v65) v65)) (* (* v0 (e)) v0)))) (70 (instantiate 69 ((v0 . v1)(v65 . v0))) ((= (* (e) (* (* (e) v0) v0)) (* (* v1 (e)) v1)))) (71 (instantiate 60 ((v0 . (e))(v1 . v65))) ((= (* (e) (* (* (* (e) (e)) v65) v65)) (e)))) (72 (paramod 58 (1 1) 71 (1 1 2 1 1)) ((= (* (e) (* (* (e) v65) v65)) (e)))) (73 (instantiate 72 ((v65 . v0))) ((= (* (e) (* (* (e) v0) v0)) (e)))) (74 (paramod 73 (1 1) 70 (1 1)) ((= (e) (* (* v1 (e)) v1)))) (75 (flip 74 (1)) ((= (* (* v1 (e)) v1) (e)))) (76 (instantiate 75 ((v1 . v0))) ((= (* (* v0 (e)) v0) (e)))) (77 (instantiate 76 ((v0 . v65))) ((= (* (* v65 (e)) v65) (e)))) (78 (instantiate 60 ((v0 . v65)(v1 . v65))) ((= (* (e) (* (* (* v65 (e)) v65) v65)) v65))) (79 (paramod 77 (1 1) 78 (1 1 2 1)) ((= (* (e) (* (e) v65)) v65))) (80 (instantiate 79 ((v65 . v0))) ((= (* (e) (* (e) v0)) v0))) (81 (instantiate 80 ((v0 . (* (* (* v0 (e)) v1) v1)))) ((= (* (e) (* (e) (* (* (* v0 (e)) v1) v1))) (* (* (* v0 (e)) v1) v1)))) (82 (paramod 60 (1 1) 81 (1 1 2)) ((= (* (e) v0) (* (* (* v0 (e)) v1) v1)))) (83 (flip 82 (1)) ((= (* (* (* v0 (e)) v1) v1) (* (e) v0)))) (84 (instantiate 80 ((v0 . (* (* (e) v0) v0)))) ((= (* (e) (* (e) (* (* (e) v0) v0))) (* (* (e) v0) v0)))) (85 (paramod 73 (1 1) 84 (1 1 2)) ((= (* (e) (e)) (* (* (e) v0) v0)))) (86 (paramod 58 (1 1) 85 (1 1)) ((= (e) (* (* (e) v0) v0)))) (87 (flip 86 (1)) ((= (* (* (e) v0) v0) (e)))) (88 (instantiate 87 ((v0 . (* (e) v0)))) ((= (* (* (e) (* (e) v0)) (* (e) v0)) (e)))) (89 (paramod 80 (1 1) 88 (1 1 1)) ((= (* v0 (* (e) v0)) (e)))) (90 (instantiate 89 ((v0 . v66))) ((= (* v66 (* (e) v66)) (e)))) (91 (instantiate 10 ((v0 . (e))(v1 . v66)(v2 . v66)(v3 . v67)(v4 . v68))) ((= (* (e) (* (* v66 (* (e) v66)) (* (e) v66))) (* v67 (* (* v66 (* v67 v68)) (* (e) v68)))))) (92 (paramod 90 (1 1) 91 (1 1 2 1)) ((= (* (e) (* (e) (* (e) v66))) (* v67 (* (* v66 (* v67 v68)) (* (e) v68)))))) (93 (instantiate 80 ((v0 . v66))) ((= (* (e) (* (e) v66)) v66))) (94 (paramod 93 (1 1) 92 (1 1 2)) ((= (* (e) v66) (* v67 (* (* v66 (* v67 v68)) (* (e) v68)))))) (95 (flip 94 (1)) ((= (* v67 (* (* v66 (* v67 v68)) (* (e) v68))) (* (e) v66)))) (96 (instantiate 95 ((v66 . v1)(v67 . v0)(v68 . v2))) ((= (* v0 (* (* v1 (* v0 v2)) (* (e) v2))) (* (e) v1)))) (97 (instantiate 89 ((v0 . v64))) ((= (* v64 (* (e) v64)) (e)))) (98 (instantiate 10 ((v0 . v64)(v1 . v65)(v2 . (* (e) v64))(v3 . v67)(v4 . v68))) ((= (* v64 (* (* v65 (* v64 (* (e) v64))) (* (e) (* (e) v64)))) (* v67 (* (* v65 (* v67 v68)) (* (e) v68)))))) (99 (paramod 97 (1 1) 98 (1 1 2 1 2)) ((= (* v64 (* (* v65 (e)) (* (e) (* (e) v64)))) (* v67 (* (* v65 (* v67 v68)) (* (e) v68)))))) (100 (instantiate 80 ((v0 . v64))) ((= (* (e) (* (e) v64)) v64))) (101 (paramod 100 (1 1) 99 (1 1 2 2)) ((= (* v64 (* (* v65 (e)) v64)) (* v67 (* (* v65 (* v67 v68)) (* (e) v68)))))) (102 (instantiate 96 ((v0 . v67)(v1 . v65)(v2 . v68))) ((= (* v67 (* (* v65 (* v67 v68)) (* (e) v68))) (* (e) v65)))) (103 (paramod 102 (1 1) 101 (1 2)) ((= (* v64 (* (* v65 (e)) v64)) (* (e) v65)))) (104 (instantiate 103 ((v64 . v0)(v65 . v1))) ((= (* v0 (* (* v1 (e)) v0)) (* (e) v1)))) (105 (paramod 96 (1 1) 64 (1 1 1)) ((= (* (* (e) v1) (e)) v1))) (106 (instantiate 63 ((v0 . v1))) ((= (* (* (e) v1) (e)) (* (e) (* v1 (e)))))) (107 (paramod 106 (1 1) 105 (1 1)) ((= (* (e) (* v1 (e))) v1))) (108 (instantiate 107 ((v1 . v0))) ((= (* (e) (* v0 (e))) v0))) (109 (instantiate 108 ((v0 . (* (* v0 v1) v1)))) ((= (* (e) (* (* (* v0 v1) v1) (e))) (* (* v0 v1) v1)))) (110 (paramod 109 (1 1) 61 (1 1)) ((= (* (* v0 v1) v1) v0))) (111 (instantiate 110 ((v0 . (* v0 (e)))(v1 . v1))) ((= (* (* (* v0 (e)) v1) v1) (* v0 (e))))) (112 (paramod 111 (1 1) 83 (1 1)) ((= (* v0 (e)) (* (e) v0)))) (113 (flip 112 (1)) ((= (* (e) v0) (* v0 (e))))) (114 (instantiate 110 ((v1 . (e)))) ((= (* (* v0 (e)) (e)) v0))) (115 (instantiate 104 ((v0 . v64)(v1 . (* v0 (e))))) ((= (* v64 (* (* (* v0 (e)) (e)) v64)) (* (e) (* v0 (e)))))) (116 (paramod 114 (1 1) 115 (1 1 2 1)) ((= (* v64 (* v0 v64)) (* (e) (* v0 (e)))))) (117 (paramod 108 (1 1) 116 (1 2)) ((= (* v64 (* v0 v64)) v0))) (118 (instantiate 117 ((v0 . v1)(v64 . v0))) ((= (* v0 (* v1 v0)) v1))) (119 (instantiate 118 ((v0 . (A))(v1 . (B)))) ((= (* (A) (* (B) (A))) (B)))) (120 (paramod 119 (1 1) 67 (2 1 1)) ((not (= (* (e) (A)) (* (A) (e)))) (not (= (B) (B))))) (121 (instantiate 113 ((v0 . (A)))) ((= (* (e) (A)) (* (A) (e))))) (122 (resolve 120 (1) 121 (1)) ((not (= (B) (B))))) (123 (instantiate 1 ((v0 . (B)))) ((= (B) (B)))) (124 (resolve 122 (1) 123 (1)) ()) )