;; ----- Otter 3.0.4, August 1995 ----- ;; The job was started by mccune on gyro, Thu Nov 2 00:20:43 1995 ;; ;;;; -> x=x. ;;;; -> (g(x)*y)* (z* (y*x))=z. ;;;; B*A=A*B, g(A)=A, (A*B)*A=B -> . ;; ;; -----> EMPTY CLAUSE at 1.89 sec ----> 619 [back_demod,4,demod,585,591,unit_del,594,1,1] -> . ;; ( (1 (input) ((= v0 v0))) (2 (input) ((= (* (* (g v0) v1) (* v2 (* v1 v0))) v2))) (3 (input) ((not (= (* (B) (A)) (* (A) (B)))) (not (= (g (A)) (A))) (not (= (* (* (A) (B)) (A)) (B))))) (4 (instantiate 2 ((v0 . (* v2 (* v1 v0)))(v1 . (* (g v0) v1))(v2 . v66))) ((= (* (* (g (* v2 (* v1 v0))) (* (g v0) v1)) (* v66 (* (* (g v0) v1) (* v2 (* v1 v0))))) v66))) (5 (paramod 2 (1 1) 4 (1 1 2 2)) ((= (* (* (g (* v2 (* v1 v0))) (* (g v0) v1)) (* v66 v2)) v66))) (6 (instantiate 5 ((v0 . v2)(v2 . v0)(v66 . v3))) ((= (* (* (g (* v0 (* v1 v2))) (* (g v2) v1)) (* v3 v0)) v3))) (7 (instantiate 2 ((v2 . v65))) ((= (* (* (g v0) v1) (* v65 (* v1 v0))) v65))) (8 (instantiate 2 ((v0 . (* v1 v0))(v1 . v65)(v2 . (* (g v0) v1)))) ((= (* (* (g (* v1 v0)) v65) (* (* (g v0) v1) (* v65 (* v1 v0)))) (* (g v0) v1)))) (9 (paramod 7 (1 1) 8 (1 1 2)) ((= (* (* (g (* v1 v0)) v65) v65) (* (g v0) v1)))) (10 (instantiate 9 ((v0 . v1)(v1 . v0)(v65 . v2))) ((= (* (* (g (* v0 v1)) v2) v2) (* (g v1) v0)))) (11 (instantiate 10 ((v2 . v65))) ((= (* (* (g (* v0 v1)) v65) v65) (* (g v1) v0)))) (12 (instantiate 10 ((v0 . (* (g (* v0 v1)) v65))(v1 . v65)(v2 . v66))) ((= (* (* (g (* (* (g (* v0 v1)) v65) v65)) v66) v66) (* (g v65) (* (g (* v0 v1)) v65))))) (13 (paramod 11 (1 1) 12 (1 1 1 1 1)) ((= (* (* (g (* (g v1) v0)) v66) v66) (* (g v65) (* (g (* v0 v1)) v65))))) (14 (instantiate 10 ((v0 . (g v1))(v1 . v0)(v2 . v66))) ((= (* (* (g (* (g v1) v0)) v66) v66) (* (g v0) (g v1))))) (15 (paramod 14 (1 1) 13 (1 1)) ((= (* (g v0) (g v1)) (* (g v65) (* (g (* v0 v1)) v65))))) (16 (flip 15 (1)) ((= (* (g v65) (* (g (* v0 v1)) v65)) (* (g v0) (g v1))))) (17 (instantiate 16 ((v0 . v1)(v1 . v2)(v65 . v0))) ((= (* (g v0) (* (g (* v1 v2)) v0)) (* (g v1) (g v2))))) (18 (instantiate 10 ((v2 . (* v65 v64)))) ((= (* (* (g (* v0 v1)) (* v65 v64)) (* v65 v64)) (* (g v1) v0)))) (19 (instantiate 2 ((v0 . v64)(v1 . v65)(v2 . (* (g (* v0 v1)) (* v65 v64))))) ((= (* (* (g v64) v65) (* (* (g (* v0 v1)) (* v65 v64)) (* v65 v64))) (* (g (* v0 v1)) (* v65 v64))))) (20 (paramod 18 (1 1) 19 (1 1 2)) ((= (* (* (g v64) v65) (* (g v1) v0)) (* (g (* v0 v1)) (* v65 v64))))) (21 (instantiate 20 ((v0 . v3)(v1 . v2)(v64 . v0)(v65 . v1))) ((= (* (* (g v0) v1) (* (g v2) v3)) (* (g (* v3 v2)) (* v1 v0))))) (22 (instantiate 17 ((v0 . v64))) ((= (* (g v64) (* (g (* v1 v2)) v64)) (* (g v1) (g v2))))) (23 (instantiate 2 ((v0 . v64)(v1 . (g (* v1 v2)))(v2 . (g v64)))) ((= (* (* (g v64) (g (* v1 v2))) (* (g v64) (* (g (* v1 v2)) v64))) (g v64)))) (24 (paramod 22 (1 1) 23 (1 1 2)) ((= (* (* (g v64) (g (* v1 v2))) (* (g v1) (g v2))) (g v64)))) (25 (instantiate 24 ((v64 . v0))) ((= (* (* (g v0) (g (* v1 v2))) (* (g v1) (g v2))) (g v0)))) (26 (instantiate 10 ((v0 . v64)(v1 . (* v64 v66))(v2 . (* (g v66) v64)))) ((= (* (* (g (* v64 (* v64 v66))) (* (g v66) v64)) (* (g v66) v64)) (* (g (* v64 v66)) v64)))) (27 (instantiate 6 ((v0 . v64)(v1 . v64)(v2 . v66)(v3 . (g v66)))) ((= (* (* (g (* v64 (* v64 v66))) (* (g v66) v64)) (* (g v66) v64)) (g v66)))) (28 (paramod 26 (1 1) 27 (1 1)) ((= (* (g (* v64 v66)) v64) (g v66)))) (29 (instantiate 28 ((v64 . v0)(v66 . v1))) ((= (* (g (* v0 v1)) v0) (g v1)))) (30 (instantiate 29 ((v0 . v65))) ((= (* (g (* v65 v1)) v65) (g v1)))) (31 (instantiate 29 ((v0 . (g (* v65 v1)))(v1 . v65))) ((= (* (g (* (g (* v65 v1)) v65)) (g (* v65 v1))) (g v65)))) (32 (paramod 30 (1 1) 31 (1 1 1 1)) ((= (* (g (g v1)) (g (* v65 v1))) (g v65)))) (33 (instantiate 32 ((v1 . v0)(v65 . v1))) ((= (* (g (g v0)) (g (* v1 v0))) (g v1)))) (34 (instantiate 29 ((v0 . (* (g v0) v1))(v1 . (* v2 (* v1 v0))))) ((= (* (g (* (* (g v0) v1) (* v2 (* v1 v0)))) (* (g v0) v1)) (g (* v2 (* v1 v0)))))) (35 (paramod 2 (1 1) 34 (1 1 1 1)) ((= (* (g v2) (* (g v0) v1)) (g (* v2 (* v1 v0)))))) (36 (flip 35 (1)) ((= (g (* v2 (* v1 v0))) (* (g v2) (* (g v0) v1))))) (37 (instantiate 36 ((v0 . v2)(v2 . v0))) ((= (g (* v0 (* v1 v2))) (* (g v0) (* (g v2) v1))))) (38 (instantiate 29 ((v0 . v65))) ((= (* (g (* v65 v1)) v65) (g v1)))) (39 (instantiate 2 ((v0 . (* v65 v1))(v1 . v65)(v2 . v66))) ((= (* (* (g (* v65 v1)) v65) (* v66 (* v65 (* v65 v1)))) v66))) (40 (paramod 38 (1 1) 39 (1 1 1)) ((= (* (g v1) (* v66 (* v65 (* v65 v1)))) v66))) (41 (instantiate 40 ((v1 . v0)(v65 . v2)(v66 . v1))) ((= (* (g v0) (* v1 (* v2 (* v2 v0)))) v1))) (42 (instantiate 29 ((v0 . v64))) ((= (* (g (* v64 v1)) v64) (g v1)))) (43 (instantiate 33 ((v0 . v64)(v1 . (g (* v64 v1))))) ((= (* (g (g v64)) (g (* (g (* v64 v1)) v64))) (g (g (* v64 v1)))))) (44 (paramod 42 (1 1) 43 (1 1 2 1)) ((= (* (g (g v64)) (g (g v1))) (g (g (* v64 v1)))))) (45 (flip 44 (1)) ((= (g (g (* v64 v1))) (* (g (g v64)) (g (g v1)))))) (46 (instantiate 45 ((v64 . v0))) ((= (g (g (* v0 v1))) (* (g (g v0)) (g (g v1)))))) (47 (instantiate 33 ((v0 . v66)(v1 . v65))) ((= (* (g (g v66)) (g (* v65 v66))) (g v65)))) (48 (instantiate 25 ((v0 . (g v66))(v1 . v65)(v2 . v66))) ((= (* (* (g (g v66)) (g (* v65 v66))) (* (g v65) (g v66))) (g (g v66))))) (49 (paramod 47 (1 1) 48 (1 1 1)) ((= (* (g v65) (* (g v65) (g v66))) (g (g v66))))) (50 (instantiate 49 ((v65 . v0)(v66 . v1))) ((= (* (g v0) (* (g v0) (g v1))) (g (g v1))))) (51 (instantiate 2 ((v0 . (g v0))(v1 . (g (* v1 v0)))(v2 . v66))) ((= (* (* (g (g v0)) (g (* v1 v0))) (* v66 (* (g (* v1 v0)) (g v0)))) v66))) (52 (paramod 33 (1 1) 51 (1 1 1)) ((= (* (g v1) (* v66 (* (g (* v1 v0)) (g v0)))) v66))) (53 (instantiate 52 ((v0 . v2)(v1 . v0)(v66 . v1))) ((= (* (g v0) (* v1 (* (g (* v0 v2)) (g v2)))) v1))) (54 (instantiate 10 ((v0 . (g v0))(v1 . (* v1 (* v2 (* v2 v0))))(v2 . v66))) ((= (* (* (g (* (g v0) (* v1 (* v2 (* v2 v0))))) v66) v66) (* (g (* v1 (* v2 (* v2 v0)))) (g v0))))) (55 (paramod 41 (1 1) 54 (1 1 1 1 1)) ((= (* (* (g v1) v66) v66) (* (g (* v1 (* v2 (* v2 v0)))) (g v0))))) (56 (instantiate 37 ((v0 . v1)(v1 . v2)(v2 . (* v2 v0)))) ((= (g (* v1 (* v2 (* v2 v0)))) (* (g v1) (* (g (* v2 v0)) v2))))) (57 (paramod 56 (1 1) 55 (1 2 1)) ((= (* (* (g v1) v66) v66) (* (* (g v1) (* (g (* v2 v0)) v2)) (g v0))))) (58 (instantiate 29 ((v0 . v2)(v1 . v0))) ((= (* (g (* v2 v0)) v2) (g v0)))) (59 (paramod 58 (1 1) 57 (1 2 1 2)) ((= (* (* (g v1) v66) v66) (* (* (g v1) (g v0)) (g v0))))) (60 (instantiate 59 ((v0 . v2)(v1 . v0)(v66 . v1))) ((= (* (* (g v0) v1) v1) (* (* (g v0) (g v2)) (g v2))))) (61 (flip 60 (1)) ((= (* (* (g v0) (g v2)) (g v2)) (* (* (g v0) v1) v1)))) (62 (instantiate 50 ((v0 . (* v64 v65)))) ((= (* (g (* v64 v65)) (* (g (* v64 v65)) (g v1))) (g (g v1))))) (63 (instantiate 10 ((v0 . v64)(v1 . v65)(v2 . (* (g (* v64 v65)) (g v1))))) ((= (* (* (g (* v64 v65)) (* (g (* v64 v65)) (g v1))) (* (g (* v64 v65)) (g v1))) (* (g v65) v64)))) (64 (paramod 62 (1 1) 63 (1 1 1)) ((= (* (g (g v1)) (* (g (* v64 v65)) (g v1))) (* (g v65) v64)))) (65 (instantiate 17 ((v0 . (g v1))(v1 . v64)(v2 . v65))) ((= (* (g (g v1)) (* (g (* v64 v65)) (g v1))) (* (g v64) (g v65))))) (66 (paramod 65 (1 1) 64 (1 1)) ((= (* (g v64) (g v65)) (* (g v65) v64)))) (67 (instantiate 66 ((v64 . v0)(v65 . v1))) ((= (* (g v0) (g v1)) (* (g v1) v0)))) (68 (instantiate 29 ((v0 . (* (g v0) v1))(v1 . (* (g v2) v3)))) ((= (* (g (* (* (g v0) v1) (* (g v2) v3))) (* (g v0) v1)) (g (* (g v2) v3))))) (69 (paramod 21 (1 1) 68 (1 1 1 1)) ((= (* (g (* (g (* v3 v2)) (* v1 v0))) (* (g v0) v1)) (g (* (g v2) v3))))) (70 (instantiate 37 ((v0 . (g (* v3 v2)))(v1 . v1)(v2 . v0))) ((= (g (* (g (* v3 v2)) (* v1 v0))) (* (g (g (* v3 v2))) (* (g v0) v1))))) (71 (paramod 70 (1 1) 69 (1 1 1)) ((= (* (* (g (g (* v3 v2))) (* (g v0) v1)) (* (g v0) v1)) (g (* (g v2) v3))))) (72 (instantiate 46 ((v0 . v3)(v1 . v2))) ((= (g (g (* v3 v2))) (* (g (g v3)) (g (g v2)))))) (73 (paramod 72 (1 1) 71 (1 1 1 1)) ((= (* (* (* (g (g v3)) (g (g v2))) (* (g v0) v1)) (* (g v0) v1)) (g (* (g v2) v3))))) (74 (instantiate 73 ((v0 . v2)(v1 . v3)(v2 . v1)(v3 . v0))) ((= (* (* (* (g (g v0)) (g (g v1))) (* (g v2) v3)) (* (g v2) v3)) (g (* (g v1) v0))))) (75 (flip 74 (1)) ((= (g (* (g v1) v0)) (* (* (* (g (g v0)) (g (g v1))) (* (g v2) v3)) (* (g v2) v3))))) (76 (instantiate 67 ((v0 . (g v0))(v1 . (* v1 v0)))) ((= (* (g (g v0)) (g (* v1 v0))) (* (g (* v1 v0)) (g v0))))) (77 (paramod 33 (1 1) 76 (1 1)) ((= (g v1) (* (g (* v1 v0)) (g v0))))) (78 (flip 77 (1)) ((= (* (g (* v1 v0)) (g v0)) (g v1)))) (79 (instantiate 78 ((v0 . v1)(v1 . v0))) ((= (* (g (* v0 v1)) (g v1)) (g v0)))) (80 (instantiate 79 ((v0 . v0)(v1 . v2))) ((= (* (g (* v0 v2)) (g v2)) (g v0)))) (81 (paramod 80 (1 1) 53 (1 1 2 2)) ((= (* (g v0) (* v1 (g v0))) v1))) (82 (instantiate 29 ((v0 . (g v64)))) ((= (* (g (* (g v64) v1)) (g v64)) (g v1)))) (83 (instantiate 81 ((v0 . v64)(v1 . (g (* (g v64) v1))))) ((= (* (g v64) (* (g (* (g v64) v1)) (g v64))) (g (* (g v64) v1))))) (84 (paramod 82 (1 1) 83 (1 1 2)) ((= (* (g v64) (g v1)) (g (* (g v64) v1))))) (85 (flip 84 (1)) ((= (g (* (g v64) v1)) (* (g v64) (g v1))))) (86 (instantiate 85 ((v64 . v0))) ((= (g (* (g v0) v1)) (* (g v0) (g v1))))) (87 (instantiate 86 ((v0 . v1)(v1 . v0))) ((= (g (* (g v1) v0)) (* (g v1) (g v0))))) (88 (paramod 87 (1 1) 75 (1 1)) ((= (* (g v1) (g v0)) (* (* (* (g (g v0)) (g (g v1))) (* (g v2) v3)) (* (g v2) v3))))) (89 (flip 88 (1)) ((= (* (* (* (g (g v0)) (g (g v1))) (* (g v2) v3)) (* (g v2) v3)) (* (g v1) (g v0))))) (90 (instantiate 81 ((v1 . (g v0)))) ((= (* (g v0) (* (g v0) (g v0))) (g v0)))) (91 (instantiate 41 ((v0 . (g v0))(v1 . v65)(v2 . (g v0)))) ((= (* (g (g v0)) (* v65 (* (g v0) (* (g v0) (g v0))))) v65))) (92 (paramod 90 (1 1) 91 (1 1 2 2)) ((= (* (g (g v0)) (* v65 (g v0))) v65))) (93 (instantiate 92 ((v65 . v1))) ((= (* (g (g v0)) (* v1 (g v0))) v1))) (94 (instantiate 81 ((v0 . (* v65 v66)))) ((= (* (g (* v65 v66)) (* v1 (g (* v65 v66)))) v1))) (95 (instantiate 17 ((v0 . (* v1 (g (* v65 v66))))(v1 . v65)(v2 . v66))) ((= (* (g (* v1 (g (* v65 v66)))) (* (g (* v65 v66)) (* v1 (g (* v65 v66))))) (* (g v65) (g v66))))) (96 (paramod 94 (1 1) 95 (1 1 2)) ((= (* (g (* v1 (g (* v65 v66)))) v1) (* (g v65) (g v66))))) (97 (instantiate 29 ((v0 . v1)(v1 . (g (* v65 v66))))) ((= (* (g (* v1 (g (* v65 v66)))) v1) (g (g (* v65 v66)))))) (98 (paramod 97 (1 1) 96 (1 1)) ((= (g (g (* v65 v66))) (* (g v65) (g v66))))) (99 (instantiate 46 ((v0 . v65)(v1 . v66))) ((= (g (g (* v65 v66))) (* (g (g v65)) (g (g v66)))))) (100 (paramod 99 (1 1) 98 (1 1)) ((= (* (g (g v65)) (g (g v66))) (* (g v65) (g v66))))) (101 (instantiate 100 ((v65 . v0)(v66 . v1))) ((= (* (g (g v0)) (g (g v1))) (* (g v0) (g v1))))) (102 (instantiate 29 ((v0 . (g v0))(v1 . (* v1 (g v0))))) ((= (* (g (* (g v0) (* v1 (g v0)))) (g v0)) (g (* v1 (g v0)))))) (103 (paramod 81 (1 1) 102 (1 1 1 1)) ((= (* (g v1) (g v0)) (g (* v1 (g v0)))))) (104 (flip 103 (1)) ((= (g (* v1 (g v0))) (* (g v1) (g v0))))) (105 (instantiate 104 ((v0 . v1)(v1 . v0))) ((= (g (* v0 (g v1))) (* (g v0) (g v1))))) (106 (instantiate 25 ((v0 . v64)(v1 . (g v0))(v2 . (* v1 (g v0))))) ((= (* (* (g v64) (g (* (g v0) (* v1 (g v0))))) (* (g (g v0)) (g (* v1 (g v0))))) (g v64)))) (107 (paramod 81 (1 1) 106 (1 1 1 2 1)) ((= (* (* (g v64) (g v1)) (* (g (g v0)) (g (* v1 (g v0))))) (g v64)))) (108 (instantiate 105 ((v0 . v1)(v1 . v0))) ((= (g (* v1 (g v0))) (* (g v1) (g v0))))) (109 (paramod 108 (1 1) 107 (1 1 2 2)) ((= (* (* (g v64) (g v1)) (* (g (g v0)) (* (g v1) (g v0)))) (g v64)))) (110 (instantiate 93 ((v0 . v0)(v1 . (g v1)))) ((= (* (g (g v0)) (* (g v1) (g v0))) (g v1)))) (111 (paramod 110 (1 1) 109 (1 1 2)) ((= (* (* (g v64) (g v1)) (g v1)) (g v64)))) (112 (instantiate 111 ((v64 . v0))) ((= (* (* (g v0) (g v1)) (g v1)) (g v0)))) (113 (instantiate 2 ((v0 . (* v1 (g v0)))(v1 . (g v0))(v2 . v66))) ((= (* (* (g (* v1 (g v0))) (g v0)) (* v66 (* (g v0) (* v1 (g v0))))) v66))) (114 (paramod 81 (1 1) 113 (1 1 2 2)) ((= (* (* (g (* v1 (g v0))) (g v0)) (* v66 v1)) v66))) (115 (instantiate 105 ((v0 . v1)(v1 . v0))) ((= (g (* v1 (g v0))) (* (g v1) (g v0))))) (116 (paramod 115 (1 1) 114 (1 1 1 1)) ((= (* (* (* (g v1) (g v0)) (g v0)) (* v66 v1)) v66))) (117 (instantiate 112 ((v0 . v1)(v1 . v0))) ((= (* (* (g v1) (g v0)) (g v0)) (g v1)))) (118 (paramod 117 (1 1) 116 (1 1 1)) ((= (* (g v1) (* v66 v1)) v66))) (119 (instantiate 118 ((v1 . v0)(v66 . v1))) ((= (* (g v0) (* v1 v0)) v1))) (120 (paramod 101 (1 1) 89 (1 1 1 1)) ((= (* (* (* (g v0) (g v1)) (* (g v2) v3)) (* (g v2) v3)) (* (g v1) (g v0))))) (121 (instantiate 112 ((v0 . v0)(v1 . v2))) ((= (* (* (g v0) (g v2)) (g v2)) (g v0)))) (122 (paramod 121 (1 1) 61 (1 1)) ((= (g v0) (* (* (g v0) v1) v1)))) (123 (flip 122 (1)) ((= (* (* (g v0) v1) v1) (g v0)))) (124 (instantiate 119 ((v0 . v0)(v1 . (g (* v1 v2))))) ((= (* (g v0) (* (g (* v1 v2)) v0)) (g (* v1 v2))))) (125 (paramod 124 (1 1) 17 (1 1)) ((= (g (* v1 v2)) (* (g v1) (g v2))))) (126 (instantiate 125 ((v1 . v0)(v2 . v1))) ((= (g (* v0 v1)) (* (g v0) (g v1))))) (127 (paramod 126 (1 1) 10 (1 1 1 1)) ((= (* (* (* (g v0) (g v1)) v2) v2) (* (g v1) v0)))) (128 (instantiate 127 ((v0 . v0)(v1 . v1)(v2 . (* (g v2) v3)))) ((= (* (* (* (g v0) (g v1)) (* (g v2) v3)) (* (g v2) v3)) (* (g v1) v0)))) (129 (paramod 128 (1 1) 120 (1 1)) ((= (* (g v1) v0) (* (g v1) (g v0))))) (130 (flip 129 (1)) ((= (* (g v1) (g v0)) (* (g v1) v0)))) (131 (instantiate 130 ((v0 . v1)(v1 . v0))) ((= (* (g v0) (g v1)) (* (g v0) v1)))) (132 (paramod 131 (1 1) 126 (1 2)) ((= (g (* v0 v1)) (* (g v0) v1)))) (133 (instantiate 119 ((v0 . v64))) ((= (* (g v64) (* v1 v64)) v1))) (134 (instantiate 123 ((v0 . v64)(v1 . (* v1 v64)))) ((= (* (* (g v64) (* v1 v64)) (* v1 v64)) (g v64)))) (135 (paramod 133 (1 1) 134 (1 1 1)) ((= (* v1 (* v1 v64)) (g v64)))) (136 (instantiate 135 ((v1 . v0)(v64 . v1))) ((= (* v0 (* v0 v1)) (g v1)))) (137 (instantiate 136 ((v0 . v66)(v1 . (* v66 v64)))) ((= (* v66 (* v66 (* v66 v64))) (g (* v66 v64))))) (138 (instantiate 41 ((v0 . v64)(v1 . v66)(v2 . v66))) ((= (* (g v64) (* v66 (* v66 (* v66 v64)))) v66))) (139 (paramod 137 (1 1) 138 (1 1 2)) ((= (* (g v64) (g (* v66 v64))) v66))) (140 (instantiate 132 ((v0 . v66)(v1 . v64))) ((= (g (* v66 v64)) (* (g v66) v64)))) (141 (paramod 140 (1 1) 139 (1 1 2)) ((= (* (g v64) (* (g v66) v64)) v66))) (142 (instantiate 119 ((v0 . v64)(v1 . (g v66)))) ((= (* (g v64) (* (g v66) v64)) (g v66)))) (143 (paramod 142 (1 1) 141 (1 1)) ((= (g v66) v66))) (144 (instantiate 143 ((v66 . v0))) ((= (g v0) v0))) (145 (instantiate 136 ((v0 . v65)(v1 . v64))) ((= (* v65 (* v65 v64)) (g v64)))) (146 (instantiate 2 ((v0 . v64)(v1 . v65)(v2 . v65))) ((= (* (* (g v64) v65) (* v65 (* v65 v64))) v65))) (147 (paramod 145 (1 1) 146 (1 1 2)) ((= (* (* (g v64) v65) (g v64)) v65))) (148 (instantiate 144 ((v0 . v64))) ((= (g v64) v64))) (149 (paramod 148 (1 1) 147 (1 1 1 1)) ((= (* (* v64 v65) (g v64)) v65))) (150 (instantiate 144 ((v0 . v64))) ((= (g v64) v64))) (151 (paramod 150 (1 1) 149 (1 1 2)) ((= (* (* v64 v65) v64) v65))) (152 (instantiate 151 ((v64 . v0)(v65 . v1))) ((= (* (* v0 v1) v0) v1))) (153 (instantiate 136 ((v0 . (* (g v64) v65))(v1 . (* v65 v64)))) ((= (* (* (g v64) v65) (* (* (g v64) v65) (* v65 v64))) (g (* v65 v64))))) (154 (instantiate 2 ((v0 . v64)(v1 . v65)(v2 . (* (g v64) v65)))) ((= (* (* (g v64) v65) (* (* (g v64) v65) (* v65 v64))) (* (g v64) v65)))) (155 (paramod 153 (1 1) 154 (1 1)) ((= (g (* v65 v64)) (* (g v64) v65)))) (156 (instantiate 144 ((v0 . (* v65 v64)))) ((= (g (* v65 v64)) (* v65 v64)))) (157 (paramod 156 (1 1) 155 (1 1)) ((= (* v65 v64) (* (g v64) v65)))) (158 (instantiate 144 ((v0 . v64))) ((= (g v64) v64))) (159 (paramod 158 (1 1) 157 (1 2 1)) ((= (* v65 v64) (* v64 v65)))) (160 (instantiate 159 ((v64 . v1)(v65 . v0))) ((= (* v0 v1) (* v1 v0)))) (161 (instantiate 144 ((v0 . (A)))) ((= (g (A)) (A)))) (162 (paramod 161 (1 1) 3 (2 1 1)) ((not (= (* (B) (A)) (* (A) (B)))) (not (= (A) (A))) (not (= (* (* (A) (B)) (A)) (B))))) (163 (instantiate 152 ((v0 . (A))(v1 . (B)))) ((= (* (* (A) (B)) (A)) (B)))) (164 (paramod 163 (1 1) 162 (3 1 1)) ((not (= (* (B) (A)) (* (A) (B)))) (not (= (A) (A))) (not (= (B) (B))))) (165 (instantiate 160 ((v0 . (B))(v1 . (A)))) ((= (* (B) (A)) (* (A) (B))))) (166 (resolve 164 (1) 165 (1)) ((not (= (A) (A))) (not (= (B) (B))))) (167 (instantiate 1 ((v0 . (A)))) ((= (A) (A)))) (168 (resolve 166 (1) 167 (1)) ((not (= (B) (B))))) (169 (instantiate 1 ((v0 . (B)))) ((= (B) (B)))) (170 (resolve 168 (1) 169 (1)) ()) )