Boolean Algebra in Terms of the Sheffer Stroke

Back to the Main Page

A 2-basis for Boolean algebra in terms of the Sheffer stroke.

    f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))).  % A_SS
    f(f(x,f(y,y)),f(x,y)) = x.                      % CUT_SS
These two Otter jobs show that this basis is definitionally equivalent to the (join/meet/complement) BA basis { AJ, DM, ONE, CUT }.
    otter < > BA-SS.out
    otter < > BA-SS-2.out
These two Mace2 jobs show that { A_SS, CUT_SS } is independent.
    mace2 -N6 -p < > BA-SS-a.out
    mace2 -N6 -p < > BA-SS-b.out
For reference, the simplest multiequation basis for BA in terms of the Sheffer stroke is known to be the following [20].
    f(x,y) = f(y,x).
    f(f(x,y),f(x,f(y,z))) = x.