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Abstract

Short single axioms for ortholattices, orthomodular lattices, and mod-
ular ortholattices are presented, all in terms of the Sheffer stroke. The
ortholattice axiom is the shortest possible. Other equational bases in
terms of the Sheffer stroke and in terms of join, meet, and complement
are presented. Proofs are omitted but are available in an associated tech-
nical report. Computers were used extensively to find candidates, reject
candidates, and search for proofs that candidates are single axioms. The
notion of computer proof is addressed.

1 Introduction

When it comes to mathematics, one of the most creative of human endeavors,
computers are often believed to be intrinsically limited compared with humans.
But today, when most mathematicians and their students have access to high-
speed computers, a more useful approach is to ask “What kinds of mathematics
can computers do?” and “How can mathematicians use computers as exten-
sions of their thought processes?” In this paper we show how suitably pro-
grammed computers can be of immense help to humans in solving problems in
equational logic—problems that might be too difficult for humans to solve by
traditional methods. We believe that computers can be programmed to assist in
the development of mathematics at many levels, ranging from routine symbolic
computation and tedious deduction, through the discovery of useful proofs and
countermodels (the focus of this paper), to the formation of interesting concepts.

Consider the problem of expressing equational theories as simply as
possible—with the least number of symbols, the least number of equations, the
least number of operations, and the least number of variables. The problem for
Abelian groups was solved by Tarski in 1938 [19] with the single axiom (i.e., one
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equation from which the theory can be derived) z/(y/(z/(x/y))) = z in terms
of the division operation. Other varieties of groups (including other operations)
have been addressed, and short single axioms have been found, but minimality
has not been proved in most cases.

The problem for Boolean algebra (B.A) was solved recently with a shortest
single axiom in terms of the Sheffer stroke (i.e., the NAND operation) [12].
Progress has recently been made also with lattices (£), with a reasonably short
single axiom in terms of join and meet [10]. Here we look at a chain of vari-
eties between the lattices and the Boolean algebras, namely, ortholattices (OL),
orthomodular lattices (OML), and modular ortholattices (MOL).

Although ortholattices and subvarieties are of interest in the study of Hilbert
spaces and the logical foundations of quantum computing [16], the search for
shortest single axioms is mostly a puzzle. The main results of the work we report
here are all in terms of the Sheffer stroke—a shortest single axiom for OL, and
reasonably short single axioms for OML and MOL. Secondary results include
simple multiequation axiomatizations for these varieties.

We used several computer programs in our investigations. Otter [6] searches
for proofs, Mace [4, 5] searches for (counter)models, and other programs embody
decision and enumeration procedures. Otter and Mace are mature, stable, and
well-documented systems, available for download from the Web page associated
with this paper [9].

Our presentation has elements of a case study, with some details of how
computing was used to obtain the results. Computer proofs and countermodels
have been omitted because they are long, and also because we wish to focus
instead on the methods by which they were discovered. The proofs can be
found in a technical report [8] and on a Web page [9]. The Web page contains
input files for the programs and full listings of the proofs and countermodels
produced by the programs.

2 Equational Bases

First we define a chain of varieties from lattices to Boolean algebra in terms of
join, meet, and complement. Then we go from ortholattices to Boolean algebra
in terms of the Sheffer stroke.

2.1 In Terms of Join/Meet/Complement

A lattice is a nonempty set with two binary operations, join (V) and meet (A),
satisfying the following four (independent) laws [1].

AJ: zv(yVvz)=yV(zVz) AM: zA(yAz)=yA(zAz)
Bl: zV(xAy)==x B2: zA(zVy ==z

We say that { AJ, B1, AM, B2 } is a 4-basis for the equational theory of lattices
(£) in terms of join and meet. (The commuted forms of associativity allow us
to do without the commutativity laws.)



The ortholattices (OL) are the lattices with a complement operation ()
satisfying the following three laws.
DM: zAy=(2'Vy')
CC: 2'==x
ONE: zvaz' =yVvy

The ortholattice laws, however, link join and meet in such a way that the right-
hand (or the left-hand) column of the lattice laws become dependent, that is,
are derivable from the remaining five laws. In particular, the subset { AJ, B1,
DM, CC, ONE } is an independent 5-basis for OL. From this point through
the end of this section, we could eliminate the meet operation by using the DM
law to rewrite everything; doing so, however, would complicate the other laws.
Also note that the law ONE states the existence of a constant, usually referred
to as “1”, and that law can be written as z V 2’ = 1 instead.
The orthomodular lattices (OMAL) are the ortholattices satisfying the law

OM: zV (@' A(zVy))=xzVy.

Adding this new law to our OL 5-basis causes the CC and ONE laws to become
dependent; that is, the set { AJ, B1, DM, OM } is an independent 4-basis for
OML.

The modular ortholattices (MOL) are the ortholattices satisfying the mod-
ularity law

MOD: zV(yA(xzVz)=zV(zA(zVy)).

If we add MOD to our 5-basis for OL, we obtain the independent MOL 6-basis
{ AJ, B1, DM, CC, ONE, MOD }. It turns out that the OM law can be easily
derived from our MOL basis, showing that the MOLs are a subvariety of the
OMCLs.
Finally, the Boolean algebras (B.A) can be defined as the ortholattices satis-
fying
CUT: (zVy)A(zVy) =z

If we add CUT to the OL 5-basis, then B1 and CC become dependent, and we
have the 4-basis { AJ, DM, ONE, CUT } for Boolean algebra (independence is
open). The law MOD can be derived from our B.A 4-basis, showing that the
BAs are a subvariety of the MOLs.

In summary, we have the chain of varieties

LOOLDOML DO MOL D BA

(Table 1 in Section 3 shows that the inclusions are proper) and the following
bases for each variety.

L: { AJ, B1, AM, B2 }

ocL:  { AJ, B1, DM, CC, ONE }
OMCL: { AJ, Bl, DM, OM }

MOL: { AJ, B1, DM, CC, ONE, MOD }
BA:  {AJ, DM, ONE, CUT }



All but the BA basis are known to be independent.

2.2 In Terms of the Sheffer Stroke

The lattices (£) cannot be defined in terms of a single binary operation [1], but
OL and its subvarieties can be, in particular, in terms of the Sheffer stroke “|”.

| in terms of V, A’ V, A, in terms of |

zly=a" vy zVy = (z[z)|(yly)
Ay = (zly)|(z|y)
' =zxlx

Question: If we rewrite a basis to a different set of operations, do we get a
basis in terms of that other set of operations? Answer: Sometimes. Translating
between Sheffer stroke and join/meet/complement bases is a good illustration.
Using the definitions just given to simply rewrite a join/meet/complement ba-
sis in terms of the Sheffer stroke always gives us a basis in terms of the Sheffer
stroke. However, if we rewrite a Sheffer stroke basis in terms of join and com-
plement, we never get a basis in terms of join and complement [12].

Even when the translation gives us a basis, it can produce complicated equa-
tions; for example, equation AJ in terms of the Sheffer stroke is

(@) (W) 2)((Wly)[(2]2))) = (yly)|(((z]2)|(z]2))[((z]2)](2]2)))-

We can do better than that. In fact, because the Sheffer stroke operation builds
in properties of complementation, we can find simpler bases by using the Sheffer
stroke rather than join/meet/complement. We list here independent bases for
the varieties in question (see [8] or [9] for proofs).

Consider the following equations.

A | (w2 wl2)=yl(z]|2)](]=2)
B:  (wl|a)|(z]y ==

ONE: z|(z|x)=yl(yly)

OM:  z[(z|(z|y)==ly

MOD: x| (y| (x| (z]2)==|(z|(=](y]y)
CUT: (z|(yly)|(zly ==

Then we have the following independent bases.

)

oL:  {A,B,ONE}
OMcL: {A, B, OM}
MOoOL: { A, B, ONE, MOD }
BA:  {A,CUT}



2.3 Finding and Proving the Multiequation Bases

Aside from the trick of commuting the associativity laws and the nonstandard
modularity axiom, the join/meet/complement bases are fairly straightforward.

The Sheffer stroke bases were found by a combination of human rea-
soning and computer deduction, including some trial and error. The
join/meet/complement bases were rewritten to Sheffer stroke equations then
simplified in various heuristic ways, for example, (1) rewrite a basis to Sheffer
stroke, (2) use Otter to derive consequences of the Sheffer stroke equations, and
then (3) look for simple derived equations that might capture the key properties.

Proofs from Otter and countermodels from Mace (independence proofs)
can be found on the Web [9]. These include Otter proofs that the
join/meet /complement bases are equivalent to more standard bases for these
varieties and Otter proofs that the Sheffer stroke bases are definitionally equiv-
alent to the corresponding join/meet/complement bases.

2.4 Are There Simpler Multiequation Bases?

Our goal in looking for the multiequation bases was to find short, intuitive, and
fairly standard bases in terms of join/meet/complement, and then to find similar
bases in terms of the Sheffer stroke. We doubt that the preceding bases are the
shortest. In fact, for BA in terms of the Sheffer stroke, the 2-basis with the least
number of symbols is known tobe {z |y =y |z, (x |y) | (x| (y | 2)) =z } [20].
We leave open the problem of finding the simplest multiequation bases for the
other cases. For BA in terms of the join and complement, the simplest 2-basis
we know of, by C. A. Meredith [13],is { (¢’ Vy) Ve =z, (z'Vy) V(zVy) =
yV(zVz)}

3 Single Axioms

Existence of single equational axioms (1-bases) for OML, MOL, and BA has
been known since 1973 [15, 3], and for OL has been known since 1977 [14]. By
those results, if a variety has particular properties and if there is a basis for that
variety with particular syntactic properties, then there exist procedures to con-
struct single axioms for the variety. The varieties in question have the required
properties, but the basic procedures have exponential behavior, producing very
large axioms, sometimes with millions of symbols. The procedures can be op-
timized somewhat [7], but they still tend to produce axioms with hundreds of
symbols.

Our approach is to start small, considering all possible candidates of a given
size, and looking at sizes as large as practical. Candidates that are too strong
(not valid in the variety) and those that are too weak (usually determined by
finding a finite countermodel) can be eliminated. If all goes well, we can show
that a candidate is a shortest single axiom by proving a known basis and by
eliminating all shorter candidates. In other cases we can find nice single axioms
without being able to eliminate all shorter candidates.



A similar approach led, in previous work, to axiom LT1 (below) for lattice
theory [10], axiom BA1 for Boolean algebra [12], and BA2, which is a shortest
axiom for Boolean algebra in terms of the Sheffer stroke [12].

LT1: (((yva)Az)V(((zA(xVa))V(uAx) Ao)A(wV ((sVz)A(x Vi) =z
BAL: ((yvz)va)v(Wvu'vE@ vy) =z

BA2: (y[((=|y)ly)l(x](z]y) ==

Why start with the Sheffer stroke? In the case of Boolean algebra, the
join/complement axiom BA1 was much harder to find than the Sheffer stroke
axiom BAZ2; in addition, BA2 was shown to be a shortest axiom, and BA1 was
not.

3.1 Generating and Filtering Candidates

Let the length of a term or equation be the number of occurrences of variables
and operators (including the equal sign but not parentheses). For example,
xV (x Ay) = x has length 7.

Every Sheffer stroke single axiom for OL, OML, MOL, or BA has the
following properties (see [12] for justifications).

1. The length is odd (this holds for all equations written with just binary
operations).

2. The equation must have at least three variables. Otherwise there can be
nonassociative models.

3. One side of the equation (say the right-hand side) must be a variable, say
T.

4. The leftmost variable of the left-hand side of the equation cannot be z.
Such candidates are eliminated by left-projection (z|y = ) models. Sim-
ilarly, the right-most variable of the left side cannot be x.

5. It cannot be of the form y|a = x or a|y = x for any variable y and any
term «.

6. If an equation is a single axiom, its mirror image is also a single ax-
iom. Therefore we can restrict our attention to equations |8 = x where
length(a) < length(S).

7. The equation is true in all Boolean algebras. This follows from the next
property, but it is a very fast test, so we include it here.

8. It is true in all models of the variety in question (OL, OML, MOL, or
BA).

9. It is false in all nonmodels of the variety in question.



The procedure to generate candidates is roughly as follows.

e Generate all well-formed Sheffer stroke equations of a given length satis-
fying Properties 1-6.

e Pass the equations through a decision procedure for Boolean algebra iden-
tities (Property 7). In practice we simply check the candidate against the
2-element Boolean algebra. A vast majority of the equations are removed
by this check.

e Property 8 can be checked correctly if there is a decision procedure for
identities of the variety. Without a decision procedure, we can test iden-
tities against a set of finite models of the variety; this test admits all
identities, but it may also admit some nonidentities, so we have to be
prepared to prove later that they are valid. We have a decision procedure
for OL, but the equational theories for OML and MOL are unsolvable
[2, p. 218].

e Property 9 eliminates candidates that are too weak to be single axioms.
We do not have a perfect test for this. In practice, we iteratively collect
sets of nonmodels by using the program Mace, which searches for finite
(counter)models. Consider OL; if a candidate is false in all of the current
non-OLs, we use Mace to look for non-OL models of the candidate. If one
is found, we add it to the set and eliminate the candidate. We call this
process filtering the candidates, and we refer to the nonmodels as filters.

3.2 Finite Ortholattices

If we do not have a decision procedure for the variety, we need some of its
members to approximate Property 8. Table 1 shows the numbers of members of
the varieties up through size 20. These algebras were generated (quickly, except
for the OLs of size 14, which took several hours, and the OMJLs of size 20,
which took two weeks) by the programs Mace and Isofilter; details, including
the listings of the structures, can be found on the Web [9].

Size | OL OML MOL BA
2 1 1 1 1
4 1 1 1 1
6 2 1 1 0
8 5) 2 2 1
10 15 2 1 0
12 60 3 2 0
14 | 311 4 1 0
16 ? 7 3 1
18 ? 8 1 0
20 ? 14 2 0

Table 1: Numbers of Finite Structures



These algebras can be used as filters (for Property 9) as well. For example,
any non-MQOL can be used to eliminate MOL candidates; the nonmodular
OMLs and OLs are useful for that purpose.

3.3 Collecting and Applying Filters

When searching for single axioms, we considered the varieties in the order 5.4
[12], OL, OML, MOL. We were fortunate, because this is also the order of
increasing difficulty (with respect to finding good candidates), and each case
gave us techniques and filters useful for the next. In the B.A case, all candidates
shorter than the axiom that was found (BA2, length 15) can be eliminated by
noncommutative structures of size 3 or 4. This can be done automatically in a
few seconds; see [9] for details. (Proving that BA2 is a single axiom, however,
is difficult [20].)

In the OL case, we have a decision procedure for identities, which gives us
a perfect test for Property 8. For Property 9, all candidates up through length
21 can be eliminated by a set of four non-OLs [9, file non-OL.A-4] of sizes 3, 6,
6, and 8. Many more non-OLs were collected, but those four were sufficient. A
single axiom (OL-Sh below) was found among the candidates of length 23.

In the OML case, we do not have a decision procedure, but the OMLs up
through size 10 were adequate for Property 8. All candidates up through length
19 can be eliminated with a set of nine non-OLs [9, file non-OL.B-9], all of size
< 6. Length 21 was a challenge—we could not eliminate all candidates, and we
could not prove any of the survivors to be single axioms. A set of 23 non-OLs
was accumulated [9, file non-OL.C-23], eliminating all but 58 candidates. A
single axiom (OML-Sh below) was found among the candidates of length 23.

The MOL case started out like the OML case, with the elimination of all
candidates up through length 19 by using the same filters as in the OMJL case.
For length 21, 14 more non-OLs were accumulated [9, file non-OL.D-14], and
the nine nonmodular OMLs up through size 16 (see Table 1) were also used
as filters. However, 238 length 21 candidates survived, and none was proved to
be a single axiom. As the candidates grow, it becomes more difficult to find
countermodels, so we used the existing non-MQOLs for lengths 23, 25, and 27.
A single axiom (MOL-Sh below) was found among those of length 25.

3.4 Trying to Prove That Candidates Are Single Axioms

Given a set of candidates that had survived all the filters, we tried to prove each
to be a single axiom by deriving a known basis, for example, the independent
bases given in Section 2.

Automatic proofs were attempted with hundreds of OL candidates, thou-
sands of OML candidates, and hundreds of thousands of MOL candidates
before proofs were found for the three cases. The time allocated for each can-
didate varied from a few minutes to a few seconds, depending on the size of the
set. For each proof attempt, we included as goals several important properties



of the variety as well as a known basis. If some interesting properties were de-
rived from the candidate, but not enough for a complete proof, we investigated
that candidate later with focused proof attempts.

Length 23 single axioms for OL and OML were found without much diffi-
culty. The proofs were not trivial for Otter, but they were found automatically
within a few minutes. Finding a MOL axiom was much more difficult. Many
more candidates had to be considered, and proofs with the successful candi-
dates were not found automatically. Promising candidates (those that proved
the most interesting properties) were selected from the automatic attempts, and
advanced automated deduction techniques involving human guidance (i.e., the
method of hints and sketches [21, 22]) were applied, producing a proof for one
candidate of length 25.

For the OML and MOL cases, which were generated with the imperfect
Property 8 test, we also had to prove that the successful candidates are valid in
the variety by deriving the candidate from a known basis.

The proofs and more details on the proof searches can be found on the Web
[9].

3.5 Single Axioms for OL, OML, and MOL

We give here the main results of the project—single axioms, in terms of the
Sheffer stroke, for OL, OML, and MOL.

OL-Sh: — (((y | =) | (= [ 2)) |w) | (x| ((= | ((w|y)[y))]2) =2
OML-Sh: - (((y | =) | (= [ 2)) | w) | (z | ((z | ((x [2) | 2)) | 2)) ==
MOL-Sh:  (y | =) | ((z | 2) | 2) | (((z | 9) [ 2) | 2) [ @) | (2 | w))) =

The OL axiom (length 23) is the shortest possible. We do not know whether
the OML axiom (length 23) is shortest, because there are 58 open candidates
of length 21. We doubt that the MOL axiom (length 25) is shortest, because
the proof that it is a single axiom is very difficult, and there are many open
candidates that are shorter.

FEach of the axioms has four variables, and the question of short 3-variable
axioms is open. In the OL case, all of the surviving length-23 candidates have
4 variables, so any 3-variable OL axioms must have length > 25. In the OML
case, four of the 58 length-21 and many of the length-23 candidates have three
variables. In the MOL case, many of the surviving candidates of lengths 21
and 23 have three variables.

4 The Computer Programs

Symbolic computation was used in five ways in this work: (1) to enumerate
equations subject to a set of syntactic constraints, (2) to evaluate equations
with respect to finite structures, (3) to decide ortholattice identities, (4) to
search for equational proofs, and (5) to search for finite structures that satisfy
sets of equations and disequations. The first three are relatively straightforward,



although the programs were coded efficiently so that they could handle billions
of equations.

Proof search methods and corresponding completeness questions are well
covered in the literature of automated deduction, and automated proof search
is being applied occasionally to problems in abstract algebra and formal logic.
Search methods for finite algebras is less well known and often overlooked. Re-
searchers are starting to apply it, however, in many of the same areas and
projects as proof search.

Otter. The program Otter [6] searches for proofs of statements in the first-
order predicate calculus with equality. Although it can be applied to any first-
order statement, it is usually more effective on problems with fewer operations
and simpler statements, and especially on equational problems. Otter has an
automatic mode in which the user simply gives the statement of the problem,
and standard strategies are applied.

For difficult problems, however, the user usually sets various switches to
control the search. For a given area, the user can develop a strategy on easy
problems and then apply that strategy to more interesting problems. The strate-
gies that played an important part in this work included (1) limiting the size
of derived equations, (2) the relative emphasis of short equations as opposed
to breadth-first search, and (3) selecting symbol orderings and goal bases to
determine whether the search would be conducted in terms of the Sheffer stroke
or in terms of join, meet, and complement. See [9] for detailed examples.

Especially difficult problems (such as the MOL single axiom candidates)
were attacked by iterating searches, that is, examining the output, adjusting
the search strategy, and trying again.

Mace. The program Mace [4, 5] searches for finite countermodels of the same
class of statement as Otter accepts. In many cases the two programs can use
the same input files, and we frequently run the two programs in parallel on
the same problem, with Otter searching for a proof and Mace looking for a
countermodel. Like Otter, Mace seems to prefer problems with few operations
and simple statements, especially equational problems. Unlike Otter, Mace is
mostly automatic, with little guidance expected from the user. The size of
structure can be specified; otherwise it starts small and iterates.

When Mace is used to look for countermodels, specifying additional con-
straints can (with the risk of losing completeness) make an enormous difference
in the time required to find models. The properties of ortholattices (e.g., com-
mutativity and associativity) are natural examples of additional constraints, but
unrelated properties such as quasigroup properties have also been useful. See
[9] for detailed examples.

If no goal is given to Mace, it will simply search for structures satisfying
the constraints rather than for a countermodel. An example is finding all the
ortholattices of size 12. When asked to find more than one model of a given size,
Mace is not very smart about isomorphism, and a separate program, Isofilter,
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can be called to remove the isomorphic models. When looking for all of the OLs
of size 12, Mace finds 36,821 models (in a few minutes), and Isofilter shows that
all but 60 are isomorphic (also in a few minutes).

Several other powerful theorem provers and finite model generators have
been developed by other research groups. Each year the International Con-
ference on Automated Deduction (CADE) hosts a friendly contest (CASC) in
which computer programs compete, trying to prove or disprove large numbers of
problems of various types. Results of the 2001 competition are reported in [17],
and some of the competing programs are available for download and general
use.

5 Conclusion

At what point does symbolic computation become a sound, relevant, and inter-
esting computer proof? The would-be proofs in this work fall into several classes:
proofs by equational deduction, independence proofs by finite countermodels,
and minimality proofs by exhaustive enumeration.

We are quite confident that the first two kinds of proof are sound. Otter
and Mace produce results that can be checked by independent programs or by
humans. Otter presents detailed line-by-line proofs at a very low level that can
be checked by very simple proof-checking programs. Furthermore, program ver-
ification techniques have been applied to the proof checkers [11]. Mace presents
structures as tables that can be checked in similar ways by independent pro-
grams. The Otter proofs and Mace countermodels have been machine checked;
they have not, however, been fully checked by humans.

The minimality proofs are fundamentally different from the Otter or Mace
proofs. The minimality proofs are similar in spirit (though not in scale or inter-
est) to proofs of the four-color theorem and Thomas Hales’s proof of Kepler’s
conjecture on arrangement of spheres [18]. In short, the problem is reduced
to a finite set of cases that are checked by computers. Soundness is especially
questionable, with reliance (in our case) on optimized special-purpose code for
the equation generation and decision procedures. We doubt that much can be
learned from the various components of the minimality proofs.

Otter proofs and Mace counterexamples, on the other hand, are creative
in the sense that the users had no idea what the proofs or structures might
be. In other projects, Otter has found interesting proofs (e.g., much shorter
than previous proofs) and Mace has found structures that are useful in further
work; but here, the proofs and structures are secondary to the short equational
descriptions that were found. The value of Otter and Mace, in this project, has
been reliable and fast deductive support for higher pursuits.
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