A 6-basis for modular ortholattices (MOL) in terms of join (v), meet (^), and complement (c).
x v (y v z) = y v (x v z). % AJ
x v (x ^ y) = x. % B1
x ^ y = c(c(x) v c(y)). % DM
c(c(x)) = x. % CC
x v c(x) = y v c(y). % ONE
x v (y ^ (x v z)) = x v (z ^ (x v y)). % MOD
This basis is simply our
ortholattice 5-basis
plus the modularity law MOD.
The following Otter proof shows that the orthomodular law OM holds in MOL.
otter < MOL1.in > MOL1.out
Here are Mace2 jobs showing that the MOL 6-basis is independent.
mace2 -N6 -p < MOLa.in > MOLa.out
mace2 -N6 -p < MOLb.in > MOLb.out
mace2 -N6 -p < MOLc.in > MOLc.out
mace2 -N6 -p < MOLd.in > MOLd.out
mace2 -N6 -p < MOLe.in > MOLe.out
mace2 -N6 -p < MOLf.in > MOLf.out
A more common modularity law is
x v (y ^ (x v z)) = (x v y) ^ (x v z). % MOD2
Here are Otter proofs that MOD and MOD2 are equivalent in lattice theory.
otter < ML1.in > ML1.out
otter < ML2.in > ML2.out