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Abstract. In this paper we use the Cayley-Bacharach theorem of classical alge-
braic geometry to construct several universal algebras on algebraic curves using
divisors and complete intersection cycles and study the equational identities valid
for these synthetic constructions. These results are not necessarily new; in fact,
all of them may be “easily” provable by resorting to such powerful tools as the
Riemann-Roch theorem, the P-function of Weierstrass, the rigidity lemma, Euler
numbers, Lefschetz fixed-point theorem, and so on. However, our equational proofs
employ automated reasoning by transforming the Cayley-Bacharach theorem into a
formal implication. Besides being elementary, this approach provides new examples
for model theorists and computer scientists designing theorem provers and gives new
insights and interpretations for these various geometric constructions.
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1 Introduction

Let C be a nonsingular cubic curve in the complex projective plane. If a and b
are two distinct points on the curve, let c = a ∗ b be the (unique) third point of
intersection with C of the line L(a, b) joining a and b. If b = a, then we naturally
take the line L(a, b) to be the tangent at a. More formally, the set {a, b, a ∗ b} is
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the complete intersection cycle of the curve C with L(a, b) counting multiplicities.
If the ground field k is different from complex numbers, we insist that the points a
and b are k-rational points. In that case, the unique third point a ∗ b is obviously
k-rational, thus making the cubic curves very interesting. In fact, if e is chosen to be
an inflection point (again, k-rational if k 6= C), then the composite term (a ∗ b) ∗ e
is the classical Poincare group law on C. Clearly, the rational binary operation
“∗” viewed as a mapping from C × C to C (or from C(k) × C(k) to C(k) if k is
not algebraically closed) satisfies the following universal identities: x ∗ y = y ∗ x,
x ∗ (y ∗ x) = y. This is an example of a binary Steiner law and the idempotents of ∗
are precisely the inflection points of the curve (see Fig. 1). More generally, an n-ary
Steiner law f(x1, x2, . . . , xn) on a projective curve C over k is a totally symmetric
rational n-ary function f from Cn to C satisfying the universal identity

f(x1, x2, ..., xn−1, f(x1, x2, ..., xn)) = xn.

An element e in C is called an idempotent for f if f(e, e, ...e) = e. In this paper,
we prove that if f and g are two n-ary Steiner laws on an elliptic curve C sharing
a common idempotent, then f = g. First, we extract a special case of the inference
rule (gL) — indeed, a fragment of the powerful rigidity lemma — from the Cayley-
Bacharach theorem of classical algebraic geometry. This rule is implemented in
Otter, a first-order theorem-proving program [6]. Then we use Otter to automate
the proofs of the uniqueness of the 5-ary Steiner laws definable on an elliptic curves.
Very much like the binary case, this theorem provides algebraic characterizations
of synthetic geometric constructions involving the intersection cycles of cubics with
algebraic curves of higher degrees. The well-known theorem of the uniqueness of
the group law on such a curve is an extreme special case of this result.

A set P of p points in PG(2, k), a projective plane over a field k, is said to
have the Cayley-Bacharach property (CB-property) of degree d if any plane curve
of degree d passing through all but one point of P necessarily contains the whole
of P . The Cayley-Bacharach theorem of algebraic geometry (see, e.g., [1, 3]) says
that if P is a set of mn points that is a complete intersection cycle of two curves of
degrees m and n, then P has the CB-property of degree m + n − 3. This classical
result is rife with rich rational universal algebras (i.e., rational constructions that
yield unique points). In this paper, we employ the techniques of the Bezout theorem
and the CB-theorem to prove that every algebraic curve induces a rational Steiner
operation on cubic curves via a complete intersection cycle (see, e.g., Fig. 1 for the
binary linear process and Fig. 4 for the 5-ary conic process).

All the proofs in this paper reside completely within the framework of first-order
logic with equality. First we show that the Cayley-Bacharach theorem implies the
validity of a formal implication that is a fragment of the rule (gL) or the “term con-
dition” — an algebraic avatar of the rigidity lemma of algebraic geometry. Then we
exploit this in finding interrelations among various algebraic laws of different arities
obtained via the Cayley-Bacharach constructions on algebraic curves. Normally, one
would employ the parameters of the elliptic functions of Weierstrass, the group law
via the Riemann-Roch theorem or the so-called AF+BG theorem of Max Noether
to prove such results in the projective geometry over elliptic curves.

This paper (especially the proof of the basic (gL) implication) was inspired by
the excellent survey article [1] which gives a beautiful exposition of the Cayley-
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Figure 1: Chord-Tangent Construction

Bacharach theorem, its origins, and modern evolutions.

2 Cayley-Bacharach Theorem Implies the =(gL)⇒ Rule
for Cubics

Cayley-Bacharach Theorem. If P is a set of mn points that is a complete
intersection cycle of two curves of degrees m and n, then any plane curve of degree
m + n + 3 passing through all but one point of P necessarily contains the whole of
P .

Theorem 1. Let C be a nonsingular cubic curve over the complex projective plane
and let “∗” be the binary morphism of chord-tangent construction. Then the algebra
〈C; ∗〉 satisfies the implication

(a ∗ b) ∗ c = (a ∗ d) ∗ e ⇒ (x ∗ b) ∗ c = (x ∗ d) ∗ e.

Proof. Let Q1 be the quartic formed by the four lines {1∪2∪3∪4}, let Q2 be the
quartic formed by the four lines {5 ∪ 6 ∪ 7 ∪ 8}, and let C be the given nonsingular
cubic curve. See Fig. 2. We have

C ∩Q1 = {a, d, a ∗ d, c, a ∗ b, (a ∗ b) ∗ c, e, x ∗ d, (x ∗ d) ∗ e, x, b, x ∗ b},
C ∩Q2 = {e, a ∗ d, (a ∗ d) ∗ e, x, d, x ∗ d, a, b, a ∗ b, c, x ∗ b, (x ∗ b) ∗ c}.

Hence, if (a∗b)∗c = (a∗d)∗e, then both Q1 and Q2 share 11 common points with the
base cubic C. Here both Q1 and Q2 are quartics; and so, by the Cayle-Bacharach
theorem they must share the 12th common point as well. Thus (x∗b)∗c = (x∗d)∗e.
This completes the proof of the implication

(a ∗ b) ∗ c = (a ∗ d) ∗ e ⇒ (x ∗ b) ∗ c = (x ∗ d) ∗ e.
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Figure 2: Basic (gL)

In what follows, we call this implication the “basic (gL) rule for cubics” or simply
“basic (gL)”. This is only a special case of the full version of the rule (gL), which
in turn is a modern avatar of the powerful rigidity lemma of complete varieties:
f(x, b) = c ⇒ f(x, z) = f(y, z) for all terms f in the mathematical structure in
question (see [7], page 37 and [11] for more details and references about the related
conditions like the term condition).

Theorem 2. Basic (gL) for cubics ⇒ the identity ((u ∗ v) ∗w) ∗ t = ((t ∗ v) ∗w) ∗u.

Proof. (See the appendix for an Otter proof.) Thanks to the commutative and
Steiner laws, we have

(w ∗ ((t ∗ v) ∗ w)) ∗ t = (w ∗ ((u ∗ v) ∗ w)) ∗ u

because both sides reduce to the variable v. This equality looks like the left hand
side of the implication basic (gL) with the following identifications:

a = w, b = (t ∗ v) ∗ w, c = t, d = (u ∗ v) ∗ w, e = u.

Hence, by the conclusion of the implication basic (gL), we have

(x ∗ b) ∗ c = (x ∗ d) ∗ e

for all points x on the cubic. In other words, we have

(x ∗ ((t ∗ v) ∗ w)) ∗ t = (x ∗ ((u ∗ v) ∗ w)) ∗ u.
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Substituting x = t and simplifying, we get

(t ∗ v) ∗ w) = (t ∗ ((u ∗ v) ∗ w)) ∗ u,

which, modulo the commutative and Steiner laws, is the same as

((t ∗ v) ∗ w) ∗ u = ((u ∗ v) ∗ w) ∗ t.

Theorem 3. The binary Steiner law ∗ on a nonsingular cubic curve satisfies the
medial identity (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u). (See Fig. 3.)
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Figure 3: The Medial Identity

Proof. (See the Appendix for an Otter proof.) It is enough to derive the medial
law from the basic (gL). We work backward to show how naturally the implication
of basic (gL) works to prove such consequences. We want to derive the identity
(x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u). This equality looks exactly like the conclusion of
basic (gL) and hence all we need to do is to find a suitable term a = a(y, z, u) such
that the relation (a ∗ y) ∗ (z ∗ u) = (a ∗ z) ∗ (y ∗ u). The term a = y ∗ z would do the
job because in this case both sides reduce to u.

Historical Remark. The validity of the median law for ∗ was first proved for plane
cubics by Etherington [2]. See Knapp [4] for a different and a rather complete proof
including the cases where two or more points may coincide. The first automated
proof of the median law using the rule (gL) was given in [11] and [12].

To further demonstrate the impact of the Cayley-Bacharach theorem on the
geometry of the cubic curves, we show that the formal property of basic (gL) for a
binary Steiner law ∗ along with a mild grouplike homomorphism connection with
+, a binary law of composition, does characterize the + as the (unique) group law.
More precisely, we prove the following.

Theorem 4. Let Σ be

{x ∗ (y ∗ x) = y, x ∗ y = y ∗ x, e ∗ e = e, (x ∗ e) + (e ∗ y) = x ∗ y}.
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Then Σ =(basic− gL)⇒ x + y = e ∗ (x ∗ y), where + is an Abelian group law.

Proof. (Found by Otter 3.0.5b in 1.94 seconds; see Sec. 3 for an explanation of
the proof notation.)

3 x ∗ (y ∗ x) = y
5 x ∗ y = y ∗ x
6 e ∗ e = e
8 (x ∗ e) + (e ∗ y) = x ∗ y
10 (x ∗ y) ∗ z = (x ∗ u) ∗ v → (w ∗ y) ∗ z = (w ∗ u) ∗ v

11 (x ∗ y) ∗ x = y [3 → 3]
13 (x ∗ y) ∗ y = x [3 → 5, flip]
16,15 x ∗ (x ∗ y) = y [5 → 3]
18,17 x + (e ∗ y) = (x ∗ e) ∗ y [13 → 8]
19 (x ∗ e) ∗ y = (e ∗ x) ∗ y [11 → 8 :18]
26 (e ∗ x) ∗ y = (x ∗ e) ∗ y [flip 19]
27 x + y = (x ∗ e) ∗ (e ∗ y) [15 → 17]
44 (x ∗ e) ∗ (y ∗ (e ∗ x)) = y [3 → 26, flip]
50 (x ∗ ((y ∗ z) ∗ u)) ∗ y = (x ∗ z) ∗ u [10,11]
296 (x ∗ (e ∗ y)) ∗ e = (x ∗ e) ∗ y [6 → 50]
303 (x ∗ y) ∗ z = (x ∗ e) ∗ (y ∗ (e ∗ z)) [44 → 50]
349 (x ∗ e) ∗ (y ∗ (e ∗ z)) = (x ∗ y) ∗ z [flip 303]
424,423 (x ∗ e) ∗ y = e ∗ (x ∗ (e ∗ y)) [5 → 296, flip]
445,444 (x ∗ y) ∗ z = e ∗ (x ∗ (e ∗ (y ∗ (e ∗ z)))) [349 :424, flip]
492 x + y = e ∗ (x ∗ y) [27 :445,16,16]

To complete the proof that + defines a group law, one notices that the associa-
tivity is simply the identity of Theorem 2:

x + (y + z) = e ∗ (x ∗ (e ∗ (y ∗ z)))
= e ∗ (z ∗ (e ∗ (y ∗ x)))
= z + (y + x),

and hence the binary operation + is both associative and commutative. Clearly,
x+e = x. Finally, defining x′ as e∗x, we have x+x′ = x+(e∗x) = e∗(x∗(e∗x)) =
e ∗ e = e.

Remark. Contrast this with the results in the appendix.

3 Otter and the Implementation of the Rule (gL)

Let us now compare the basic (gL) rule with the rigidity lemma:

Basic (gL) for cubics: (a ∗ b) ∗ c = (a ∗ d) ∗ e ⇒ (x ∗ b) ∗ c = (x ∗ d) ∗ e.
Full (gL) for cubics: F (a, b) = F (a, c) ⇒ F (x, b) = F (x, c)

for all morphisms F of the curve.
Rigidity for cubics: F (x, b) = c ⇒ F (x, z) = F (y, z)

for all morphisms F of the curve.
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Thus it is clear that while the basic (gL) for cubics deals only with the single
binary operation ∗, the full (gL) — equivalent to the rigidity lemma, see Theo-
rem 3.3 of [7] — involves all possible morphisms and thus provides the necessary
glue that binds together these various rational morphisms and gives new and elemen-
tary equational proofs to show that all these synthetic operations of higher arities
can be obtained by ruler constructions. Unlike the full (gL), the basic (gL) for ∗
is of little use if we assume no further connection between ∗ and other operations
(see, for example, the Appendix). Since we discuss the uniqueness of Steiner laws
on cubics, we employ the full (gL) as an inference rule as well as a rewrite rule.

Otter [6] is a computer program that attempts to prove theorems stated in
first-order logic with equality. Here we restrict our attention to its capabilities in
equational logic. The user inputs axioms and the denial of the goal(s), and Otter
searches for a contradiction by working both forward from the axioms and back-
ward from the goal(s). Equational reasoning is accomplished by paramodulation
and demodulation. Paramodulation is an equality substitution rule extended with
unification: if the two terms in question can be made identical by instantiating
variables, then equality substitution is applied to the corresponding instances. De-
modulation is the use of equalities as rewrite rules to simplify other equalities. The
following example illustrates the interplay between paramodulation and demodu-
lation. Consider {f(x, f(g(x), y)) = y, f(u, g(u)) = e, f(w, e) = w}, where e is
a constant; Otter can infer x = g(g(x)) “in one step” by unifying f(u, g(u)) and
f(g(x), y)) (which instantiates u to g(x) and y to g(g(x))), replacing f(g(x), g(g(x)))
with e, and then demodulating with f(w, e) = w.

The full rule (gL) was implemented in Otter in two ways that are analogous
to paramodulation and demodulation. Let F [a1, x] represent a term that contains
a subterm a1 at a particular position, with x representing everything else in the
term. Suppose we have F [a1, x] = F [a2, y], (i.e., a1, and a2 are in corresponding
positions), with a1 and a2 unifiable. By (gL) we infer F [z, x′] = F [z, y′], where z is
a new variable, and x′ and y′ are the appropriate instances of x and y. For example,
from

f(f(x, y), f(z, f(x, z))) = f(u, f(y, u)),

we can (gL)-infer
f(f(x, y), f(z, w)) = f(f(x, z), f(y, w))

by unifying u and f(x, z) and introducing the variable w. We also use (gL) as a
rewrite rule whenever possible. That is, we rewrite F [a, x] = F [a, y] to F [z, x] =
F [z, y] (again, z is a new variable).

Otter Proof Notation. Each derived clause has a justification. The notation
“m → n” indicates paramodulation from m into n; “: i, j, k, . . .” indicates rewriting
with the equations i, j, k, . . .; and “flip” indicates that equality was reversed (usually
so that the complex side occurs on the left). The justification “[(gL)” indicates the
use of =(gL)⇒ as an inference rule, and “:(gL)” indicates its use as a rewrite rule.
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4 Uniqueness of n-ary Steiner Law on Cubics

In this section, we show that a nonsingular cubic curve admits exactly one n-ary
Steiner law for every n congruent to 2(mod 3). If n = 2, this is the usual chord-
tangent process. We give a complete proof for the next case, n = 5 (the “conic
process”). The proof of the general case is similar and can be proved by induction.
Let C be a nonsingular cubic, and let x, y, z, t, u be five points on the curve. Let
Q be the unique conic determined by these 5 points. By the celebrated Bezout
theorem of classical geometry, we have |C ∩ Q| = 6, counting multiplicities. Now
let f(x, y, z, t, u) be the 5-ary morphism on C defined by the complete intersection
cycle

C ∩Q = {x, y, z, t, u, f(x, y, z, t, u)}.
Then the unique sixth point f(x, y, z, t, u) can be found by a simple ruler construc-
tion as shown in Fig. 4. A formal proof using the rigidity lemma was given by
N. S. Mendelsohn, R. Padmanabhan, and B. Wolk in [8]. Here we would like to
characterize the above synthetic geometric process by means of equational identities.

The 5-ary law is totally symmetric in all of its five arguments, and every inflection
point is an idempotent for f : f(e, e, e, e, e) = e. The geometric reason for this is
that the intersection multiplicity at a flex point e is six. Moreover, it satisfies the
Steiner identity f(e, e, e, x, f(e, e, e, x, y)) = y. We claim that a nonsingular cubic
curve over an algebraically closed field admits exactly one such 5-ary morphism.

Lemma 1. f(x, y, z, u, v) = f(x, y, z, v, u)
f(e, e, e, e, e) = e
f(e, e, e, x, f(e, e, e, x, y)) = y

 =(gL)⇒ {f(u, v, w, x, f(u, v, w, x, y)) = y}.

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.48 seconds, with a special-
ized search strategy.)

3 f(x, y, z, u, v) = f(x, y, z, v, u)
4 f(e, e, e, e, e) = e
7,6 f(e, e, e, x, f(e, e, e, x, y)) = y

9,8 f(e, e, e, x, f(e, e, e, y, x)) = y [3 → 6]
12 f(x, y, z, u, f(e, e, e, u, e)) = f(x, y, z, e, e) [6 → 4 :(gL) :(gL) :(gL), flip]
21 f(e, e, e, x, f(y, z, u, f(v, w, v6, e, e), x)) = f(v, w, v6, v7, f(y, z, u, v7, e))

[8 → 12 :(gL) :(gL) :(gL), flip]
485 f(x, y, z, f(x, y, z, e, e), u) = f(e, e, e, e, u) [(gL) 21, flip]
533 f(x, y, z, u, f(x, y, z, u, e)) = e [485 → 21 :9, flip]
613 f(u, v, w, x, f(u, v, w, x, y)) = y [6 → 533 :(gL) :7]

Lemma 2.
f(x, y, z, u, v) = f(x, y, z, v, u)
g(x, y, z, u, v) = g(x, y, z, v, u)
g(u, v, w, x, g(u, v, w, x, y)) = y
g(e, e, e, e, e) = e

 =(gL)⇒

{f(x, y, z, u, g(v, w, v6, u, v7)) = f(x, y, z, v8, g(v, w, v6, v8, v7))}
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Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.85 seconds, with a special-
ized search strategy.)

3 f(x, y, z, u, v) = f(x, y, z, v, u)
5 g(x, y, z, u, v) = g(x, y, z, v, u)
6 g(e, e, e, e, e) = e
7 g(u, v, w, x, g(u, v, w, x, y)) = y

9 f(x, y, z, u, g(e, e, e, e, e)) = f(x, y, z, e, u) [6 → 3]
10 f(x, y, z, e, g(u, v, w, v6, g(u, v, w, v6, v7))) = f(x, y, z, v7, g(e, e, e, e, e)) [7 → 9, flip]
13 f(x, y, z, e, g(u, v, w, v6, g(u, v, w, v7, v6))) = f(x, y, z, v7, g(e, e, e, e, e)) [5 → 10]
17 f(x, y, z, e, g(u, v, w, v6, g(u, v, w, e, v7))) = f(x, y, z, v7, g(e, e, e, v6, e)) [(gL) 10]
33 f(x, y, z, e, g(u, v, w, e, v6)) = f(x, y, z, v7, g(u, v, w, v7, v6))

[13 → 17 :(gL) :(gL) :(gL) :(gL)]
40 f(x, y, z, u, g(v, w, v6, u, v7)) = f(x, y, z, v8, g(v, w, v6, v8, v7)) [33 → 33]

Theorem 5. Let S be the set of identities of type (5,5,0) defined by

S =
{

f(e, e, e, e, e) = e, f is symmetric, f(e, e, e, x, f(e, e, e, x, y)) = y,
g(e, e, e, e, e) = e, g is symmetric, g(e, e, e, x, g(e, e, e, x, y)) = y.

}
Then S =(gL)⇒ {f(x, y, z, u, v) = g(x, y, z, u, v)}.

By Lemmas 1 and 2, we assume

f(u, v, w, x, f(u, v, w, x, y)) = y,
g(u, v, w, x, g(u, v, w, x, y)) = y,
f(x, y, z, u, g(v, w, v6, u, v7)) = f(x, y, z, v8, g(v, w, v6, v8, v7)).

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov at 0.34 seconds, with a spe-
cialized search strategy.) Full symmetry of the operations causes an explosion in
the Otter search space; to constrain the search, we incompletely specify symmetry
with deduction rule 2 below.

2 g(x, y, z, u, v) = f(x, y, z, u, v) → g(y, z, u, v, x) = f(y, z, u, v, x)
3 f(e, e, e, e, e) = e
4 f(u, v, w, x, f(u, v, w, x, y)) = y
5 g(e, e, e, e, e) = e
6 g(u, v, w, x, g(u, v, w, x, y)) = y
7 f(x, y, z, u, g(v, w, v6, u, v7)) = f(x, y, z, v8, g(v, w, v6, v8, v7))

10 f(e, e, e, e, g(e, e, e, e, e)) = e [5 → 3]
11 f(e, e, e, x, g(e, e, e, x, e)) = e [7 → 10]
12 g(e, e, e, x, e) = f(e, e, e, x, e) [11 → 4, flip]
13 g(e, e, x, e, e) = f(e, e, x, e, e) [12,2]
15 f(e, e, x, e, g(e, e, x, e, e)) = e [13 → 4]
18 f(e, e, x, y, g(e, e, x, y, e)) = e [7 → 15]
19 g(e, e, x, y, e) = f(e, e, x, y, e) [18 → 4, flip]
20 g(e, x, y, e, e) = f(e, x, y, e, e) [19,2]
22 f(e, x, y, e, g(e, x, y, e, e)) = e [20 → 4]
25 f(e, x, y, z, g(e, x, y, z, e)) = e [7 → 22]
26 g(e, x, y, z, e) = f(e, x, y, z, e) [25 → 4, flip]
27 g(x, y, z, e, e) = f(x, y, z, e, e) [26,2]
29 f(x, y, z, e, g(x, y, z, e, e)) = e [27 → 4]
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32 f(x, y, z, u, g(x, y, z, u, e)) = e [7 → 29]
33 g(x, y, z, u, e) = f(x, y, z, u, e) [32 → 4, flip]
34 g(x, y, z, e, u) = f(x, y, z, e, u) [33,2]
36 f(x, y, z, e, g(x, y, z, e, u)) = u [6 → 34, flip]
39 f(x, y, z, u, g(x, y, z, u, v)) = v [7 → 36]
40 g(x, y, z, u, v) = f(x, y, z, u, v) [6 → 39, flip]

Line 40 completes the proof of Theorem 5.

Corollary 1 f(x, u, z, t, u) = ((x ∗ y) ∗ (z ∗ t)) ∗ u, where “∗” stands for the binary
morphism of secant-tangent construction on the cubic.

Proof. Define g(x, y, z, t, u) = ((x ∗ y) ∗ (z ∗ t)) ∗ u. It is clear that g is totally
symmetric and that every flex point is an idempotent for g. Moreover, g satisfies
the two-variable identity g(e, e, e, x, g(e, e, e, x, y)) = y. Hence by Theorem 5, f = g.

This gives the well-known ruler construction to locate the unique sixth point
f(x, y, z, t, u) on the cubic. See Fig. 4.

y

(xy)(zt)

v=((xy)(zt))u

t

x

xy

u

z

zt

Figure 4: The Sixth Point

Thus, in particular, a nonsingular cubic curve admits exactly one 5-ary totally
symmetric Steiner law with flex points as its idempotents. Using similar construc-
tions, one can show that for every n ≡ 2(mod 3), a nonsingular cubic curve admits
exactly one totally symmetric n-ary Steiner law with flex points as its idempotents.
Indeed, such a Steiner law would be cut on a nonsingular cubic by an algebraic curve
of degree d = (n + 1)/3. Once again, the fact that these operations are well de-
fined follows immediately thanks to the Cayley-Bacharach theorem. Let us quickly
illustrate this for, say n = 11, the first nontrivial case where the Cayley-Bacharach
theorem really applies. If one takes a set of 11 points of general position on a
nonsingular cubic curve C, then there exist infinitely many quartic curves passing
through these 11 points. If Q is one such quartic curve, it has a 12th common
point with the cubic curve, since |C ∩ Q| = 12 by the Bezout theorem (remember,
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throughout this paper we are denizens of the complex projective plane). Since this
set P of 12 points is the complete intersection cycle of two curves of degrees 3 and
4, respectively, it enjoys the CB-property of degree 3 + 4 − 3 = 4, meaning that
every quartic passing through the initial 11 points must pass through this last point
as well! We now have a well-defined universal algebra of arity 11. It is obvious
that this is a totally symmetric Steiner law on the cubic. The uniqueness and linear
representation follow easily along the previous lines. Indeed, using the full version
of (gL), Otter proved the uniqueness of 8-ary Steiner law without much difficulty.
Humans can easily prove the uniqueness by induction on the arity.

Theorem 6. Let f(x1, x2, . . . , xn−1, xn) and g(x1, x2, . . . , xn−1, xn) be two n-ary
Steiner laws on a nonsingular cubic curve C, and let both f and g share a common
idempotent, say e. Then f = g.

Proof. Let f and g be two n-ary Steiner laws on C, and let e be an idempotent
element for both f and g. Now specializing xn = e, we do obtain an (n − 1)-
ary Steiner law, since the resulting (n − 1)-ary law is totally symmetric in all the
n − 1 variables and it is still Steiner and similarly for g. Hence, by the induction
hypothesis, we have the universal equality

f(x1, x2, . . . , xn−1, e) = g(x1, x2, . . . , xn−1, e).

Now form a new n-ary composite function h on the curve C by the rule

h(x1, x2, . . . , xn) = f(x1, x2, . . . , xn−1, xn) ∗ (e ∗ g(x1, x2, . . . , xn−1, xn)).

Let us substitute xn = e to obtain h(x1, . . . , xn−1, e) = e. So the n-ary function
h does not depend upon the variable xn and, by total symmetry, does not depend
upon xi for all i = 1, 2, . . . , n. Hence,

f ∗ (e ∗ g) = h(x1, x2, . . . , xn)
= h(e, e, . . . , e)
= e ∗ (e ∗ e)
= e.

In other words f ∗ (e ∗ g) = e = g ∗ (e ∗ g) and hence, by one right cancellation, we
obtain the desired equality f = g.

Remark. This aspect of formal derivability has been abstracted as the “overlay
principle” in [7, p.79].

Appendix

This appendix contains Otter proofs of Theorems 2 and 3, an example of a ternary
version of basic (gL), and an example showing that the full (gL) rule is more powerful
than the basic (gL) rule.

An Otter proof of Theorem 2

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.58 seconds.)
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3 x ∗ (y ∗ x) = y
5 x ∗ y = y ∗ x
6 (x ∗ y) ∗ z = (x ∗ u) ∗ v → (w ∗ y) ∗ z = (w ∗ u) ∗ v

7 (x ∗ y) ∗ x = y [3 → 3]
9 (x ∗ y) ∗ y = x [3 → 5, flip]
14 (x ∗ ((y ∗ z) ∗ u)) ∗ y = (x ∗ z) ∗ u [6,7]
35 (((x ∗ y) ∗ z) ∗ u) ∗ x = (u ∗ y) ∗ z [5 → 14]
1101 ((x ∗ y) ∗ z) ∗ u = ((u ∗ y) ∗ z) ∗ x [35 → 9]

An Otter Proof of Theorem 3

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.09 seconds.)

3 x ∗ (y ∗ x) = y
6 (x ∗ y) ∗ z = (x ∗ u) ∗ v → (w ∗ y) ∗ z = (w ∗ u) ∗ v

7 (x ∗ y) ∗ x = y [3 → 3]
14 (x ∗ ((y ∗ z) ∗ u)) ∗ y = (x ∗ z) ∗ u [6,7]
23 (x ∗ (y ∗ z)) ∗ (u ∗ y) = (x ∗ u) ∗ z [7 → 14]
189 (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u) [3 → 23]

Ternary Basic (gL)

This is an Otter proof of the associativity of the ternary Mal’cev operation using
a ternary version of basic (gL).

Theorem 7.
m(x, y, z) = m(x, u, v) →

m(w, y, z) = m(w, u, v)
m(x, y, y) = x
m(x, y, z) = m(z, y, x)

 ⇒ {m(x, y, m(z, u, v)) = m(m(x, y, z), u, v)}.

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.13 seconds.)

3 m(x, y, z) = m(x, u, v) → m(w, y, z) = m(w, u, v)
4 m(x, y, y) = x
6 m(x, y, z) = m(z, y, x)

7 m(x, x, y) = y [4 → 6, flip]
9 m(x, y, m(y, z, u)) = m(x, z, u) [7,3]
11 m(x, y, m(z, u, y)) = m(x, u, z) [6 → 9]
13 m(m(x, y, z), x, u) = m(u, y, z) [6 → 9]
23 m(m(x, y, z), u, v) = m(m(v, u, x), y, z) [11 → 13]
241 m(x, y, m(z, u, v)) = m(m(x, y, z), u, v) [6 → 23]
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Full (gL) vs. Basic (gL)

As we mentioned in Sec. 3, the property of full (gL) — that is Mumford’s rigidity
lemma of complete varieties (see [10, p.45] or [9, p.104]) — is very powerful and pro-
vides the necessary glue to bind the various morphisms definable on a nonsingular
cubic curve. In particular, if m(x, y) : C ×C −→ C is an arbitrary binary composi-
tion morphism admitting a two-sided identity, then it must be the usual group law.
We produce here a pure first-order proof of this result obtained by Otter using the
full (gL) rule:

Theorem 8. 
x + e = x
e + x = x
x ∗ (y ∗ x) = y
x ∗ y = y ∗ x

 =(gL)⇒ {x + y = e ∗ (x ∗ y)}.

Proof. (Found by Otter 3.0.5b on soot.mcs.anl.gov in 0.82 seconds.)

2 x + e = x
3 e + x = x
4 x ∗ (y ∗ x) = y
5 x ∗ y = y ∗ x

11 (e + x) ∗ (y ∗ x) = y [3 → 4]
17 x ∗ (e + (y ∗ x)) = y [3 → 4]
28,27 e + (x ∗ y) = y ∗ x [3 → 5]
29 x ∗ (x ∗ y) = y [17 :28]
35 (x + y) ∗ (z ∗ y) = (x + u) ∗ (z ∗ u) [11 → 11 :(gL)]
53 x ∗ (y ∗ e) = (x + z) ∗ (y ∗ z) [2 → 35]
106 (x + y) ∗ ((x + z) ∗ y) = z [35 → 29]
180,179 (x + y) ∗ (z ∗ y) = x ∗ (e ∗ z) [5 → 53, flip]
194 x ∗ (e ∗ (x + y)) = y [106 :180]
225 e ∗ (x + y) = x ∗ y [194 → 29, flip]
231 x + y = e ∗ (x ∗ y) [225 → 29, flip]

As early as 1970, Mumford and Ramanujam proved a rather sweeping and beautiful
generalization of this result in the context of complete varieties — not just cubic
curves (see [10, p.44]). This single theorem inspired the first author to look into the
formal aspects of equational proofs valid on cubic curves.

To show that the corresponding statement is not a theorem in basic (gL) we used
MACE [5], a program that looks for small models or counterexamples of first-order
statements. The statements

(x ∗ y) ∗ z = (x ∗ u) ∗ v → (w ∗ y) ∗ z = (w ∗ u) ∗ v
x + e = x
e + x = x
x ∗ (y ∗ x) = y
x ∗ y = y ∗ x
A + B 6= e ∗ (A ∗B)
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have the following model (found by MACE 1.3.2 on ember.mcs.anl.gov in 5.97 sec-
onds).

∗ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

+ 0 1 2
0 0 1 2
1 1 0 0
2 2 0 0

e: 0
A: 1
B: 1

Web Reference

The programs Otter and MACE, and the input files that produce the computer
proofs in this paper are available on the Web at

http://www.mcs.anl.gov/~mccune/papers/steiner.
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