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Abstract

Resource-constrained devices such as wireless sensor networks, body area networks,

or smart phones collect confidential and sensitive information about their users. Tra-

ditional solutions to protect these data, such as encryption, consume a significant

amount of resources to be viable. In this dissertation, I present two energy efficient

information collection protocols based on the notion that by relaxing the definition

of privacy, such as using indistinguishability, energy use can be reduced. The first

protocol, multi-dimensional negative surveys (MDNSs), protects multivariate cate-

gorical data by perturbing sensed values to something other than what was actually

sensed, and transmits the perturbed values to a central information collection server,

providing privacy protection for information such as location. The second proto-

col, k-indistinguishable privacy-preserving data aggregation (KIPDA), protects the

privacy of data that are aggregated in wireless sensor networks. It is specialized

for the maximum and minimum aggregation functions and is one of the first tech-

niques to provide protection from other adversarial nodes in the network. Sensitive
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data are obfuscated by hiding them among a set of camouflage values. Because the

sensitive data are not encrypted, they can be aggregated easily and efficiently with

minimal in-network processing delay. While radio usage is expensive, I show through

analysis, simulations, and implementations that broadcasting a modest amount of

camouflage data is more energy efficient when encryption is eliminated. Simulations

and implementations on physical devices illustrate how both approaches can protect

the privacy of a participant’s data, while reducing energy use and allowing useful

aggregate information to be collected.
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Chapter 1

Introduction 1

Applications of sensor networks have shifted from monitoring non-sensitive data

about volcanoes [148] and forests [14] to collecting private and confidential infor-

mation about people’s health, habits, and behaviors [27]. Because sensors now in-

teract closely with people, it is vital to protect and secure the data they collect.

However, current forms of protection are expensive and consume resources such as

energy stored in batteries, processing time, and memory [97, 124, 144]. New forms

of privacy protection are required to alleviate this strain and protect sensitive data

on resource-constrained devices [135]. I propose that algorithms can trade-off strict

notions of privacy for data indistinguishability, reducing energy consumption as a

consequence.

1Some material from this dissertation was previously published in“Enhancing Participa-

tory Sensing Applications with Multidimensional Data”which appeared in the Proceedings

of the 2012 IEEE International Conference on Pervasive Computing and Communications

c©IEEE 2012, and “KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation in

Wireless Sensor Networks” which appeared in the Proceedings of the 30th IEEE Interna-

tional Conference on Computer Communications c©IEEE 2011. Reprinted with permission.
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Chapter 1. Introduction

Novel methods of energy efficient privacy protection are important for several rea-

sons. First, privacy protects individuals from a variety of negative consequences they

may suffer when data are leaked about them, for example, thefts of bank accounts

or social security numbers. The second reason is economical — relieving the load

on sensor resources prolongs the lifetime of these devices and the intervals between

needed maintenance [12]. Third, the growth of ubiquitous sensing will affect nearly

everyone. Sensors will exist in abundance in many commonplace locations such as

milk cartons [20], light bulbs [66], clothes [119], street lights [93], buses [72], and

bathrooms [116]. These devices may inadvertently capture information from unwill-

ing participants. Finally, while a small sensor may not consume a large amount of

energy (especially when compared to a personal computer), their pervasiveness will

eventually affect energy budgets.

Creating new forms of privacy protection is not easy because of several challenges.

Eavesdroppers could intercept sensor radio communications. The devices themselves

can be physically captured by an adversary and have their memory contents ex-

amined, or they can be altered and re-released in the environment to masquerade

as benign sensors, mischievously collecting information or disrupting protocols. In

addition, there are several impediments to creating new privacy protection schemes:

• Encryption is expensive: Because of the limited resources of sensors, main-

stream data privacy solutions such as asymmetric (public/private key) encryp-

tion are too memory and power intensive [97, 124, 144, 145]. Although some

research has demonstrated that certain types of symmetric encryption are pos-

sible [96, 125, 146], there remains a significant computational cost and other

issues such as key distribution and management [57]. For example, TinySec,

a common implementation of security protocols on sensors (that uses symmet-

ric encryption) consumes 10% more energy than a comparable implementation

without the security protocols [96]. This is a conservative estimate given by

2



Chapter 1. Introduction

the creators of TinySec [96]. Although not huge, it can reduce a year of battery

life by at least a month.

• Encryption must ultimately trust the final recipient: All encryption

schemes eventually trust some person or entity with the decrypted information.

In some applications, this may not be desirable [85], e.g., consider a vehicle’s

speedometer and GPS sensor that report a speed of 80 miles per hour on

an open freeway. Encryption protects a message in transit to its destination.

However, once the message reaches its destination, its information can still be

compromised (even if the final recipient is trusted) through theft, negligence, or

search warrants. An important research challenge is protecting information in

this broader sense while allowing certain operations and queries over the data.

• Timing issues: Time delay is a common problem with encryption algorithms

on sensors [16]. The time to send one byte over a radio is informally known

as the byte time. If a node cannot encrypt the next byte in this amount of

time, the radio will have to wait, causing delay. If sensors are using low power

listening (LPL) [94], delay in the network can increase the amount of energy

consumed [42]. LPL puts a sensor’s radio in a low power state to conserve

energy. Additionally, the extra bytes from encryption protocol overheads (such

as ciphertext block sizes larger than plaintext sizes) increase packet length,

adding to time delay and energy consumption.

• Networks: The topology of sensor networks create an additional complication

because sensors typically route information over a wireless radio through each

other to reach a base station, or central information collection server. For

example, a node may transmit data to a base station that must be concealed

from the other nodes in transit. Yet, these other nodes may be configured to

perform certain tasks such as an aggregation of the sum or an average, which

are more easily accomplished with plaintext messages. This problem is known

3



Chapter 1. Introduction

as concealed data aggregation (CDA) [24, 25, 26, 29, 65, 73, 83, 128, 151] and

is discussed in more detail in Chapter 2, Section 2.

These four challenges: encryption costs, the need for universal privacy, time delays,

and the network topology of sensors are the focus of this dissertation.

Literature in the field that addresses these challenges is slowly moving away from

purely cryptographic solutions [24, 26]. This supports my argument that encryption

is not a panacea for every data privacy situation. Additionally, it suggests that a

trade-off may exist between the privacy level and the computation and communica-

tion resources.

This dissertation presents two new information collection protocols that protect

privacy and reduce energy usage. The first protocol, known as multi-dimensional

negative surveys (MDNSs), perturbs multivariate categorical sensed information and

reports the perturbed values to a centralized collector. The perturbation technique

has certain properties that allow statistics about the original sensed data to be re-

constructed from the consolidated perturbed data. Improvements to the protocol are

described that reduce the number of samples needed to achieve accurate reconstruc-

tion. Two metrics are proposed for measuring (1) the amount of privacy a node will

have against an adversary, and (2) the utility of the reconstructed data.

The second protocol, known as k-indistinguishable privacy-preserving data aggre-

gation (KIPDA), camouflages sensitive data among decoy values. While some energy

is spent transmitting decoy values over the radio, analysis and simulations show net

energy savings because encryption is avoided. KIPDA is a concealed data aggre-

gation scheme because it allows sensors to perform aggregation functions without

knowing the sensitive values. The protocol is among the first to protect sensitive

data in MAX/MIN data aggregation from other in-network nodes, providing protec-

tion from node collusion and node capture attacks.
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The MDNS protocols were simulated in MATLAB, while the KIPDA protocols

were simulated in an energy aware TinyOS Simulator, PowerTOSSIM-Z. Both pro-

tocols were implemented on real physical devices: Moteiv T-Mote Invent sensors for

KIPDA, and Android smart phones for MDNSs. These simulations and implementa-

tions demonstrate the feasibility of the protocols, suggest possible applications, and

compare the resource savings to privacy levels.

Several aspects of the algorithms are counter-intuitive, such as spending more

energy to communicate extra bytes over the radio, or reporting false information.

The ideas were inspired by natural processes: the natural human immune system’s

method of negative selection (MDNS), and an animal’s use of camouflage to protect

themselves from predators (KIPDA). In the human immune system, the thymus

educates T-cells to attack foreign cells or cells infected with foreign viruses. In

the MDNS protocol, data are perturbed to something other than self. Camouflage

allows an animal to blend into its environment to hide from predators. KIPDA

inserts sensitive data into a message vector to hide the value from adversaries. It is

also similar to immunocamouflage [32] which coats red blood cells with a polymer to

allow blood transfusions with non-compatible patients. Similarly, KIPDA“coats” the

sensitive data with extra information so that an adversary cannot attack or determine

the sensitive value. My solutions are appropriate for situations where the maximum

protection provided by encryption is not required, and where resource constraints

exist.

The main contributions of this dissertation include:

1. An information collection protocol, MDNSs, that can disguise efficiently multi-

variate categorical data and allow statistics to be reconstructed from the corpus

of disguised data.

2. A technique called dimensional adjustment that improves MDNSs by reducing

5
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the number of samples required for accurate reconstruction, allowing practical

applications.

3. The first comparison of MDNSs to a popular perturbation technique, random

data perturbation (RDP), used in privacy-preserving data mining that operates

on continuous data.

4. A second information collection protocol, KIPDA, that camouflages sensitive

data among decoy values and is one of the first secure comparison techniques

that protects information from the nodes that perform aggregation.

5. Simulations in MATLAB and TOSSIM that illustrate potential applications

and quantify the levels of privacy attained against resource effectiveness.

6. Implementations on physical devices that demonstrate the feasibility of the two

information collection protocols.

Roadmap: The remainder of this dissertation is outlined as follows. Chapter 2 gives

background material on wireless sensor networks, privacy-preserving data aggrega-

tion, and negative surveys, and defines the assumptions used throughout the rest of

this work. Chapters 3 and 4 introduce the MDNS and KIPDA protocols respectively.

Chapter 5 illustrates the two protocols with several MATLAB and TOSSIM simu-

lations, and presents real world implementations on Moteiv’s T-Mote Invent sensors

and Android smart phones. Chapter 6 provides a discussion and Chapter 7 compares

the two protocols with related work. The final chapter suggests future work and gives

the conclusion.
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Chapter 2

Background and Preliminary Work

This chapter states the assumptions that are used throughout the rest of the disser-

tation and provides an overview of wireless sensor networks, concealed data aggrega-

tion, and negative surveys. Preliminary work that studies negative surveys applied

to wireless sensor network is also presented.

2.1 Wireless Sensor Networks

A sensor is a small device typically equipped with a radio transmitter, a small

micro-controller, one or more environmental sensors, some type of memory, and a

power source such as a battery or solar cell. The terms sensor, node, and mote are

used interchangeably. Sensors can vary in size from that of a loaf of bread to that

of a grain of rice or even dust, and because of their size and cost constraints, are

typically resource limited, including power, bandwidth, memory, and computational

ability [135]. When used together, they create a wireless sensor network.

A wireless sensor network (WSN) is a spatially distributed network of resource-

constrained sensors. Each node is autonomous, yet the collection of nodes coop-

7
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Figure 2.1: Example of a wireless sensor network. Because of the limited radio
range of the sensor nodes, they route information through each other to reach a base
station.

eratively monitor certain physical or environmental conditions such as temperature,

pressure, pollutants, or sound. Sensors communicate directly with each other through

radio transmissions, but because of their limited radio range, nodes must route pack-

ets through their neighbors to reach one or more base stations, which are not typically

as resource-constrained. Figure 2.1 illustrates such a network. Although originally

developed for military battlefield use [101], they are now widely used by civilians

in many areas such as health care [36, 82, 98], geological surveys [148], and indus-

trial [4], habitat [14, 27], structural [104], or traffic [34, 85] monitoring. WSNs are

modeled in this dissertation as a connected graph G(V , E), where sensor nodes are

represented as vertices V and wireless links as edges E . The number of sensor nodes

is defined as N = |V|.

Real world WSNs can deviate from this model in various ways. For example,

in the cell phone radiation detection simulation presented in Chapter 5, each node

communicates directly to the base station through cell phone towers. However, these

devices are still resource-constrained. Chapter 4 returns to a more traditional WSN

8
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architecture and examines the problem of concealed data aggregation, discussed in

the next section.

2.2 Concealed Data Aggregation

WSNs designers employ a common technique called data aggregation to conserve

energy [1, 33, 44, 91, 92, 104, 137, 141]. Ideally, each node should report its entire

data set to the base station. However, this large amount of information can drain

the network of energy. If the base station does not need every measurement by

every node, WSNs can perform in-network processing on the data along its path

to the base station. Nodes can combine, change, filter, or process measurements to

limit the amount of data transmitted over the radio. For example, if a user is only

interested in the sum of the sensed values over a certain time period, nodes can sum

the information they receive and pass that information to the next node closest to the

base station. To accomplish this, routes in an aggregation scheme typically follow

a tree structure [109], such as the minimum spanning tree. Figure 2.2 illustrates

such a route and aggregation process. The sizes of the arrows are proportional to

the amount of information transmitted. On the left side, each node sends its sensed

value to the base station. On the right side, data are aggregated and the amount

of traffic is reduced. The data aggregation function is defined in this dissertation as

y(t) , f(d1(t), d2(t), · · · ,dN(t)), where di(t) is the individual sensor reading at time

t for node i.

Data aggregation is important because it saves energy by reducing the number

of packets and packet lengths. Every bit transmitted over a radio uses an equivalent

amount of energy to that for 800 to 2,000 clock cycles of execution on a micro-

controller, depending on the architecture [145] and the distance to transmit. Conse-

quently, reducing the number of bits that are transmitted is analogous to reducing

9
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Figure 2.2: Example of a WSN with and without data aggregation. Width of the
arrows is proportional to the amount of data transmitted. Routes follow a tree
structure in the network. (Left) A WSN in which values are not aggregated. All data
values are reported to the base station. (Right) Same network with data aggregation.
Nodes combine information from their children to reduce the amount of information
transmitted.

the energy consumed.

Data aggregation can be trivially implemented in WSNs. However, it is more

challenging when privacy and security are a concern, as information can potentially

be disclosed to either outside observers, neighboring nodes in the network, or in-

termediate nodes performing the aggregation. Concealed data aggregation (CDA),

also known as privacy-preserving data aggregation, aggregates data while keeping

it confidential and protected [77, 82]. This is not trivial because of the following

challenges:

• Intermediate node ignorance: Intermediate nodes need to aggregate data

without actually knowing the values.
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• Base station ignorance: Sometimes it may be desirable for the base station

to collect information and obtain statistics from sensor nodes without knowing

any individual node’s information.

• Non-linear aggregation functions: Non-liner functions such as MAX and

MIN are difficult to securely aggregate [131] because they do not work well

with traditional forms of homomorphic encryption which rely on the linear

characteristics of polynomials.

• Energy conservation: CDA requires conservation of energy for each sensor

and the network as a whole to prolong the devices’ lifetimes.

Hop-by-hop aggregation [151] is a traditional approach that addresses these four

challenges. A node encrypts its sensed information before sending it to the next hop

(or parent) in the aggregation routing tree, where it is decrypted and aggregated

with other information. This aggregate is then encrypted and passed to the next hop

(parent’s parent). This technique protects data from outside observers, however,

plaintext is available at each node after decryption, which increases the risk of data

leakage through node capture attacks. Additionally, extra energy is spent and latency

is introduced, due to the repeated decryption and encryption process.

End-to-end encryption proposes solutions to these limitations. A set of algorithms

known as privacy homomorphism have been developed to aggregate encrypted data

without decrypting it [26, 73]. For example, if the aggregation functions are summa-

tion or multiplication, then the following properties hold:

x+ y = Decrypt[Encrypt(x)⊕ Encrypt(y)]

x ∗ y = Decrypt[Encrypt(x)⊗ Encrypt(y)], (2.1)

where ⊕ and ⊗ are special homomorphic addition and multiplication functions. Be-

cause data remain encrypted from one end of the network to the other, the problem

11



Chapter 2. Background and Preliminary Work

of data confidentiality from the intermediate nodes typically does not arise. Ad-

ditionally, energy is saved because the repeated encryption and decryption phases

are avoided. For aggregation functions such as addition and multiplication, CDA

has been well addressed in WSNs. For example, Girao et al. [73] use the Domingo-

Ferrer’s privacy homomorphism to aggregate the average and movement detection

functions.

However, research on more general nonlinear aggregation functions such as max-

imum and minimum has been limited. Rivest et al. [131] showed that homomorphic

encryption is insecure to ciphertext only attacks if comparison operators are sup-

ported. Attempts have been made to address this limitation with homomorphic

encryption based on public key technology [40], but these schemes are too expensive

for practical use on WSNs. Acharya et al. [3] efficiently tailored a method called

Order Preserving Encryption Scheme (OPES) [8] from databases to WSNs. In their

scheme, sensor nodes map their plaintext measurements into a set of ciphered val-

ues, which preserves the order of the measurements. Hence, aggregators are able

to compare the values and aggregate them without decrypting. Sensors manage to

hide the plaintext distribution, which secures the algorithm against ciphertext only

attacks. However, the scheme cannot prevent in-network neighbors from learning

private data if they use the same set of mapping functions. The KIPDA protocol

presented in Chapter 4 is designed specifically for secure comparison aggregation by

providing robustness against in-network neighbors from learning private data.

2.3 Negative Surveys

This section introduces negative surveys as background material for Chapter 3. First,

I present a generalized case from privacy-preserving data mining called randomized

response techniques (RRTs) [2, 10, 11, 18, 19, 31, 51, 67, 87, 89, 115, 147]. RRTs
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disguise data by perturbing a categorical value to another value. For example, in

a survey of ethnicity, if a participant is Hispanic, the response might be randomly

perturbed to a new value, such as Asian. A perturbation matrix, denoted M , gives

the probabilities of perturbing category i to category j. It is an α×α square matrix,

where each entry Mi,j is the probability of responding with category j when category

i is detected.

Finding the optimal M that balances privacy and utility has been the subject of

earlier research [11, 89]. Warner described the RRT for binary data [147], which can

be extended to categorical data [10] using the following perturbation matrix, which

gives an initial suggestion for M :

M =




p 1−p
α−1

· · ·
1−p
α−1

p · · ·
...

...
. . .


 , (2.2)

where p is the probability that a category remains unchanged. Similar schemes

such as the Uniform Perturbation (UP) [10], and Framework for High-accuracy

Privacy-preserving Mining (FRAPP) [11] matrices perform similarly to the Warner

scheme [89].

The original data are estimated from the disguised data using the following equa-

tion [59, 63]:

Â = M−1Ŷ , (2.3)

where Ŷ = (Y1, . . . , Yα)
τ and Yi is the number of disguised values in the ith category.

Since this is an unbiased maximum likelihood estimate, Â approaches the original

distribution as the population size increases. Equation (2.3) is known as the matrix

inversion approach. An iterative approach is given by Agrawal et al. [10] but is not

extended to multiple dimensions.
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A special case of the Warner scheme, called negative surveys [59, 63, 85], uses

a perturbation matrix containing zeros on the diagonal entries and equal values

everywhere else where the columns sum to one, i.e., p = 0 in Equation (2.2). I will

call these matrices negative survey perturbation matrices (NSPMs) throughout the

rest of this dissertation.

Intuitively, a negative survey [59, 63, 143] is best explained in the context of a

traditional survey. Suppose you are asked which of the following cars you drive: Ford,

General Motors, Toyota, Honda, or Chevrolet. Assuming you drive one and only one

of the previous makes, then you could “truthfully” report the vehicle you regularly

drive. However, if this were instead a list of sexually transmitted diseases, you might

be more hesitant to answer. A negative survey asks you to “lie,” by reporting a

vehicle you do not drive. In the case of the sexually transmitted diseases, a person

might be more willing to answer the negative survey. An example is illustrated in

Figure 2.3.

2.4 Preliminary Work: Negative Surveys Applied

to Wireless Sensor Networks

As preliminary work and in collaboration with James Horey [85], negative surveys

were applied to WSNs. Two protocols were devised: the node and base station pro-

tocols. The first maps sensed data to its negative representation. Each node chooses

a category it did not sense with uniform probability and returns that “negative” in-

formation to the base station. In the base station protocol, the base station collects

the negative information from each node and reconstructs an estimate of the orig-

inal data from the collected data. Instead of Equation (2.3), the following simpler
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Figure 2.3: Example of a single-dimensional negative survey with 9 categories and
10,000 samples. Each sample from the sensed distribution is perturbed according to
the given perturbation matrix. The perturbed data is reconstructed with the given
equation where N = 10, 000 and α = 9.

reconstruction equation [59] can be used:

Ai = N − (α− 1) · Yi, (2.4)

where Ai is the reconstructed number of values in category i, and Yi is the reported

perturbed number of values in category i, with 1≤i≤α. N is the total number

of sensed values. Equation (2.4) has time complexity O(α), compared to O(α2)

for Equation (2.3) (ignoring matrix inversion), while still remaining an unbiased

maximum likelihood estimate.

In Horey et al. [85], the difference between the original and reconstructed distri-

butions, called utility [9, 105], was measured as the relative root mean squared error
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(rRMSE) given as:

rRMSE =

√√√√ 1

α

α∑

i=1

(
Ai −Xi

Xi

)2

, (2.5)

where Xi is the original number of sensed values in category i, and Ai and α were

previously given. In Chapter 3, utility is measured with the mean square error, and

is calculated more accurately with the variance of the negative surveys. Privacy was

not calculated in Horey et al. [85], but is calculated in Chapter 3 as the probability

of guessing the original data from the disguised values based on the maximum a

posteriori estimate.

The feasibility of negative surveys was illustrated in Horey et al. [85] with a traffic

monitoring simulation where cars reported to a stationary base station a speed at

which they were not traveling. Speeds where quantized into categories and the base

station reconstructed the perturbed information into histograms of driving speeds.

The histograms were accurate enough so that traffic behavior could be correctly

classified as either congested, normal, or speedy. It was determined that the method

was practical for the current levels of traffic.

The benefits of negative surveys in WSNs with respect to encryption are both

efficiency and privacy protection. The time complexity of the node protocol is only

a slight constant increase, O(1), from reporting the true sensed value. This is an

advantage over even the simplest encryption methods. The base-station (or any

other entity) does not have to be trusted, since the information it receives is per-

turbed. Negative surveys in WSNs also eliminate the need for key distribution and

management, which can be problematic [23, 28, 50, 57, 99, 107].

In the next chapter, negative surveys are extended to multivariate categorical

data, increasing the range of possible applications, two of which are presented in

Chapter 5.
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2.5 Assumptions

This section presents the assumptions, threat models and notions of privacy that

are used throughout the rest of the dissertation. I distinguish between privacy, or

data confidentiality, which ensures that data are not discoverable by an adversary

in a feasible amount of time, versus security, or data integrity, which ensures that

data are not sabotaged, changed, or withheld, along the way to its destination. This

dissertation addresses data confidentiality, leaving data integrity for future work.

My proposed solutions sometimes provide less privacy than standard cryptogra-

phy, such as adversaries who have partial knowledge of the secure information, or

a datum that is indistinguishable from other camouflage data. In other cases, my

notions of privacy are stronger than cryptography, such as the MDNS protocols that

protect data once it leaves a sensor device.

My threat model includes attacks from three different sources, each with its own

corresponding level of privacy:

1. Eavesdroppers: The first level of privacy prevents eavesdroppers from inter-

cepting sensitive data over the radio. Hop-by-hop encryption with symmetric

keys [23, 28, 50, 107] is able to achieve this goal.

2. In-network nodes: The second level of privacy ensures that individual pri-

vate information is not disclosed to in-network nodes. These honest but curi-

ous [75, 105] nodes will follow the network protocols but will mischievously try

to learn the sensitive data. This threat model is appropriate because sensors

deployed by a common authority can collaborate to fulfill a certain task and

it is reasonable that they can be trusted to follow the protocols. This level of

privacy is more stringent, but closer to real world situations [124, 144].

3. Base station: The third level of privacy ensures that data are not revealed to
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anybody, including the final recipient or base station.

I assume that adversaries can capture only a partial number of nodes, information,

or packets, or only a partial number of nodes will collude (the amounts of which are

later quantified). Finally, I assume adversaries are limited to running in polynomial

time based on their input.
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MDNSs: Multi-Dimensional

Negative Surveys

The negative surveys described in Chapter 2, Section 3 focus on a single dimension.

This chapter extends that preliminary work to multiple dimensions, introducing pri-

vacy and utility metrics, a more efficient reconstruction algorithm, and a technique

to reduce magnification of error. Extending negative surveys to multiple dimensions

increases the range of possible applications, examples of which are given in Chapter 5.

Because this technique hides data from every entity, it is well suited to protect hu-

man data. Thus, this chapter focuses on participatory sensing applications, in which

many users join together to form communities, contributing their sensory information

to form a general interactive body of knowledge.

3.1 Introduction

Participatory sensing applications [21] sense, collect, analyze, and share local infor-

mation collected from a large population of people, enabling a wide range of appli-
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cations such as urban planning [22], public health [36], and vehicular transportation

monitoring [85, 134]. In these applications, the privacy of the people being sensed

should be protected, especially when information travels across open wireless net-

works. On the other hand, there is great social utility in generating high quality

data for policymakers, researchers, and the public. Hence, trade-offs exist between

the privacy of the participants’ data and the utility gained from their content. This

trade-off must consider energy efficiency because of the resource-constrained nature

of participatory sensing devices.

This chapter applies negative surveys to multivariate categorical data, where

categories might be symbolic values (e.g., hair color, race) or a coarse-graining of

numerical data into bins. Multi-dimensional data are common in WSNs and partici-

patory sensing applications, which can include several different environmental values

along with time and location data. For example, I present a radiation detection

scenario in Chapter 5 that determines the distribution of radiation levels at vari-

ous locations. Participants disguise both dimensions: their geographic location, and

their local radiation level. This is important because values from one dimension

might inadvertently reveal information about another through correlation analysis.

If there are no correlations between sensitive and non-sensitive dimensions, then the

non-sensitive values can be reported directly.

Existing approaches for protecting the privacy of multi-dimensional data [5, 69,

113] are designed for database applications, where large numbers of records from dif-

ferent users are available to a centralized server that summarizes statistics about the

records [5, 113, 133, 139]. However, in participatory sensing applications, individual

participants typically only have access to their own sensed values. They might not

be willing to share information with other participants or trust a centralized server

to summarize statistics.

One limitation of previous work with negative surveys is the requirement for a
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large number of participant samples to reconstruct the data accurately [85, 150].

A slight increase in the number of categories requires a significant increase in the

number of participants needed to maintain a given level of utility. The problem is

compounded when data are multi-dimensional, motivating the work in this chapter.

I present a method called dimensional adjustment that reduces error, for a given

number of participants. It accomplishes this by sacrificing a small amount of privacy

in return for a greater amount of utility, typically 2.5 times more.

Two simulations presented in Chapter 5 illustrate MDNSs. In one, cell phones

locate radiation threats such as unexploded dirty bombs, escaped radiation from

a nuclear reactor accident, or lost or stolen medical waste, while preserving the

privacy of participants’ locations. A second simulation reconstructs the underlying

probability density function of synthetically generated continuous data, illustrating

an alternative approach to random data perturbation (random data perturbation is

explained in Chapter 5, Section 1.2).

Abstracting negative surveys to multiple dimensions is not trivial for the following

reasons: (1) Different metrics need to be devised to handle multiple dimensions as

none currently exist. (2) A method must be devised to manage reconstruction error

as the number of dimensions increases. (3) There is little prior work. (4) And, the

natural extension of single-dimensional negative surveys (SDNSs) has an exponential

time complexity based on the number of dimensions. It is not clear on first inspection

that a polynomial time optimization exists.

Chapter Assumptions: The threat model for this chapter includes eavesdroppers

listening to radio communications who try to intercept packets, honest but curious

intermediate nodes that pass information to the base station, and an honest but

curious base station. I assume no data aggregation in the network.

Chapter Contributions: The main contributions of this chapter include: (1) an
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extension of negative surveys to multivariate categorical data, including a more effi-

cient reconstruction algorithm, (2) privacy and utility metrics for multi-dimensional

data, which could be applied to other fields such as privacy-preserving data min-

ing, and (3) a reduction of the needed required participant samples to maintain a

given level of utility, given small decreases in privacy, which is also applicable to

the single-dimensional case. Chapter 5 extends this work to include: (4) a study

of the usability of MDNSs in terms of reconstruction error and the strength of pri-

vacy through theoretical analysis and simulations, and (5) a comparison of MDNSs

applied to continuous data to randomized data perturbation. Finally, Chapter 6

presents (6) a quantitative comparison of MDNSs to other perturbation approaches.

Chapter Roadmap: The remainder of this chapter is structured as follows. The

MDNS protocols are presented in Section 2, followed by Section 3 which describes

the privacy and utility metrics used in the analysis. Section 4 discusses the informa-

tion gained from a MDNS. Dimensional adjustment is introduced and analyzed in

Section 5, and Section 6 summarizes this chapter.

3.2 Protocols

Before describing the multi-dimensional node and base station protocols, we intro-

duce some notation. An individual participant senses vector ~x+=<x+
1 , x

+
2 , . . ., x

+
D>

from its environment. Real-valued numbers are quantized into categories, if neces-

sary. Each x+
i ∈~x+ where 1≤i≤D, expresses that category xi was sensed in dimen-

sion i. xi is drawn from a set of categories, Ci={1, 2, · · · , αi}, that form a proper

partition over the data in dimension i, where αi is the total number of categories for

dimension i. The “+” in ~x+ denotes the positive or sensed categorical information,

as opposed to the negated or perturbed information represented as ~x−. Subscripts

in ~xi denote the dimension (the ith dimension), while superscripts in ~x1 denote an
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instance of ~x. The collection of participatory sensing application users is known as

the population. For the entire population, X, Y , and A are D-dimensional matrices

which represent the counts by categories of the original, disguised, and reconstructed

data sets respectively. For example, if D=3 (i.e. three different environmental vari-

ables are sensed) then X(a, b, c), Y (a, b, c), and A(a, b, c) are counts of the number

of times the ath, bth, and cth categories appear together in a data set.

3.2.1 Node Protocol

There are three phases to the node protocol:

1. Sensing: A node senses a multi-dimensional value ~x+ from its environment,

course-graining if necessary.

2. Negation: For each x+
i ∈~x+, the node selects uniformly at random a category

x−
i to report to the base station from the set {Ci − {xi}}, where “−” denotes

set difference. Hence, x−
i 6=x+

i . This is performed independently for each di-

mension, creating the perturbed vector ~x−. The probability of selecting any

given category in dimension i is 1
αi−1

, where αi is the number of categories of

dimension i. For example in Figure 3.1, a node has sensed ~x+=<2, b> from its

environment, and must choose among the white cells, for instance ~x−=<3, c>,

for a negative value to report back to the base station.

3. Transmission: After negation, the node sends ~x− to the base station either

immediately, when queried, or according to another protocol.

Pseudocode for the node protocol is given in Algorithm 3.1. Since the number

of bits required to transmit either the positive or negative data is identical, there is

only a small increase in resources for this phase, due to the cost of obtaining random
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a b c d
1
2 x
3

Figure 3.1: Example of positive and negative multi-dimensional space for two dimen-
sions. A sensor that reads <2, b> from its environment selects among the white cells
for a value to report to the base station.

Algorithm 3.1 MDNS Node Protocol:

1: for each node β do

2: procedure Sense

3: Sense ~x+ from the environment.

4: end procedure

5: procedure Negate(~x+)

6: for each ~xi
+ ∈ ~x+ do

7: ~xi
− = urand(Ci − {~xi

+}). ⊲ “–” denotes set difference.

8: end for

9: return ~x−.

10: end procedure

11: procedure Report(~x−)

12: Report ~x− to the base station immediately or when queried.

13: end procedure

14: end for

numbers. Also, because key distribution and management is eliminated, the node

protocol saves additional resources [85].
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Algorithm 3.2 MDNS Base Station Protocol
1: procedure Base Station Protocol

2: Collect all perturbed information, Y , from the nodes.

3: Compute the estimated distribution, A, from the perturbed data, Y ,

with Equation (3.1), or the more efficient Algorithm 3.3.

4: end procedure

3.2.2 Base Station Protocol

The base station protocol first collects the reported data, Y , and then estimates the

original distributions of sensed values, A, with a reconstruction algorithm. Pseu-

docode is given in Algorithm 3.2. Since the protocol is straightforward, I focus on

the reconstruction algorithm in the following. First, I introduce a natural multi-

dimensional extension to the single-dimensional equation and show that is has ex-

ponential time complexity, then I present a time optimization, and finally give an

algorithmic simplification.

Natural Extension of SDNSs to MDNSs

Single-dimensional negative surveys use Equation (2.4) [63, 85] to estimate the orig-

inal distribution. A natural extension to D dimensions is:

∀~x | A(~x) = N +
D∑

k=1

(−1)k · Γ(~x, k), (3.1)

where Γ(~x, k) is given as:

Γ(~x, k) =
∑

d∈
B({1,...,D},k)




[∏

j∈d

(αj − 1)

]
·
∑

~y s.t.
yi∈~x,
∀i∈d

Y (~y)




, (3.2)
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and B({1, . . . , D}, k) are all the k length possible combinations of members of {1,
. . . , D}. For example, B({1, 2, 3}, 2) is {{1, 2},{1, 3},{2, 3}}. Y (~x) is the count of

the reported disguised sensed values that have categories specified by d from ~x. Each

dimension must use a NSPM. As an example, Equation (3.1) with D=3 is given as:

∀a, b, c | A(a, b, c) =
∑

~x

Y (~x)− (α1−1)
∑

~x s.t.
x1=a

Y (~x)− (α2−1)
∑

~x s.t.
x2=b

Y (~x)

−(α3−1)
∑

~x s.t.
x3=c

Y (~x)+(α1−1)(α2−1)
∑

~x s.t.
x1=a,
x2=b

Y (~x)+(α1−1)(α3−1)
∑

~x s.t.,
x1=a,
x3=c

Y (~x)

+(α2−1)(α3−1)
∑

~x s.t.
x2=b,
x3=c

Y (~x)−(α1−1)(α2−1)(α3−1)
∑

~x s.t.
x1=a,
x2=b,
x3=c

Y (~x). (3.3)

The time complexity of Equation (3.1) is given as:

O

([
D∏

i=1

αi

]
·
[

D∑

i=1

(
D

i

)
(D − i) · αmax

])
. (3.4)

where αmax is the maximum number of categories among the dimensions. There

are
∑D

i=1

(
D
i

)
total Y terms that require (D − i) calculations. αmax guarantees that

enough calculations are accounted for. Since (D
0
)+(D

1
)+· · ·+(D

D
) = 2D, this equation

is exponential with respect to the number of dimensions.

Time Optimization: Matrix Memoization

The reconstruction algorithm shown in Equation (3.1) can be improved with the

more time efficient scheme presented in Algorithm 3.3. This algorithm uses matrix

memoization to improve the running time and generalizes to any perturbation matrix,

not just a NSPM. The inputs to Algorithm 3.3 are: (1) D, the number of dimensions,

(2) Y , the D-dimensional matrix of disguised values, (3) F = [α1, . . . , αD], a list

of the number of categories for each dimension, and (4) M = [M1, . . . ,MD], the
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perturbation matrices for each dimension. The symbol “:” denotes a slice operator,

an operation on a matrix designating every element in the dimension in which it

appears 1; τ is a function similar to transpose that takes a row, column, hyper-row, or

hyper-column, and transforms it into a vector appropriate for matrix multiplication.

index is constructed to be a vector of length D, with one member of the vector

consisting of “:”. When used as an index into R, it returns a vector.

The time complexity of Algorithm 3.3 is:

O

(
D∑

i=1

[
D∏

j=1,j 6=i

α2
iαj

])
= O

(
D∑

i=1

α2
i ·

D∏

i=1

αi

)
, (3.5)

ignoring the cost of matrix inversion for each Mδ. Intuitively, the complexity arises

from the matrix multiplication with every possible vector in R. Each update of R

from Line 11 in Algorithm 3.3 stores information back in R for other overlapping

vectors to use, thus reducing the total amount of computation. Only one dimension

in R can be updated at a time or the algorithm will produce inaccurate results. The

technique also works for other perturbation matrices (e.g. RRTs). However, when a

NSPM is used for each dimensional perturbation matrix, the cost of Algorithm 3.3

reduces to:

O

(
D ·

D∏

i=1

αi

)
, (3.6)

because Line 11 in Algorithm 3.3 is replaced with the simpler Equation (2.4). Equa-

tion (3.6) is clearly an improvement over Equation (3.4).

1The part of Algorithm 3.3 that handles the slice operator and index variable was

designed by Benjamin Edwards, however the original algorithm to update each vector and

copy it back into R was designed by the author in a slightly different formulation.
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Algorithm 3.3 Reconstruction Optimization for D Dimensions

1: function reconstruct matrix(Y,D, F,M)

2: R = Y

3: for δ ∈ [1 : D] do

4: update_dim(R,D, [ ], δ, F,M)

5: end for

6: return R

7: end function

8:

9: function update dim(R,D, index, δ, F,M)

10: if length(index) = D then

11: R(index)←M−1
δ ∗R(index)τ

12: else if len(index) + 1 = δ then

13: new index← index.append([:])

14: update_dim(R,D, new_index, δ, F,M)

15: else

16: for i ∈ [1 : F (length(index) + 1)] do

17: new index← index.append([i])

18: update_dim(R,D, new_index, δ, F,M)

19: end for

20: end if

21: end function

Algorithmic Simplification

The Kronecker technique converts a MDNS to a single dimension. Although the

complexity cost is greater than Equation (3.6), this simplifies implementation and

allows the use of single-dimensional metrics, which produce the same values as their

multi-dimensional counterparts.
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The Kronecker technique uses a perturbation matrix, M ′, that is the Kronecker

product [86] of the individual perturbation matrices for each dimension, given as:

M ′ = (((M1 ⊗M2)⊗M3) . . .⊗MD), (3.7)

where ⊗ is the Kronecker product operator. The Kronecker product of two matrices

is the tensor product with respect to a standard choice of basis [86]. Y is transformed

into a new vector Y ′, an n×1 vector where n is the product of the number of categories

in each dimension. For example, if Y has three dimensions with 4, 3, and 2 categories

each, Y ′ is given as:

Y ′ =




Y (1, 1, 1)

Y (1, 1, 2)

Y (1, 2, 1)

Y (1, 2, 2)

Y (1, 3, 1)
...

Y (4, 3, 2)




. (3.8)

To obtain the estimated distribution, A, Y is multiplied with (M ′)−1 according to

Equation (2.3). A is then transformed to a D-dimensional matrix, taking care that

the order of transformations corresponds to the order that the Kronecker products

were applied to the perturbation matrices. Although convenient, this technique is

not optimal because of the time complexity which is given as:

O



[

D∏

i=1

αi

]2
 , (3.9)

ignoring matrix inversion which is minimal because of the mixed-product prop-

erty [86].
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3.3 Privacy and Utility Metrics

Using privacy and utility metrics extended from Huang and Du [89], I quantify

the trade-offs between the accuracy of reconstruction and the amount of privacy

protected. Like their single-dimensional counterpart, the multi-dimensional formula-

tions apply to any perturbation matrix, not necessarily a NSPM. The privacy metric

ranges from [0,1], while the utility metric ranges from [0,+∞). For both metrics

lower values are desirable. These privacy and utility metrics, and some terminology,

are borrowed from the privacy preserving data mining (PPDM) field. The terms

accuracy, reconstruction error, and utility are used interchangeably, as are the terms

disguise, perturb, and negate.

3.3.1 Privacy Metric

The privacy metric measures the probability of guessing the original data from the

disguised values, and is based on the maximum a posteriori (MAP) estimate. Huang

and Du [89] theorize that the MAP estimate is the “best that adversaries can achieve

when their estimation is consistent,” and it gives an upper bound on an adversary’s

threat. I extend their single dimensional metric to multiple dimensions as follows:

Privacy =
∑

Υ∈Y (~x)
∀~x

P (Υ|X̂Φ) · P (X̂Φ), (3.10)

where

X̂Φ = arg max
Φ∈X(~x)

∀~x

P (Φ|Y ). (3.11)

Equation (3.11) calculates for Equation (3.10) the optimal MAP estimate for a given

index, ~x, of Y (the maximum index, ~x, in each column of P (X|Y )).
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If an adversary has no prior knowledge of the underlying distribution, I pro-

pose that privacy generalizes to k-indistinguishability. I define an item to be k-

indistinguishable if it cannot be identified with higher probability than guessing from

k−1 other items. A participant’s reported data in a SDNS with α categories has a

k-indistinguishability value of α − 1. An individual’s data in a MDNS with cate-

gories α1, α2, . . . , αD will have a k-indistinguishability value of (α1−1) · (α2−1) · . . .
·(αD − 1). This is different from k-anonymity in WSNs [6, 80, 113, 133, 139] which

preserves location information and measures the ability of an adversary to distinguish

a participant from a set of k − 1 nearby participants.

3.3.2 Utility Metric

Utility, also known as accuracy or reconstruction error, measures the difference be-

tween the original, X, and reconstructed, A, data distributions. I use the following

reasoning from Huang and Du [89]. Since A is an unbiased maximum likelihood

estimate of X, the mean of the estimate A is identical to the original distribution X.

Yet, each specific estimate A deviates from X by some amount. The closer A is to

X, the higher A’s utility. Hence, the mean square error (MSE), given as follows, is

used to quantify utility:

MSE = E[(A−X)2]. (3.12)

Huang and Du [89] actualized this equation by replacing X with the mean of A

to estimate A’s variance. Using Equation (2.3), they equate the variance of A and

M−1Y , and state a theorem to compute the MSE. I extend this theorem to multiple
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dimensions with the following equation:

Utility =
1

α1· . . . ·αD

∑

~xi

MSE(X = ~xi)

=
1

α1· . . . ·αD

∑

~xi

E[(P (A = ~xi)− P (X = ~xi))2]

=
1

α1· . . . ·αD

∑

~xi

(∑

~xj

[
µ(~xi, ~xj)

2·var(~xj)
]

+
∑

~xk, ~xℓ s.t.

~xk
γ 6= ~xℓ

γ , ∀γ

[
2·µ(~xi, ~xk)·µ(~xi, ~xℓ)·cov(~xk, ~xℓ)

])
, (3.13)

where

µ(~xm, ~xn) =
D∏

d=1

M−1
d (~xm

d , ~x
n
d), (3.14)

denotes the product of the elements from the inverse of the perturbation matrix for

each dimension where the row and column correspond to the categories in the dth

dimension of ~xm and ~xn respectively. var and cov are given as:

var(~xi) =
1

N
·P (Y = ~xi)·(1− P (Y = ~xi))

cov(~xi, ~xj) = − 1

N
·P (Y = ~xi)·P (Y = ~xj), (3.15)

The actual variance and covariance of a MDNS are given as:

varMDNS(~x
i) =

([
D∏
i=1

αi

]
− 1

)2

N
· P (Y = ~xi) · (1− P (Y = ~xi))

covMDNS(~x
i, ~xj) = −

([
D∏
i=1

αi

]
− 1

)2

N
· P (Y = ~xi) · P (Y = ~xj), (3.16)

and were verified using the Algorithmic Simplification in Section 2.2. When an

MDNS is converted to a single dimension, Equation (3.16) is equal to the single-

dimensional variance and covariance equations used in Esponda and Guerrero [63].
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3.3.3 Experimental Study of Trade-offs Between Privacy

and Utility

The underlying distribution, X, affects utility and privacy. I use the following nor-

malized version of Shannon’s entropy to illustrate the effects:

S =

−∑
~x

P (X = ~x) logP (X = ~x)

log

(
D∏
i=1

αi

) , (3.17)

where S is in [0, 1]. For example, a spiked distribution (all elements in one category)

has the lowest normalized entropy, S = 0, and provides the worst privacy, but the

highest utility. A uniform distribution, which has the highest normalized entropy,

S = 1, provides the worst utility, but the best privacy. All other distributions fall

between these two extremes. However, the underlying distribution affects privacy

significantly more than utility. For example in Figure 3.2, the spiked and uniform

distributions span 87.4% of the entire privacy metric. These two distributions span a

significantly smaller range of utility, 0.786 to 0.802, which corresponds to 1.6% of the

privacy metric. Since this effect on utility is so small, Groat et al. [78] interpreted

utility to be independent of the underlying distribution. This is a reasonable sim-

plification because the number of categories and the number participants dominate

the metric’s value. It has the advantage of allowing WSN designers to determine the

utility of a negative survey without knowing the distribution of the original data.

3.4 Analysis of Adversarial Information Gained

The amount of information gained about the original sensed value by an adversary

who intercepts a response from a node in a SDNS was proved to be less than or equal

to what is gained with a positive survey by Esponda et al. [63]. Following this logic,
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Figure 3.2: Effects of different original distributions on privacy and utility.

the amount of information that can be gained from a MDNS is formalized as the in-

formation gained from a positive survey minus the information gained from the same

survey where ~xs− has been removed. ~xs− is the negative data a node transmits to the

base station that contains one perturbed category from each dimension. The infor-

mation gained by an adversary that intercepts ~xs− is formalized for a D-dimensional

MDNS as follows:

I(< i, j, ..., k >, ∀ i, j, ..., k|X 6= ~xs−) = −
α1∑

ℓ=1

α2∑

m=1

...

αD∑

n=1

P (X =< ℓ,m, ..., n >)

· log P (X =< ℓ,m, ..., n >)

+

α1∑

ℓ = 1

s.t. ℓ 6= ~xs−
1

α2∑

m = 1

s.t. m 6= ~xs−
2

...

αD∑

n = 1

s.t. n 6= ~xs−
D

P (X =< ℓ,m, ..., n > |X 6= ~xs−)

· log P (X =< ℓ,m, ..., n > |X 6= ~xs−). (3.18)

where <i, j, ..., k> denotes a sample that has category i in the first dimension, cat-

egory j in the second dimension, and category k in the Dth dimension. The proba-
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bilities in Equation (3.18) reflect the distributions of the original environment.

Equation (3.18) reports the information gained by an adversary if one negative re-

sponse is collected. The following discusses the possibility of an adversary collecting

many negative responses while the original sensed value remains the same. Eventu-

ally, after receiving all possible negative samples, the adversary will have gained all

information about the original sensed value. Assuming a uniform distribution for X,

Figure 3.3 illustrates this concept. On the left is a SDNS of 200 categories. When

199 unique categories have been received by the adversary, it has gained 7.6439 bits

of information about the original value, 27.6439 = 200. On the right, an adversary

receives information in 2 dimensions. It is possible that all categories except the

sensed category could be seen in the first dimension while only one category is seen

in the second dimension. This correlates to the front right corner in the surface plot.

The amount of information gain when all negative responses have been seen is also

7.6439, because there are 200 possible responses (10 by 20 categories).

3.5 Dimensional Adjustment Improves Efficiency

In this section, I introduce a technique called dimensional adjustment (DA) that

reduces the number of participants required to obtain reasonable utility. It accom-

plishes this by constructing extra dimensions while maintaining the total number

of categories. DA addresses a limitation of the previous work on single-dimensional

data [85, 150], namely, that as the number of categories increases for a given dimen-

sion, many additional samples are required to maintain a constant utility value. This

limitation is compounded in multiple dimensions, potentially limiting negative sur-

veys to applications with a small number of categories. I propose DA to address this

challenge, discussing the privacy and utility trade-offs, explaining the magnification

of error, and illustrating that it always improves utility and is expected to reduce
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Figure 3.3: (Left) The amount of information gained by an adversary in a 200 cate-
gory SDNS who captures negative responses from a node, assuming the positive value
remains the same. (Right) The amount of information gained in a 20 by 10 MDNS
by an adversary that captures negative responses, assuming the positive information
remains the same. The maximum value in either graph is 7.6439, the number of bits
needed to represent 200 categories.

privacy.

3.5.1 Dimensional Adjustment Algorithm

DA distributes a fixed number of categories into extra dimensions. For example,

a one-dimensional negative survey containing 64 categories can be remapped to: 2

dimensions of 8 categories each, 2 dimensions of 4 and 16 categories, or any number

of dimensions where the product of the number of categories in each dimension equals

64. Remapping dimensions is easy to implement and is similar to base conversion

with variable bases, as illustrated in Figure 3.4.

Splitting data into multiple dimensions with a smaller number of categories for

each dimension improves reconstruction accuracy (utility). Fewer dimensions with a
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Figure 3.4: An example of dimensional adjustment where the alphabetic dimension
is adjusted to two dimensions of three categories each. A node that senses <c> must
choose among the white cells to report.

larger number of categories worsens utility (higher utility value). Intuitively, accuracy

is related to Figure 3.1 and the ratio of the white squares (negative information) to the

total number of squares. Figure 3.4 illustrates DA when a single dimension containing

9 categories is reduced to two dimensions of 3 categories each. As the number

of dimensions increases, and the number of distinct categories remains constant,

this ratio decreases, reducing the number of possible perturbations, which increases

accuracy of reconstruction. The next section analyzes these trade-offs.

3.5.2 Trade-off Analysis

Using DA to transform a low-dimensional survey into a high-dimensional survey in-

volves trade-offs. For example, a one-dimensional negative survey with 64 categories

provides the highest privacy but the lowest utility. However, when the same data

are mapped to 6 dimensions with 2 categories each, the reconstruction provides the

lowest privacy but the best utility. The relationship between privacy and utility

is nonlinear, providing an opportunity to optimize. For example, in Table 3.1 with

1,000,000 samples and 10,000 categories, privacy degrades 35% while utility improves
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Table 3.1: Two negative surveys of 10,000 total categories and 1,000,000 participants.
The second uses dimensional adjustment.

1 dimension of 6 dimensions of

10,000 categories 5x5x5x5x4x4 categories

utility 0.00100 0.00014

privacy 0.01457 0.01960

86%, where percentage is calculated as:

y − x

x
. (3.19)

Using Table 3.1 and the following estimate equations for privacy and utility, I

further illustrate these trade-offs. Without loss of generality, the original distribution,

X, is assumed to be normal. I use a simple empirically discovered linear model to

estimate utility for a SDNS given N participants and α categories:

UtilityEstimate =
(α− 2)

N
, (3.20)

which has an R2 value of 0.9999 when either N or α varies. I estimate privacy as a

function of the number of categories in a SDNS as:

PrivacyEstimate =
2.5

(log2(α))
2 + 1.5

, (3.21)

which has R2 = 0.976. While the utility estimate does not depend on the original

distribution, the privacy estimate does. The empirically discovered Equation (3.21)

will only estimate accurately the privacy of a reconstructed normal distribution.

Using Equations (3.20) and (3.21), I can estimate the population size, or number

of categories required to achieve a target utility or privacy value. For the data in Ta-

ble 3.1, Equation (3.20) shows that one dimension of 10,000 categories and 71,414,286

participants is equivalent to 6 dimensions (where 4 dimensions have 5 categories and
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2 dimensions have 4 categories) with 1,000,000 participants. The MDNS requires

fewer participants. When participants are fixed at 1,000,000, Equation (3.20) also

indicates that a MDNS of 10,000 categories using DA is equivalent to using 142

categories in a SDNS. Equation (3.21) indicates that when the population is fixed

at 1,000,000, a MDNS of 6 dimensions and 10,000 overall number of categories is

equivalent in privacy to a SDNS using 2,397 categories. Since privacy degrades and

utility improves when the number of categories decreases, the above information in-

dicates a privacy degradation of 70.0% but a utility improvement of 98.58%. These

percentages will not linearly correlate with the privacy and utility metrics, yet they

do show how the privacy-utility trade-off is favorable for DA.

3.5.3 Magnification of Error

Previous works [85, 150] have suggested reasons why an increase in categories re-

quires a significant increase in participants to maintain a given level of utility. Horey

et al. [85] suggest that an almost linear increase in the number of participants is

needed to maintain a given utility as the number of categories increase, when util-

ity is measured with the relative Root Mean Square Error (RMSE). When utility is

measured with the MSE, as illustrated in Figure 3.5, the relation is indeed linear.

Xie et al. [150] suggests that the magnification of error is due to counting with in-

tegers, pointing to a gap between the floor and ceiling of the value (Xi)/(α − 1).

This gap introduces errors in the reconstruction process which are increased with

the total number of categories. They give an upper and lower bound of the error

for a given category to be ±(α − 1)2. However, they also assume that the RMSE

is the measure of utility. Utility metrics based on the RMSE or MSE are mislead-

ing because they do not model how the perturbed distribution, Y , deviates from its

expected value. Values in Y that are closer to their expected values give a better

reconstructed distribution, A, that is closer to the original data distribution, X.
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I introduce an alternative explanation using Chernoff bounds which better esti-

mate the deviation of Y from its expected value. Since negative surveys are similar

to the balls and bins problem [24], its notation (balls are sensed values and bins are

categories) will be used for the rest of this section. In a negative survey with an orig-

inal distribution, X, the balls in category Xi must be distributed among the other

α− 1 bins. This series of Bernoulli trials is binomially distributed. Chernoff bounds

approximate the binomial distribution and are especially good for representing the

tails far from the mean. The expected number of balls in the disguised bins, Y , is

calculated by first taking the inverse function of Equation (2.4) as follows:

E[Yi] =
N − Ai

α− 1
. (3.22)

Since this is a maximum likelihood estimate, Ai can be replaced with Xi. This

equation and the following two assume a SDNS, but a MDNS would behave similarly,

if α in Equations (3.22) and (3.23) is replaced with all the possible categories a sensed

value could be perturbed to, i.e., α is replaced with (α1 − 1) · (α2 − 1) · . . . (αD − 1).

The Chernoff upper and lower bounds, which determine the probability that a

bin will be filled with δ more or less balls than the expected value, are represented

as follows:

P [Xi > E[Y ] + δ] =

(
eδ

(1 + δ)(1+δ)

)N−Xi
α−1

P [Xi < E[Y ]− δ] =

(
eδ

(1− δ)(1−δ)

)N−Xi
α−1

. (3.23)

Without loss of generality (and for graphing), δ is fixed at one normalized standard

deviation of the binomial distribution given as:

δ =

√(
1

α

)
·
(
1− 1

α

)
. (3.24)

Figure 3.5 gives the results of the Chernoff bounds when there are 10 categories

and the population varies, and then when the population is fixed at 1,000 and the
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number of categories varies. In the figure (left), when the population increases, the

probability of a bin in Y being filled with more balls than one standard deviation

from its expected value decreases. If the y-axis is scaled logarithmically, the Chernoff

bounds form a straight line, suggesting that an increase in participants exponentially

(with an exponent of −0.70 in Figure 3.5 left) decreases the deviation of a bin in Y

from its expected value. Figure 3.5 (right) shows that when the number of categories

increases, the probability of a bin deviating from its expected value grows almost

logarithmically. To maintain a constant probability of deviation error for a given

change in the number of categories, the population is increased as follows:

Nincrease = α∆ · log(N), (3.25)

where α∆ is the increase in the number of categories, and N is the original population.

In this equation, the required number of participants increases linearly with the

number of categories. Any base can be used for the log, however, lower values give

lower Chernoff bound probabilities.

In Figure 3.5 (right), the probability of deviating from the expected value grows

almost logarithmically with an increase in categories, however, the initial increase

(from 3 to 150 categories) is significant. This significance increase of the Chernoff

bounds could explain the magnification of error associated with negative surveys.

As the number of categories increases, the values in Y have a higher probability of

deviating more than one standard deviation from the expected values. While the

utility metric uses a different unit of measurement, when compared to the Chernoff

upper and lower bounds, the metric underestimates the reconstruction error.
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Figure 3.5: Chernoff upper and lower bounds showing the probability that the values
in Y deviate from their expected values. The number of categories are fixed at 10
and the population varies (left), and population is fixed at 1,000 and the number of
categories varies (right). The utility metric (green) is included, but uses a different
unit of measurement. However, compared to the Chernoff upper and lower bounds,
the metric underestimates the reconstruction error.

3.5.4 Dimensional Adjustment Always Improves Utility

In this section I argue that DA always improves utility. Assuming that no negative

survey has fewer than three categories2, the limit of the Chernoff upper bound as α

approaches three from the right is:

lim
α→3+

(
eδ

(1 + δ)1+δ

)N−Xi
α−1

=
(
eδ(δ + 1)(−δ−1)

)N−Xi
2 . (3.26)

The derivative of the Chernoff upper bound is given as:

∂

∂α

(
eδ

(1 + δ)1+δ

)N−Xi
α−1

= − log(eδ(δ + 1)−δ−1)(N −Xi)(e
δ(δ + 1)−δ−1)

N−Xi
α−1

(α− 1)2
(3.27)

which is always positive when α, N , δ, Xi are greater than zero, and δ<1 and Xi<N .

This indicates that the upper bound in Equation (3.23) is monotonically increasing

2A survey with 2 categories is simply the bitwise inverse of the data and provides no

privacy, and a survey with 1 category is not very interesting.
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as α increases (or monotonically decreasing as α decreases). DA always reduces the

overall number of possible categories a value can be perturbed to. For instance, if a

dimension denoted as k has αk categories where αk =
∏Dk

i=1 αi, then the number of

available categories when the dimension is dimensionally adjusted to Dk dimensions

is (αk,1−1) · (αk,2−1) · ... · (αk,Dk
−1). Since αk > (αk,1−1) · (αk,2−1) · ... · (αk,Dk

−1),

the number of possible categories to perturb to are always reduced. This will always

tighten the distribution of values for each bin in Y , i.e., the bins will be closer to

their expected amount. This improves the reconstructed distribution (A values are

closer to X), which improves utility.

Additionally, as the population size goes to infinity, the limit of the Chernoff

bound approaches 0, as given below:

lim
N→∞

(
eδ

(1 + δ)(1+δ)

)N−Xi
α−1

= 0. (3.28)

This illustrates how reconstruction is a maximum likelihood estimate. More partici-

pants gives values in Y closer to their expected values.

3.5.5 Dimensional Adjustment is Expected to Reduce Pri-

vacy

Without loss of generality, any MDNS can be adjusted to a single-dimensional neg-

ative survey (see Section 2.2 in this chapter). When examining the joint probability

of X and Y in this case, some cells have zero entries because they are invalid per-

turbations (i.e., the original and perturbed values share at least one value). When

a SDNS or a dimension in a MDNS is dimensionally adjusted, zeros are added to

various cells in the joint probability. However,the other cells in the joint probability

are expected to increase, especially the maximum values in the columns. This will

increase the value of Equation (3.11), which will also increase the value of Equa-
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tion (3.10), reducing privacy. While the privacy metric is not guaranteed to increase,

it is expected to increase, especially with large populations.

3.6 Summary of Chapter

Information can be collected through MDNSs of participants’ devices. Participants

report false information to preserve their privacy. However, the original distributions

across the dimensions can be reconstructed from this false information. In this chap-

ter, I introduced the MDNS protocols to collect and reconstruct such information.

An efficient reconstruction algorithm was devised along with metrics for multiple

dimensions. A technique was put forward to reduce the inherent need for a large

number of participants. In the next chapter, I discuss another information collec-

tion protocol that also preserves privacy and reduces energy use, but performs data

aggregation on the information.
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Chapter 4

KIPDA: k-Indistinguishable

Privacy-preserving Data

Aggregation

The previous chapter discussed privacy-preserving data transmission without aggre-

gation in the network. Although data aggregation could be performed with MDNSs,

a separate value would have to be transmitted for each distinct category. In a MDNS

with many dimensions, this would defeat the purpose of saving energy. This chapter

presents KIPDA, a lightweight k-indistinguishable CDA algorithm for the maximum

(MAX) and minimum (MIN) aggregation functions. Instead of perturbing infor-

mation as in the previous chapter, the data values are hidden in plain site among

camouflage values.
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4.1 Introduction

WSNs often combine, process, or filter data between the sensor and the final destina-

tion, a process previously described as data aggregation. This chapter is concerned

with the problem of maintaining privacy when the data are aggregated in the net-

work. I introduce a non-cryptographic method called KIPDA, or k-indistinguishable

privacy-preserving data aggregation, which obfuscates data by adding a set of cam-

ouflage values. In KIPDA, the aggregates, referred to as the sensitive values, are

transmitted in plaintext so that the aggregation computation is efficient. These

sensitive values are disguised with camouflage values in a message vector, a one-

dimensional array of values which is defined as the union of the sensitive value with

the camouflage values. WSN nodes transmit message vectors to their parents in the

data aggregation tree, typically in a single packet. k-Indistinguishability of the sensi-

tive values from the camouflage data is achieved by choosing the values and positions

of the camouflage data in the message vector in such a way that the sensitive values

are aggregated correctly and can be decoded at the final destination or base station.

The technique is counter-intuitive, because it takes extra energy to transmit cam-

ouflage values. However, I show through analysis, and in Chapter 5 with simulations,

that KIPDA is more energy efficient than using end-to-end data collection without

aggregation, or hop-by-hop aggregation with five current conventional encryption ci-

phers. KIPDA also excels at timing, and can aggregate and transmit significantly

more decoy values than hop-by-hop aggregation can aggregate and transmit one sen-

sitive value. This could be important in delay intolerant networks [129].

KIPDA is one of the first MAX/MIN CDA techniques to protect information

from in-network nodes with energy-efficiency. It is robust to nodes that are captured

and re-programed to follow network protocols (so as to appear benign) to determine

sensitive data. The fewer nodes that are controlled by an adversary, the less abil-
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ity the adversary has to distinguish sensitive values from camouflage values. This

is accomplished by using a method similar to a global symmetric key [99], except

that each node possesses a random part of the global key. Only when enough nodes

collude or are captured will privacy be broken. Neither hop-by-hop encryption aggre-

gation or end-to-end aggregation with homomorphic encryption support MAX/MIN

aggregation with protection from in-network nodes (see Chapter 2, Section 2).

CDA MAX/MIN aggregation is very similar to secure multi-party computation,

which is a general case of the millionaire problem, where two people want to know

who is richer without revealing their true wealth. The only amount of information

gained is from the result of the answer. The solution to this problem is too resource

expensive to be applied to WSNs. For example, previous solutions to Yao’s Million-

aire Problem [40, 152] leverage public-key cryptography, which is computationally

expensive and therefore problematic in resource-constrained WSNs.

Several applications could benefit from KIPDA and MAX/MIN aggregation. For

example, intelligent or smart meters for electric utilities send individual usage data to

a utility company, which then sends real-time data back to the end user to encourage

energy conservation [77]. Information from the meter is usually sent over an existing

cell phone infrastructure, radio transmission, or other unsecured network. Privacy

is essential in this setting, least others can infer daily activities by observing utility

consumption patterns [77]. Another potential application arises in medicine, if a

medical worker does not have the time or resources to monitor a large group of

patients individually. Determining the MAX or MIN value of an indicator could

show that the entire group is within the normal range, or that a patient is in trouble

and needs attention. Without privacy-preserving techniques, an eavesdropper could

observe values of a patient’s health data. A similar idea could be used to triage

patients at a disaster site [82].

Chapter Contributions: The contributions of this chapter include the following:
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(1) a MAX/MIN CDA scheme that protects data from in-network nodes, (2) analysis

of the ability of an adversary to distinguish sensitive data from camouflage data

as a function of the number of nodes she has captured, (3) a detailed analysis of

the energy consumption and time delay of KIPDA compared to end-to-end data

collection and hop-by-hop aggregation encryption schemes. In Chapter 5, this energy

and time analysis is compared to the results from a power aware WSN simulator

(PowerTOSSIM-Z) and actual implementations on physical devices.

Chapter Assumptions: I assume in-network nodes that transmit message vectors

are honest but curious, along with the base station. Communications from each sen-

sor node to the base station can also be monitored by an adversary. Communications

from the base station to each node is performed securely to distribute necessarily in-

formation about the positions of the camouflage data in a node’s message vector.

Chapter Roadmap: The remainder of this chapter is organized as follows: Sec-

tion 2 provides an overview of the protocols. Section 3 discusses aggregation accuracy,

and analyzes the abilities of an adversary through node capture and collusion attacks.

Section 4 presents the protocols in detail. Section 5 analyzes the power consump-

tion of KIPDA and compares it to similar techniques, and Section 6 summarizes this

chapter.

4.2 Overview of Solution

Before I present the overview of my solution, I introduce notation which is summa-

rized in Table 4.1 and illustrated in Figure 4.1. Let V i be the set of n values in a mes-

sage vector for node i where (|V i| = n, ∀i, 1≤i≤N), and where N is the number of

participating nodes in the network. The message vector is composed of the sensitive

value, di, of node i, and the restricted and unrestricted camouflage values. Restricted

camouflage values in a message vector are required to be greater or lesser than the
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sensitive value for MIN and MAX aggregation respectively. Unrestricted camouflage

values can be either greater or lesser than the sensitive value. The message vector is

an array of values, where the sensitive data and the two types of camouflage values

are assigned to specific positions in the array according to predefined policies. Let

I = {1, 2, ..., n} be the set representing the positions of V i, ∀i, 1≤i≤N . The global

secret set (GSS), a subset of I, denotes the secret index values kept at the base

station to determine the final aggregated results. GSS contains the global secret

information, which is partially shared among the network nodes. The node’s secret

set (Ri) is the secret information about GSS shared with node i. The base station

specifies Ri for each i to include all elements from GSS and a subset of elements

from GSS, i.e., GSS ∩ Ri 6= ∅. P i denotes the position of the sensitive value in V i

for node i. P i is always a subset of GSS for all i, 1≤i≤N , and |P i| = 1. P i is also a

subset of Ri; hence Ri is the union of the index set of the restricted camouflage values

and index of the sensitive value. U i is the index set of the unrestricted camouflage

values, where U i ⊂ GSS, and U i = Ri = I −Ri (“−” denotes set difference).

This notation is formalized with the following four definitions which ensure the

correctness and functionality of KIPDA. Definition 1 ensures that the base sta-

tion can correctly determine the final aggregated value. Definition 2 enforces the

requirement that any single node i cannot determine the entirety of GSS from P i,

by enforcing that Ri − P i draws from both sets GSS and GSS. Definition 3 guar-

antees that the true maximum value is not filtered out by the aggregation process.

Definition 4 enables the correctness of the previous 3 definitions by ensuring that

the message vector is filled with the proper values.

Definition 1: The index, P i, of the sensitive value, di, is drawn from GSS:

P i ⊂ GSS, ∀i, 1≤i≤N, |P i| = 1. (4.1)

Definition 2: Ri contains elements from both GSS and GSS. This is required to
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Table 4.1: KIPDA notations.

message Vector of camouflage and sensitive value sent to

vector the next aggregator, indexed by I.

restricted Values in the message vector that are greater than

camouflage the sensitive value for MIN aggregation and

values less for MAX aggregation.

unrestricted Values in a message vector that are either more or

camouflage less than the sensitive value, di in the message

values vector.

V i Message vector of node i. V i = {vi1, vi2, ..., vin}.
viℓ Values in V i for node i where ℓ = 1, 2, ..., n.

V Ω Last message vector received by the base station.

di

Sensitive value of node i. It is hidden in plain

sight in V i where viℓ = di, if ℓ ∈ P i. The

sensitive value can be a sensed value or an

aggregate.

I Index set of V i. I = {1, 2, ..., n}
N Number of nodes in the network.

n

Number of values in a message vector, n = |V i|,
∀i, 1≤i≤N . Determined according to privacy

versus energy needs.

GSS

The global secret set kept at the base station that

contains possible locations for the final network

aggregated value.

Ri

The secret set for node i. Consists of the

union of the indices of the restricted camouflage

values and the index of the sensitive value.

U i Index set of unrestricted camouflage values

values of node i. U i = Ri = I −Ri

P i Index of the sensitive value, di, of node i.

hide the sensitive value in V i:

GSS ∩ (Ri − P i) 6= ∅, ∀i, 1≤i≤N. (4.2)
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Figure 4.1: Illustrated KIPDA notations.

Definition 3 Ri is a proper superset of GSS:

GSS ⊂ Ri, ∀i, 1≤i≤N. (4.3)

Definition 4 A sensor node i fills in its message vector, V i = {vi1, vi2, ..., vin}, accord-
ing to the following equation:

viℓ =





di if ℓ ∈ P i, and computing MAX or MIN

urand(dmin, di) if ℓ ∈ Ri, and computing MAX

urand(di, dmax) if ℓ ∈ Ri, and computing MIN

urand(dmin, dmax) if ℓ ∈ U i, and computing MAX or MIN.

(4.4)
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Figure 4.2: Example of a KIPDA aggregation scheme with three nodes.

where urand(x, y) generates a random number uniformly distributed between x and

y, and dmin and dmax are the theoretical network minimum and maximum values

respectively.

To illustrate KIPDA, consider the three node example of MAX aggregation shown

in Figure 4.2. In this example, nodes 2 and 3 each want to send a single sensed

sensitive value to node 1, which aggregates these values along with its own, and

sends the aggregated sensitive value to the base station. Each node protects their

sensitive value by writing it to the message vector with camouflage data. In this

example, the message vector contains one sensitive value and six camouflage values.

Figure 4.2 illustrates the four phases of KIPDA for MAX aggregation: pre-

distribution, sensing, aggregation, and base station processing. In the pre-distribu-
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tion phase the base station determines, based on the above definitions, the elements

of sets, GSS, and P i and Ri for all nodes i where 1≤i≤3. In the figure, GSS is

determined to be {1, 3, 5}. P i, for i = 1, 2, and 3, is determined to be {1}, {5}, and
{3}, respectively. Ri, for i = 1, 2, and 3, is determined to be {1, 2, 3, 5, 7}, {1, 3, 4,
5, 7}, and {1, 2, 3, 5, 6}, respectively. U i can be trivially determined from Ri for each

i. The sets Ri are composed of three values from GSS, and two values from GSS

each. After the sets are determined, the base station distributes P i and Ri to each

node i. During the sensing phase, node 2 places its sensitive value, 34, in the 5th slot

in V 2. Then it determines the rest of V 2 according to Equation (4.4). These values

could be picked randomly according to constraints such as the theoretical maximum

and minimum values. In this way, V 1 = {23, 18, 22, 25, 15, 27, 19}, V 2 = {18,
47, 27, 30, 34, 9, 4}, and V 3 = {6, 11, 12, 15, 1, 5, 10}. During the data aggre-

gation phase, when node 1 receives message vectors V 2 and V 3 from its children,

it determines the aggregated value where v1ℓ = max{viℓ} for each ℓ = 1, 2, ..., 7 and

i = 1, 2, 3. Hence, the aggregated message vector, V 1, is {23, 47, 27, 30, 34, 27, 19},
and replaces the original V 1, becoming the final message vector, V Ω, that is sent to

the base station. In the final phase, the base station determines the final network

aggregate among the maximum elements indexed by GSS. In the example, elements

at positions 1, 3, and 5 of the aggregated set V Ω are 23, 27, and 34. Hence, 34 is the

network MAX aggregate.

As described, this method might be prone to statistical analysis attacks. For

example, an adversary could examine the packets for statistical correlations and use

this information to guess Ri and U i for certain i, ultimately guessing GSS and

GSS of the base station. There are several methods to avoid this problem. In the

network, if the theoretical maximum and minimum values are known, then the values

in the message vector other than di could be chosen so the entire message resembles a

uniform distribution. If the size of Ri prevents this, it can be increased. Alternatively,

the sets could be changed or shuffled either after each network wide aggregation, or
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after a fixed number of aggregations. The base station would choose a new set GSS,

and end-to-end encryption would distribute sets Ri and Pi to each node i. While

this is a cryptographic approach, it would occur sparingly to conserve energy. These

methods would also help if values of neighboring nodes are similar or correlated, or if

an adversary manipulated the environment so that some sensor values were known,

such as putting an ice block on top of a sensor that reports temperature.

4.3 Aggregation Accuracy and Collusion Attacks

This section explains the aggregation accuracy of KIPDA, the level of privacy pro-

tection, the robustness to node collusion (capture attacks), and the optimal sizes of

sets GSS and R. First, accuracy is guaranteed according to the following conjecture:

Conjecture 1: KIPDA accurately computes the MAX and MIN aggregation func-

tions.

Informal Sketch: The aggregation result can be affected only by the unrestricted

camouflage values. However, the unrestricted camouflage values occur only in loca-

tions indexed by U i. Since GSS ⊂ Ri, and U i ⊂ GSS, ∀i, 1≤i≤N , the unrestricted

camouflage values do not affect the aggregated results in positions indexed by GSS

at each node. This is because the elements of GSS and GSS are disjoint. Assuming

paths to the base station follow a tree route with the base station as the root, any

subtree will contain the maximum or minimum aggregate value of that subtree in

GSS. The base station can always determine the sensitive network wide aggregate

from GSS of the final message vector.

Let us continue with some definitions:

Definition 5: A rogue node is a node compromised by an adversary that will collect

sensitive data, yet will still follow the network protocols, so to appear as uncompro-
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mised.

Definition 6: Given k items where k≥1, the items are said to be k-indistinguishable

if a sensitive value, d, from among the k items cannot be determined more accurately

than by guessing from the other k−1 items. A set with a single item has a k value

of one.

The following 2 claims provide support for Conjecture 2, which quantifies k when

a single rogue nodes tries to learn sensitive data. First, I present a change in notion.

Since the sizes of Rm and Um are the same for all m, 1≤m≤N , they will be denoted

as |R| and |U | with the indices removed.

Claim 1: A victim node i has k-indistinguishability where 1≤k≤|U |+1 when an

adversary has captured node j and uses set U j to determine di.

Informal Sketch: Only the unrestricted values can be higher or lower than di for

MAX and MIN aggregation respectively. The maximum number of these unrestricted

values is |U |. In the best case for victim node i, node j cannot determine what sets

the positions of these |U | values of V i are in: Ri, U i, or P i. In addition to the

|U | largest or smallest values, the rogue node cannot distinguish the position of the

sensitive value itself from the other |U | values, hence k is increased by one.

Take for example MAX aggregation in Figure 4.3, rogue node j (Node 2 from

Figure 4.2) knows the sensitive value of victim node i (Node 3 from Figure 4.2) will

be in one of the (|U |+1) largest values in node i’s message vector, V i. These values

correspond to indices 2, 3, and 4. Here, indistinguishability is 3.

Claim 2: A victim node i has k-indistinguishability where 1≤k≤|R|−1 when an

adversary has captured node j and uses set Rj to determine di.

Informal Sketch: An adversary, after capturing node j, knows that the sensitive data,

di of node i is guaranteed to be in one of the positions denoted by Rj in V i. This is
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6 11 12 15 1 5 10Node 3, i

Node 2, j (Adversary)

1Index: 2 3 4 5 6 7

Figure 4.3: Nodes 2 and 3 are from Figure 4.2. An adversary can determine that the
sensitive value is in the |U |+ 1 largest positions of V i for MAX aggregation.

because GSS ⊂ Rm for all m, 1≤m≤N . The adversary cannot determine the actual

location of di since she does not know whether any of the corresponding elements in

her Rj set are in the victim’s Ri, P i, or U i sets. Since the adversary knows at least

one position of GSS, k is reduced by one.

For example in Figure 4.4, the adversary after capturing node j (Node 2 from

Figure 4.2) knows the sensitive value is contained in one of the positions of node i’s

message vector denoted by the rogue node’s Rj set. Since the smallest value of the

positions denoted by Rj is contained in P j, k is reduced by one.

Conjecture 2: For any single rogue node j trying to collect the index of the sensitive

information, di, from node i, KIPDA provides the following k-indistinguishability

level where k is given as:

1 ≤ k ≤ min(|U |+ 1, |R| − 1). (4.5)

Informal Sketch: Since an adversary can choose either or both techniques from

Claims 1 and 2, it follows that k will be less than or equal to the minimum of

the two. Future work will consider if these two attacks are exhaustive.
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6 11 12 15 1 5 10Node 3 , i

Node 2, j (Adversary)

1Index: 2 3 4 5 6 7

Figure 4.4: Nodes 2 and 3 are from Figure 4.2. An adversary can determine that the
sensitive value is in Rj of V i.

The next two claims help determine the average value k a victim node has against

a single colluding node.

Claim 3: A victim node i has average indistinguishability k where k = Λ, against a

rogue node j when U j is used to determine di. Λ is given as:

Λ = (|U | −Ψ+ 1)

where Ψ is the expected number of elements of the largest or smallest (|U | + 1)

values (for MAX or MIN aggregation respectively) in V i that are in positions that

are members of the set U j. When Λ equals |U | + 1, it is a special case of Claim 3

where no elements are shared between the positions of largest or smallest (|U | + 1)

values in V i and set U j. Ψ is defined as:

Ψ =
|U | · (|U |+ 1)

|I| . (4.6)

Informal Sketch: k is reduced from |U |+1 by one for every element shared between

U j and the positions denoted by the largest or smallest |U |+1 values in V i. Because

Um /∈ GSS for all m, 1≤m≤N , these value can be discounted as they do not contain

any sensitive information. The expected value, Ψ, is the product of the (|U | + 1)
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number of largest or smallest elements, and all the possible positions of set U , divided

by all possible positions that the largest or smallest values can fall in, |I|.

For example in Figure 4.3 for MAX aggregation, position 2 can be ruled out

because it is a member of U j. Hence, k is reduced to 2. Also, it does not matter if

any of the |U |+1 largest values are in position P j, because any of these values could

fall in P i, and the adversary does not know if P i = P j.

Claim 4: A victim node i has average indistinguishability k, where k = Π, against

a rogue node j when Rj is used to determine di. Π is given as:

Π =

|R|∑

g=1

P (g) · (g − 1) (4.7)

where P (g) is the probability that the gth largest item appears in the position denoted

by P j in V i. This probability can be actualized as:

P (g) =
1

|R| , (4.8)

Informal Sketch: For MAX aggregation, the gth largest value in V i that is in the

position denoted by P j gives a k value of g−1. Because P j ⊂ GSS, any smaller values

in the positions denoted by Rj can be ruled out. This is because their positions are

either in GSS or GSS. If their positions are in GSS, none of them are the sensitive

value because they are smaller, and, if they are in GSS, they are camouflage data.

This leaves values larger than the gth value, (g−1 in total), as possible sensitive

values. di cannot be distinguished from the other g − 1 largest values, because the

adversary does not known whether these values are in the Ri, P i, or U i positions.

MIN aggregation would follow a similar logic and examine the smallest gth values.

For example in Figure 4.4, k is given as 4, because position P j in V i contains the

5th largest value.

Conjecture 3: Any victim node i has the following average k value against a single
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rogue node j:

k = min(Λ,Π), (4.9)

where Λ and Π are from Claims 3 and 4.

Informal Sketch: Since an adversary can choose either or both techniques from

Claims 3 or 4, it follows that k will be equal to the minimum of the two. Future

work will consider if these attacks are exhaustive.

KIPDA provides greater protection from eavesdroppers. To an outside observer

without knowledge of GSS, Ri, and P i for any i, k is equal to |V |. The following

claims and conjectures quantify k in the case when several nodes collude and their

objective is to determine the base station’s GSS and GSS sets. This is accomplished

in two ways. The first is to infer GSS from P j, and the second is to infer GSS from

U j.

Claim 5: The expected number of colluding nodes, E[x], that can determine all

|GSS| elements in GSS from P j, assuming P j is randomly selected from GSS is

given as:

E[x] = |GSS| ·H|GSS| = |GSS| ·
|GSS|∑

i=1

1

i
, (4.10)

where H|GSS| is the harmonic number of |GSS|.

Informal Sketch: This is an instance of the coupon collector’s problem [120]. Each

time a node colludes with another node, it is similar to collecting the coupon, P j,

out of |GSS| coupons with replacement.

Claim 6: The expected number of nodes colluding, E[x], that can determine all

|GSS| elements from U j, assuming no bias when U j is selected from GSS, is given

as:

E[x] =
|GSS|
|U | ·H|GSS| =

|GSS|
|U | ·

|GSS|∑

i=1

1

i
. (4.11)
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Informal Sketch: This is a slight variant of the coupon collectors problem. Instead

of collecting one coupon at each collusion, |U | unique coupons are collected, with

replacement. Equation (4.11) is based on the probability, pm, of choosing the mth

element of GSS, given as:

pm =
|U |(|GSS| −m+ 1)

|GSS| . (4.12)

The optimal size of GSS can be determined using Claims 5 and 6. According to

Claim 5, with a fixed message vector size, |V |, the expected number of colluding nodes

needed to obtain GSS increases when the number of elements in GSS increases.

According to Claim 6, the expected number of colluding nodes required to discover

GSS decreases when the number of elements in GSS increases. Thus, the least

expected number of collusive nodes needed to infer either GSS or GSS is minimized

by taking the intersection of the lines specified by Equations (4.10) and (4.11).

For example in Figure 4.5, |I| is set to 20 and |R| varies between 18 and 14,

where each variation is given an approximate average value of k against a single

rogue node. Several values of |R| are included to illustrate the trade-offs between

the level of k-indistinguishability a victim node has against a single rouge node,

versus the expected number of colluding nodes needed to determine the sensitive

information. Better protection against a single rogue node will have less protection

against several rogue nodes colluding, and vice versa. Network designers can use this

trade-off to choose the optimal value of |R|. Figure 4.5 shows that if |R| = 17, the

optimal value of |GSS| is 6, and it is expected that 15 nodes would need to collude

before GSS or GSS are entirely known.

The optimal size of all sets can now be determined. Since |I| (or |V |) affects

bandwidth and power consumption, it cannot be too large. The optimal size is

decided according to the energy budget of the system balanced against the level of

desired indistinguishability and is discussed in Section 5.1 of this chapter. Once |I|
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Equation (4.10)

Equation (4.11), R = 18 (k ≈ 2.7)

Equation (4.11), R = 17 (k ≈ 3.4)

Equation (4.11), R = 16 (k ≈ 4.0)

Equation (4.11), R = 15 (k ≈ 4.5)

Equation (4.11), R = 14 (k ≈ 4.9)

Figure 4.5: The optimal size of GSS for |I| = 20 is given by the intersection of the
curve of Equation (4.10), with various curves of Equation (4.11). A trade-off exists
between lower values for |R|, which give a higher indistinguishability value against
a single rogue node (given as k in legend), and higher values for |R|, which require
more expected nodes to collude to determine GSS.

is determined, the sizes of sets GSS and Ri must be chosen carefully as discussed

above to achieve good performance against node collusion attacks.

The following gives an argument for the average k value when x nodes collude.

Claim 7: A victim node i has average indistinguishability k, where k=Λ, against x

colluding nodes when U j for all j colluding nodes is used to determine GSS. Λ is

given as:

Λ = (|U | −Ψ′ + 1) , (4.13)

where Ψ′ is the expected number of elements of the largest or smallest (|U |+1) values
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(for MAX or MIN aggregation respectively) in V i that are in positions denoted by

the union of the sets U j for all colluding nodes j. Ψ′ is defined as:

Ψ′ =
|GSSKnown| · (|U |+ 1)

|V | , (4.14)

where |GSSKnown| and |GSSknown| (seen later) are the inverses of Equations (4.10)

and (4.11) from Claims 5 and 6, and are given as:

|GSSknown| =
x− 1

2

W (1
2
eγ(2x− 1))

|GSSknown| =
|U | · x− 1

2

W (1
2
eγ(2 · |U | · x− 1))

, (4.15)

where γ is the Euler-Mascheroni constant, 0.577215, and W is the Lambert W-

Function [37] or product log.

Informal Sketch: Because Um ⊂ GSS for all m, 1≤m≤N , the rogue nodes combine

their U j sets together (by taking the union of the sets) to build GSSKnown. Building

off of Claim 3, the expected value of the shared number of elements between the

largest or smallest |U |+1 elements in V i, for MAX or MIN aggregation respectively,

whose positions are in U j is modified, where an instance of |U | is replaced with

|GSSKnown|.

Claim 8: A victim node i has average indistinguishability k, where k=Π, against x

colluding nodes when Rj, for all j colluding nodes, is used is to determine GSS. Π

is given as:

Π =

|V |−|GSSKnown|∑

g=1

P (g) · (g − 1) (4.16)

where P (g) is the probability that the gth largest values (or smallest values for MIN

aggregation) in V i fall into any positions denoted by GSSknown. It can be actualized

as:

P (g) =
|GSSKnown|

|V | − |GSSknown|
. (4.17)
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Informal Sketch: Given Claim 4, |R| is replaced with |V | − |GSSKnown|. This is

because when rogue nodes collude, the number of available restricted camouflage

values in V i (given the information known to the rogue nodes) is |V | − |GSSKnown|.
The colluding nodes cannot determine if the values in V −GSSKnown are in GSS or

not. As |V | − |GSSKnown| decreases because more elements are found in GSS, more

elements in the union of Rj for all colluding nodes j are determined to be in GSS.

This reduces the possible elements in V i that can be indistinguishable. Eventually,

all elements that are left in Rj, as j increases, will be members of GSS.

Conjecture 4: Any victim node i has the following average indistinguishability

value k when x nodes collude:

k =





1 if |GSSknown| = |GSS| or |GSSKnown| = |GSS|
min(Λ,Π) otherwise.

(4.18)

Informal Sketch: Since an adversary can choose either or both techniques from

Claims 7 or 8, it follows that k will be equal to the minimum of the two. If all

members of sets GSS or GSS are determined, k reduces to one.

With just one rogue node, Equation (4.18) reduces to Equation (4.9). This is

because |GSSknown| would equal |U |, and |V | − |GSSknown| would equal |R|. An

example of Conjecture 4 is illustrated in Figure 4.6. The sizes of GSS and R are

chosen from the optimal values from Figure 4.5. When |R| = 15, |GSS| = 4,

and 3 nodes collude, a victim node has a k-indistinguishability value on average of

approximately 4.

There is one limitation of KIPDA. As explained before, the level of indistinguisha-

bility is based on the number of elements in U , and an adversary could examine the

m largest or smallest values in a message vector. However, over several iterations

of KIPDA (different aggregation epochs), an adversary might watch these positions.

She could eliminate the positions where the m values are not in the positions of the
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|GSS| = 7, |R| = 18
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Figure 4.6: Level of indistinguishability, k, against the number of colluding nodes,
x. |I| = 20 and varies sizes of GSS and R are plotted.

previous iteration’s m values. In this way, the adversary could eventually determine

the location of the sensitive value for any node.

This threat can be addressed by changing the sets GSS, P i, and Ri at every

aggregation epoch, similar to a one time pad. The base station could distribute

the sets P i and Ri to each node, although this might be expensive. I suggest an

alternative solution that uses special random number generators with unique prop-

erties. Unique seeds for these generators would be shared by the specific nodes and

the base station. They could be distributed with standard encryption techniques or

with public/private key encryption such as TinyECC [106], since this would occur

occasionally. The unique properties of the generators would allow nodes to generate

one number from the set GSS and enough numbers from GSS to determine the
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elements for the set U i ∀i, 1≤i≤N . However, a node would not be able to determine

all of GSS, but have enough knowledge to be able to draw the sets it needs: R, and

P . The exact implementation of these special random number generators is left for

future work.

4.4 Protocol

In this section I describe the protocols for KIPDA. I assume aggregation trees are

constructed according to standard data aggregation protocols [109]. There are four

phases to KIPDA: pre-distribution, sensing, aggregating, and base station processing.

4.4.1 Pre-distribution

In the pre-distribution phase, the base station:

1. Determines the sizes of sets, I, GSS, and R, where |GSS| < |R| < |I|. The

optimal sizes of these sets were discussed previously.

2. Chooses unique elements of GSS, where GSS ⊂ I. These elements can be

chosen uniformly at random.

3. Determines P i for each node i, where |P i| = 1, and P i ⊂ GSS.

4. Determines Ri for each node i, by taking all the elements from GSS and

(|R|−|GSS|) elements from GSS. The elements in Ri are unique and can

be chosen uniformly at random.

5. Distributes the sets (1) P i and (2) either Ri or U i to each node i, depending

on which set contains less bits. There are many methods for distributing keys

securely in WSNs, (e.g. Perrig et al. [123] use a Faraday cage to ensure key
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Algorithm 4.1 KIPDA: Pre-distribution Phase for Base Station
1: procedure Pre-distribution

2: Determine |I|, |GSS|, and |R|, where |GSS| < |R| < |I|.
3: Determine elements of GSS such that GSS ⊂ I.

4: Determine for each node i, P i, where |P i| = 1, and P i ⊂ GSS.

5: Determine for each node i, Ri, containing all elements from GSS and

(|R| − |GSS|) random elements from GSS.

6: Distribute sets (1) P i and (2) either Ri or U i dependent on which

contains fewer bits, to all nodes i .

7: end procedure

secrecy, key authenticity, forward secrecy, and demonstrative identification),

which could easily be modified to distribute these sets.

This phase is summarized in Algorithm 4.1.

4.4.2 Sensing

In the sensing phase, each node i determines the values for the set V i where V i =

{vi1, vi2, ..., vin}, and n = |I|. This step applies only to sensor nodes and not to

internal nodes that only aggregate and forward packets. Ri denotes the positions

in V i that behave according to the rules for restricted values, with the exception of

P i (P i ⊂ Ri), which denotes the position in V i that is assigned di. If sensed values

are in the range [dmin, dmax], the restricted camouflage values are drawn from [dmin,

di] for MAX aggregation, and from [di, dmax] for MIN aggregation. The unrestricted

camouflages values are drawn from [dmin, dmax], as described by Equation (4.4).

Different nodes can use different distributions to generate random values for the

restricted or unrestricted camouflages values so it is harder for others to infer the

sensitive value from V i. This phase is shown in Algorithm 4.2.
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Algorithm 4.2 KIPDA: Sensing Phase
1: for each node i do

2: procedure Sensing

3: Determine each viℓ in V i = {v1, v2, ..., vn} according to Equation (4.4).

4: end procedure

5: end for

4.4.3 Aggregation

In the aggregation phase, each node i receives from its children information to be

aggregated (unless it is a leaf node), aggregates the information, and passes the

aggregate to the next hop in the routing protocols either immediately, when queried,

or according to other protocols. If node i is a leaf node, aggregation is skipped,

and V i is transmitted according to the forwarding protocols (e.g. after waiting a

certain amount of time upon receiving the aggregation query). If node i has its

own message vector from sensing, that information is also aggregated along with the

children information. Aggregation is accomplished by computing the MAX or MIN

of vjℓ for each ℓ = {1, 2, ..., n} among all children nodes j. In this way, V i is replaced

with the aggregated information. When finished or after a certain amount of time,

V i is forwarded to the next hop in the aggregation routing tree protocol. This phase

is shown in Algorithm 4.3.

For the MAX (or MIN) aggregation functions, the values in the message vectors

grow larger (or smaller) as they approach the base station, possibly compromising

privacy. One solution is to replace one or more values indexed by U i so that they

appear more uniformly distributed through [dmin, dmax]. Nodes closer to the base

station might want to give the appearance of a distribution shifted to the upper or

lower ends of the maximum or minimum theoretical network value.
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Algorithm 4.3 KIPDA: Aggregation Phase
1: for each node i after receiving an aggregation query do

2: procedure Aggregation

3: if node i has children then

4: Receive from each child j, V j,

5: else

6: Forward V i to the next hop according to forwarding protocols.

7: return

8: end if

9: for each ℓ in vjℓ where j ∈ children of node i do

10: if node i also has sensed information then

11: i ∈ j.

12: end if

13: Determine aggregate (MAX or MIN) of vjℓ , ∀j.
14: Place aggregated information in position ℓ in V i.

15: end for

16: Forward V i to the next hop according to forwarding protocols.

17: end procedure

18: end for

4.4.4 Base Station Processing

The final phase is performed on the base station which receives the last aggregated

message vector, V Ω. If other independent messages arrive at the base station, it first

performs Algorithm 4.3 on these messages to obtain V Ω. The final network aggregate

(the maximum or minimum value sensed in the network) is computed by selecting

the MAX or MIN from the values indexed by GSS in V Ω:

maxi∈GSS(v
Ω
i ) for MAX aggregation,

mini∈GSS(v
Ω
i ) for MIN aggregation. (4.19)
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Algorithm 4.4 KIPDA: Base Station Processing Phase
1: procedure Base Station Processing

2: if more than one message received then

3: Perform Algorithm 4.3 on the messages to obtain V Ω.

4: else

5: Receive V Ω

6: end if

7: Determines the network aggregate:

maxi∈GSS(v
Ω
i ) for MAX aggregation.

mini∈GSS(v
Ω
i ) for MIN aggregation.

8: end procedure

This phase is summarized in Algorithm 4.4.

4.5 Evaluation Analysis

In this section, I compare KIPDA’s energy use and time delay to that of end-to-end

data collection and hop-by-hop encryption aggregation.

4.5.1 Energy Analysis

End-to-End Data Reporting

End-to-end data reporting without aggregation is energy-intensive because every re-

ported value is transmitted to the base station. In the following analysis, values are

assumed to be 16 bits wide. (In cases with block encryption, more data are actually

sent over the radio because block sizes are larger than the size of the plaintext.)

Table 4.2 shows the number of bits transmitted (and the corresponding energy con-
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sumption) per node for each level in an aggregation routing tree with a branching

factor of 5. This scheme is similar to that shown in Figure 2.2, left. The network

level is the number of hops away from the base station. Energy consumption per

transmitted bit is determined using calculations from Meulenaer et al. that assume

a MicaZ node architecture [42].

Nodes closer to the base station consume more bandwidth because more data pass

through them. To balance traffic loads among nodes, either the sink node sometimes

moves around or the nodes themselves migrate [26], both of which are impractical in

many cases. Therefore I assume a fixed network topology.

Average bandwidth consumption in end-to-end data collection with a branching

factor of 5 is O(log N) per node, assuming no aggregation and N nodes in the

network. KIPDA’s average bandwidth consumption is O(|V i|) per node, i.e., the

number of values in a message vector, and is independent of the number of nodes.

For this scenario, energy usage grows more quickly with network size than with

KIPDA. Additionally, because nodes near the sink (base station) have to send more

information, there will be larger delays due to the time to transmit extra bits over

the radio.

Despite the energy cost, end-to-end encryption provides the best privacy protec-

tion. Outsiders and neighboring nodes are prevented from determining the sensitive

values. However, because aggregation is not performed, this scenario costs extra

energy.

Hop-by-Hop Encryption Aggregation

Hop-by-hop aggregation with encryption consumes less power near the sink than the

previous scenario, although, a large amount of power is consumed throughout the

network by the repeated decryption and re-encryption phases, which also introduces
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Table 4.2: Bandwidth energy usage of end-to-end data collection. Collection follows
a tree route with a branching factor of 5. Level is the number of hops away from the
base station.

Number Bits Sent MicaZ Radio Energy

Level of Nodes Per Node Use per Node (µJ)

1 5 312,496 187,496.6

2 25 62,496 37,497.6

3 125 12,496 7,497.6

4 625 2,496 1,497.6

5 3,125 496 297.6

6 15,625 96 57.6

7 78,125 16 9.6

time delay. KIPDA is next compared to three hop-by-hop aggregation schemes that

use IDEA [100], RC5 [132], and RC4 [121] encryption. IDEA (International Data

Encryption Algorithm) is a symmetric encryption technique that uses 64 bit blocks

and a 128 bit key. RC5 uses variable blocks and key sizes, but my analysis considers

only blocks of 64 bits. RC4 is the most widely used stream cipher technique and is

found in such protocols as the Secure Sockets Layer (SSL) on the Internet, and WEP

that secures wireless networks. It operates on segments of 8 bits.

The first step is to determine the energy consumption of the three encryption

ciphers on a generic sensor architecture. I use the results from Ganesan et al. [70]

which generalize the costs of IDEA, RC4, and RC5 to any mote architecture and is

given as:

T imeENC/DEC =
a+ b · ⌈ text length

block size
⌉

processor frequency · bus width , (4.20)

where variables a and b are given as follows:

a = aBASE + aMUL + aRISC

b = bBASE + bMUL + bRISC , (4.21)
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Table 4.3: Parameters aBASE and bBASE taken from Ganesan et al. [70].

Algorithm aBASE bBASE blocksize (bits)

RC5 init/encrypt 352114 40061 64

RC5 init/decrypt 352114 39981 64

IDEA encrypt 67751 80617 64

IDEA decrypt 385562 84066 64

RC4 68540 13591 8

Table 4.4: Parameters aMUL and bMUL taken from Ganesan et al. [70].

Operation aMUL bMUL

w/ MUL instruction 19016 -1143
w/o MUL instruction -14330 8252

Table 4.5: Parameters aRISC and bRISC taken from Ganesan et al. [70].

aRISC bRISC

RISC 3207 1661
CISC 77175 -103593

and where parameters aBASE and bBASE are given in Table 4.3. Parameters aMUL

and bMUL depend on whether a multiplication instruction is native to the architecture

and are given in Table 4.4, and aRISC and bRISC depend on whether a RISC or CISC

architecture is used, and are given in Table 4.5. aBASE, bBASE, aMUL, bMUL, aRISC ,

and bRISC were determined in Ganesan et al. [70] by minimizing the least square

relative error in their experiments.

I then apply these generalizations to two common architectures, MicaZ and

TelosB. The MicaZ architecture has a bus width of 8 bits and a processor that runs

at 7.37 MHz, and the TelosB architecture has a bus width of 16 bits and a processor

that runs at 4 MHz. The cost of their three frequent operations — compute one

clock tick, and transmit and receive one bit — were taken from Meulenaer et al. [42]

and are given in Table 4.6.
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Table 4.6: Energy consumption in microjoules, µJ , and nanojoules, nJ , of common
operations on the MicaZ (7.37 MHz) and TelosB (4 MHz) motes [42].

Operation MicaZ TelosB

Compute for 1 Clock Tick 3.5 nJ 1.2 nJ

Transmit 1 bit 0.60 µJ 0.72 µJ

Receive 1 bit 0.67 µJ 0.81 µJ

Table 4.7: Time in seconds, number of processor clock ticks, and energy in micro-
joules to encrypt (Enc) and decrypt (Dec) data on the MicaZ and TelosB architec-
tures.

Method, Time Clock Energy

Architecture µs Ticks µJ

IDEA Enc, MicaZ 2902.12 21388.63 74.86

IDEA Enc, TelosB 2673.58 10694.31 12.83

IDEA Dec, MicaZ 8350.80 61546.13 215.41

IDEA Dec, TelosB 7693,27 30773.06 36.93

RC5 Enc, MicaZ 7037.25 51864.50 181.53

RC5 Enc, TelosB 6483.06 25932.25 31.12

RC5 Dec, MicaZ 7035.89 51854.50 181.49

RC5 Dec, TelosB 6481.81 25927.25 31.11

RC4, Enc & Dec, MicaZ 2018.00 14872.63 52.05

RC4, Enc & Dec, TelosB 1859.08 7436.31 8.92

With this information, the time in seconds, the number processor clock ticks,

and the energy spent in Joules to perform the encrypt and decrypt primitives can be

estimated for the IDEA, RC5, and RC4 ciphers on the MicaZ and TelosB architec-

tures. The time in microseconds is determined from Equation (4.20). The number of

clock ticks is determined by multiplying the time by clock frequency. Energy usage is

determined from the number of clock ticks according to energy spent per tick, given

in Table 4.6. The compiled results are given in Table 4.7. Since the time to encrypt

and decrypt for RC4 is the same, it is given only once per architecture.

To determine the energy consumption of a node in a hop-by-hop aggregation
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Table 4.8: Energy consumption of hop-by-hop encryption per node for 10 bits of data
for the MicaZ and TelosB architectures, assuming 5 children nodes.

Method, Architecture Energy µJ

IDEA, MicaZ 1404.74

IDEA, TelosB 502.76

RC5, MicaZ 1341.80

RC5, TelosB 491.97

RC4, MicaZ 375.55

RC4, TelosB 129.87

method, I combine the information in Table 4.7 with the energy costs of the aggre-

gation process: receiving packets, decrypting packets, aggregating the information,

encrypting the aggregate, and transmitting the encrypted aggregate. This is formal-

ized in the following equation:

EHBH = c · (Rx(b) +Dec(b) + Agg) + Enc(b) + Tx(b), (4.22)

where c is the branching factor (number of children at each node in the network),

Rx(b) and Tx(b) are the energy costs of receiving and transmitting b bits, Dec(b) and

Enc(b) are the energy costs of decrypting and encrypting b bits, Agg is the energy

required to compute the aggregate, assuming the time to aggregate c values is c clock

ticks, and b is the number of bits in a block or segment size. The energy to transmit

and receive 1 bit is taken from Table 4.6. The energy costs to encrypt and decrypt

are given in Table 4.7. The number of bits, b is determined from Table 4.3. The

results of the energy costs of hop-by-hop aggregation are shown in Table 4.8, which

gives the energy used when the branching factor, c, is set to 5.

The energy consumption of KIPDA consists of receiving data, aggregating it, and

transmitting the aggregate. However, this depends on the number of values in the

message vector, and the number of bits per value. The following equation formalizes
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the energy consumption per node:

EKIPDA = m · (c · (Rx(b′) + Agg) + Tx(b′)) , (4.23)

where m is the number of values in a message vector, and b′ is the number of bits

per value. The following section assumes b′ = 10 and gives the results of KIPDA

and compares it with hop-by-hop aggregation. 10 bits were chosen because it allows

1,024 distinct values, which is enough to express a sensor reading in many WSN

applications.

Discussion of Results and Size of Set I

Figure 4.7 shows that KIPDA can use 34 to 35 values in a message vector before it

consumes the same energy as IDEA and RC5 for the MicaZ architecture. However,

it can send about 8 camouflage values before it uses the same amount of energy

as RC4. Figure 4.8 gives results for the TelosB architecture where RC4 works so

efficiently that the crossover point is about 2 values. For RC5 and IDEA on the

TelosB architecture the crossover point is 9 decoy messages. In the next Chapter,

these results are tested and compared to an energy aware wireless sensor network

simulator, PowerTOSSIM-Z.

The optimal size of I can now be determined. For KIPDA to achieve a net

power savings than using IDEA or RC5 hop-by-hop encryption, |I| for the MicaZ

motes needs to be less than 34. For the TelosB architecture, |I| needs to be less

than 10 for IDEA and RC5. KIPDA does not offer an energy advantage on the

TelosB architecture if RC4 hop-by-hop encryption were used, although, it will protect

information from in-network nodes. Also, as described in the next section, KIPDA

significantly reduces delay in the network. This would be appealing in networks that

require a fast response time, reasonable energy consumption, and privacy protection.

75



Chapter 4. KIPDA: k-Indistinguishable Privacy-preserving Data Aggregation

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

200

400

600

800

1000

1200

1400

1600

Number of Values in the Message Set

E
n
e
rg

y
 i
n
 m

ic
ro

J
o
u
le

s

MicaZ Energy Profile

 

 

KIPDA

IDEA

RC5

RC4

Figure 4.7: Energy profile of the MicaZ sensor architecture for a node performing data
aggregation in a WSN. Values in a message vector are 10 bits, and the aggregation
tree has a branching factor of 5. KIPDA can use 33 decoy values before it uses more
energy than hop-by-hop aggregation with either IDEA or RC5 encryption.

The plaintext size in all cases was 10 bits. Because IDEA and RC5’s block sizes

are both 64 bits, it required an extra 54 bits to transmit a message. RC4, however,

needed only two stream segments, to transmit 16 bits. This could explain why RC4

is more energy efficient, because extra bandwidth was not wasted on larger block

sizes. This is discussed in more detail in Chapter 5.

4.5.2 Delay Analysis

The time it takes for a node to perform hop-by-hop aggregation with encryption is

determined by the following equation:

THBH = c ·DecT (b) + EncT (b) + (c+ 1) · b

BW
, (4.24)
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Figure 4.8: Energy profile of the TelosB sensor architecture for a node performing
data aggregation in a WSN. Values in a message vector are 10 bits, and the aggre-
gation tree has a branching factor of 5. KIPDA can send 9 decoy values before it
uses more energy than hop-by-hop aggregation that uses IDEA or RC5 encryption
sending one value.

where b the number of bits in a block or segment (this equation only assumes one

block is used), DecT and EncT are the times to encrypt and decrypt b bits, and BW

is the bandwidth, which for both architectures is 0.25 bits per microsecond. Since

bandwidth is the same for both architectures, the results are the same. The equation

to determine the time for KIPDA is given as:

TKIPDA = (c+ 1) · m · b
′

BW
. (4.25)

The results are shown in Figure 4.9. KIPDA is compared to the time it takes for

hop-by-hop aggregation using IDEA, RC5, and RC4 encryption. 10 bits per value

are used and the network branching factor is 5. The analysis shows that KIPDA is

time efficient, and can process 47 decoy values before it reaches the same time used
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Figure 4.9: The time delay of KIPDA versus hop-by-hop aggregation that uses the
IDEA, RC5, and RC4 ciphers. MicaZ and TelosB architectures are shown. KIPDA
can send 46 decoy messages before any other encryption technique on either archi-
tecture can perform the aggregation process.

by a node performing hop-by-hop aggregation with RC4 processing one value. For

IDEA and RC5 encryption, KIPDA can process about 160 decoy messages before it

uses the same amount of time these schemes use. If delay is intolerant, privacy is

a concern, and energy consumption needs to be conserved, KIPDA could consume

more energy by transmitting more camouflage values to achieve these three goals.

4.6 Summary of Chapter

Because KIPDA hides sensitive data in plain sight, data aggregation is easily and

efficiently computed, and the in-network processing delay can be reduced compared
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to hop-by-hop encryption methods. I have shown that KIPDA uses less energy than

hop-by-hop encryption even though more camouflage messages are communicated. I

quantified the energy efficiency of the proposed method in terms of the amount of

camouflage data used and studied the trade-offs between the protocol’s effectiveness

and its resilience against collusion and capture attacks. It is possible to conserve

energy and protect privacy by transmitting more information over a node’s radio, if

decoy values are used strategically. The next chapter confirms the energy analysis of

this chapter through simulations and implementations.
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Chapter 5

Simulations and Implementations

This chapter presents simulations and implementations of the algorithms from the

previous two chapters. This includes simulations of MDNSs in MATLAB and KIPDA

in PowerTOSSIM-Z, in addition to implementations of MDNSs on Android OS smart

phones and KIPDA on Moteiv T-mote Invent sensors. Possible applications include

detecting radiation in a city, perturbing continuous data sets for privacy-preserving

data mining, or protecting medical data while monitoring simultaneously several

patients. The simulations and implementations illustrate the effectiveness and feasi-

bility of the two protocols, how they can be adapted to real world applications, and

the trade-offs between energy and privacy. I study how MDNSs can perform given a

limited number of participants, how accurate they are given this limitation, and how

much energy is saved when encryption is eliminated. I also study how advantageous

it is for KIPDA to spend extra energy transmitting decoy messages.
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5.1 MDNS MATLAB Simulations

MATrix LABoratory or, MATLAB, is an environment for numerical computing [111].

As of 2004, it had over one million users in research and industry [74]. Because it is

popular, easy to use, and a supports of a wide range of functionality, it was chosen

to simulate MDNSs. The first MATLAB simulation demonstrates how to detect

possible radiation threats in a city. The second simulation illustrates how MDNSs can

be applied to continuous data, which is compared with a popular privacy-preserving

data mining technique, random data perturbation. Each simulation is enhanced with

DA, showing the trade-offs between utility gained and privacy lost.

5.1.1 Cell Phone Radiation Threat Detection

Participatory sensing could potentially help detect and locate radiation threats in a

city, such as the detonation of a dirty bomb, loss of radioactive medical material,

or spread of radiation from a nuclear reactor accident. In this scenario, I assume

that cell phones are equipped with radiation monitors and GPS devices. Locations

are quantized into different quadrants, each with a unique label. I also assume that

individuals care about the privacy of their locations. With reasonable parameter

assumptions (number of locations, number of discernible radiation levels, and number

of participants), MDNSs can maintain location confidentiality and identify locations

containing radiation threats, if they exist.

Cell phones are ideal for radiation detection, and the United States Department

of Homeland Security has considered their use [68]. If radiation sensors were installed

at fixed locations, they might be tampered with or avoided, which is more difficult

with cell phones because they are owned by many independent individuals. As

an incentive to promote participation, aggregate information could be disseminated

freely to participants. Since readings from an individual cell phone might not be
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as accurate as the combined readings from a larger population, access to aggregate

information would be advantageous. For an event such as the Fukushima Daiichi

nuclear accident, participants might prefer to send the unperturbed data and receive

more accurate readings. Either way, in such a situation, immediate feedback would

be beneficial, especially to determine if radiation has spread further than publicly

acknowledged.

Simulation Setup

Before I explain the simulation setup, I give a small example of a geographic area

divided into a 3 × 3 grid, shown in Figure 5.1. The total population of cell phones

(participants) is 450,000 and is equally divided among the 9 locations. In the actual

simulation, I do not assume a uniform population distribution and instead follow a

more realistic model given by Bertaud et al. [17]. I simulate three radiation levels:

low, medium, and high. Depending on the level of radiation, each location’s distri-

bution of reported levels will be shifted lower or higher. For example, in Figure 5.1,

location 6 contains a threat distribution, illustrated by the black histogram. This

distribution, exponentially shifted towards the higher range, contains 28,571 high ra-

diation readings, half that number (14,286 medium radiation readings) in the medium

radiation level, and 7,143 readings that are low. Benign locations, characterized by

the non-threat distributions, are shown in black in locations 1-5 and 7-9. These dis-

tributions are skewed in the reverse direction: 28,571 participants with low readings,

etc. Figure 5.1 also shows the reconstructed distributions in light grey, which resem-

ble the original distribution closely enough that important decisions could be made

such as where to send response teams.

San Francisco, which has roughly 46.7 square land miles, is used as an example

city. I chose the number of distinct locations to be 48, which works well with DA due

to its high number of composites. A hexagonal grid was used where each location
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Figure 5.1: Histograms for a multi-dimensional negative survey of 9 locations and 3
radiation levels. The y-axis measures the number of participants per level of radi-
ation (the x-axis). Location 6 is suspicious since its radiation levels form a threat
distribution. The other locations have non-threat distributions.

covers roughly one square land mile. This size would allow a response team with

more powerful equipment (such as helicopters equipped with radiation detectors) to

pinpoint the exact location of a threat.

San Francisco has a population of about 815,000, therefore, I varied the number

of participants from 100,000 to 500,000 in increments of 100,000 to study the effect

of the number of participants on utility. 500,000 is a good conservative maximum

estimate of the general population willing to participate [39]. As mentioned earlier,

the spatial distribution of participants is assumed to follow a standard urban model

taken from Bertaud et al. [17] where the population is concentrated at the central

business district and is gradually reduced further from this center.
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Radiation levels were divided into 3 categories, course graining continuous values

into one of the categories. While experiments show that more categories would

increase the granularity of the data, accuracy improves with fewer radiation levels

(Chapter 3, Section 5.3). However, if there were only 2 radiation levels, privacy

would be lost and adversaries could determine a participant’s location, if a threat

existed at a single location and the participant is at that location.

Each participant’s cell phone samples the environment for the radiation level

and notes its location. It then perturbs this information according to Chapter 3,

Section 2.1 and sends the perturbed values to the base station. After the base station

collects the perturbed data (one sample from each cell phone), it reconstructs the

original distribution according to the protocols from Chapter 3, Section 2.2.

The base station determines if a threat exists by computing the linear regression

at each location from its reconstructed histogram of radiation levels, assuming that

histogram bins are one unit apart. Figure 5.2 illustrates this technique. Ideally, a

location reporting elevated radiation levels will have a positive slope from the linear

regression, and a location with a typical distribution will have a negative slope. Yet,

this is not always the case. I chose the actual slope thresholds to minimize the

overall number of type I and type II errors. Thresholds could be adjusted to favor

one error type over another. For example, one strategy might send response teams

to investigate false positives, rather than allowing a false negative to slip through.

I chose the thresholds a posteriori, but in a real deployment these values would be

chosen a priori, with additional domain knowledge.

I ran the simulation 1000 times for each increment of participants, assigning the

threat distribution to a random location in 500 of the runs. In the other 500 runs I

assigned a non-threat distribution to all locations.
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Figure 5.2: Example of the technique used to determine radiation threats with the
slope of linear regression with a histogram.

Results and Analysis

Table 5.1 summarizes the results, showing the number of false positives and false

negatives, and accuracy. Accuracy is the percentage of true positives that correctly

determined the threat location. The average privacy and utility values (defined in

Chapter 3, Section 3) are also given. Figure 5.3 displays the same results graphically.

Because accuracy was low for a single dimension, shown in the first four rows of

Table 5.1, I next applied DA from Chapter 3, Section 5.1. The other rows in Table 5.1

show results for various DA settings. The location dimension of 48 categories was

factored into 2 dimensions of 6 and 8 categories; 3 dimensions of 4, 4, and 3 categories;

and 4 dimensions of 2, 2, 4, and 3 categories. With 4 dimensions, I obtain 100%

accuracy with 200,000 or more participants.

In summary, radiation monitoring with cell phones would be practical for an ex-

ample city such as San Francisco, with 46 square land miles and a population around

900,000, even if only 200,000 people participated. Using the reconstruction Algo-

rithm 3.3, I conclude that MDNSs with DA can accurately determine if a radiation
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Table 5.1: Results of the cell phone radiation detection simulation. Each test con-
sisted of 1,000 runs, 500 runs contained a radiation threat in a random location, and
another 500 runs contained no threat.

False False Acc. of True Avg. Avg.

Samples Neg. Pos. Pos. % (Ratio) Privacy Utility

1 locational dimension with 48 categories

100,000 246 246 5.5 (14/254) 0.0282 4.54E-04

200,000 244 245 7.8 (20/256) 0.0252 2.27E-04

300,000 244 244 18.0 (26/256) 0.0241 1.51E-04

400,000 241 242 18.9 (49/259) 0.0234 1.13E-04

500,000 238 239 19.9 (52/262) 0.0230 9.08E-05

2 locational dimensions with 8x6 categories

100,000 246 248 11.8 (30/254) 0.0350 1.90E-04

200,000 250 251 21.2 (53/250) 0.0319 9.48E-05

300,000 222 222 31.3 (87/278) 0.0307 6.32E-05

400,000 199 199 39.2 (119/301) 0.0300 4.74E-05

500,000 194 194 44.4 (136/306) 0.0296 3.79E-05

3 locational dimensions with 4x4x3 categories

100,000 203 205 56.6 (168/297) 0.0586 3.09E-05

200,000 139 139 81.7 (295/361) 0.0554 1.54E-05

300,000 87 87 92.5 (382/413) 0.0542 1.03E-05

400,000 58 58 94.3 (417/442) 0.0535 7.71E-06

500,000 37 37 98.3 (455/463) 0.0531 6.17E-06

4 locational dimensions with 2x2x4x3 categories

100,000 17 17 99.4 (480/483) 0.1444 4.41E-06

200,000 0 0 100 (500/500) 0.1411 2.20E-06

300,000 0 0 100 (500/500) 0.1398 1.47E-06

400,000 0 0 100 (500/500) 0.1392 1.10E-06

500,000 0 0 100 (500/500) 0.1387 8.81E-07

threat exists and where.

86



Chapter 5. Simulations and Implementations

Figure 5.3: Results from Table 5.1 displayed graphically. (Top left) Location is
treated as a single dimension of 48 categories. (Rest) Locations are dimensionally
adjusted to 2, 3 and 4 dimensions, with the number of categories given for each
dimension.

5.1.2 Reconstructing Continuous Values 1

In addition to categorical data such as locations and radiation levels, MDNSs could

be applied to continuous data such as temperature or humidity. I reconstruct the

probability density functions of different underlying distributions and compare the

parameters of these distributions to the original parameters. This application is

potentially relevant in privacy-preserving data mining as an alternative to random

data perturbation [9].

1The idea for this application was suggested by Benjamin Edwards.
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Algorithm 5.1 MDNSs on Continuous Data
⊲ “-” denotes set difference.

⊲ || denotes concatenation.
⊲ Leading zeros can be applied to sensed value SV if needed.

1: for each numeral ni in sensed value SV , where SV = n1||n2|| . . . ||nx do

2: mi ← Select from {0, 1, . . . , 9} − {ni} with uniform probability.

3: end for

4: return m1||m2|| . . . ||mx

Simulation Setup

Any fixed point number can be represented as a collection of categories by labeling

each digit’s position (1’s, 10’s, 100’s,. . . ) with a value ranging from zero to nine.

Thus, a fixed point number with n digits can be treated as an n dimensional negative

survey, with each dimension having ten potential categories; it is then straightforward

to apply the protocols presented previously, as illustrated in Algorithm 5.1.

Samples were generated from the following two probability distributions, normal

and exponential, and rounded so that they contained only 2 and 3 significant digits:

N (µ, σ) =
1√
2πσ2

e−
(x−µ)2

σ , E(µ) = 1

µ
e−

x
µ . (5.1)

Any distribution could be used. These two were chosen because of their ease to

determine their parameters from a collection of samples. Tests used N (500, 100)

and E(100), and the tails of the distribution were truncated at 0 and 1000. The

number of samples for the two distributions was varied from 1,000 to 9 billion in

exponential increments.

The base station reconstructed the frequency of each number of the D most

significant digits (the probability density function) of the underlying data according
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Figure 5.4: Parameter reconstruction error from the continuous negative survey sim-
ulation measured as a percentage difference from the original parameter. Each data
point is an average of 20 runs.

to the protocols in Chapter 3, Section 2.2. Distribution parameters were determined

for the reconstructed data set, A, using a maximum likelihood estimate. They were

then compared to the original parameters used to construct the data set X.

Results and Analysis

The percentage error was calculated from the difference between the estimated and

original parameters, divided by the original parameter. Each data point is an average

of 20 runs. Figure 5.4 shows these results. It suggests that the maximum achievable

accuracy depends on the parameter and its value, the distribution, and the number

of dimensions. All parameters are within 5% of the original parameter values after

200,000 sensed values.
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Comparison of MDNSs on Continuous Data to Random Data Perturba-

tion

Random data perturbation (RDP) algorithms proposed by Agrawal, et al. [9] and later

Zhang et al. [155] perturb continuous data by adding noise drawn from a known dis-

tribution. RDP adds a randomized value, ri, drawn from the known distribution

over a finite range, to a datum, xi. The perturbed data is then reconstructed to

an approximation of the original data using an iterative algorithm based on Bayes

Theorem. Reconstruction uses an expectation maximization (EM) algorithm [43]

that provably converges to the maximum likelihood estimate of the original distri-

bution [7]. RDP techniques assume that the data and the noise are drawn from a

continuous domain.

My preliminary research [85] in collaboration with James Horey compared the

original negative survey method to a modified categorical RDP technique. How-

ever, the accuracy of the comparison was compromised by the modification. Here, I

compare MDNSs on continuous data to the original RDP technique.

The original RDP algorithm proposed by Agrawal and Srikant [9] was imple-

mented with a triangle, plateau, and step distribution. These distributions test the

ability of RDP and MDNSs to reconstruct discontinuous functions. A moving aver-

age of size 7 was used on the reconstructed distributions from the negative surveys

to help smooth the data. However, with enough participants this is not necessary.

MDNSs and RDP each have strengths and weaknesses. MDNSs require a large

number of samples to reconstruct the probability density function (PDF) accurately.

For example, in Figure 5.5, with 108 samples the root mean square error (RMSE)

of RDP for the triangle distribution is 419,732.8, while with MDNS it is 227,941.2,

a 45.7% improvement. For the plateau distribution with the same number of par-

ticipants, the RDP has a RMSE of 63,521.3, while MDNS has 24,153.6, a 62.0%
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Figure 5.5: Comparison of RDP to MDNS. The PDFs of RDP (red) and MDNS
(green) are compared to the original PDF (blue).

improvement. However, with 105 samples, MDNSs could not reconstruct the PDFs

well enough to distinguish between the two distributions. MDNSs handle discon-

tinuous PDFs and PDFs whose derivatives are discontinuous better than RDP as

illustrate in Figure 5.6. In addition, the stopping criteria for RDP is problematic [9],

and the running time is considerably larger than MDNSs.

In summary, I have shown that when approximately 22% of San Francisco’s pop-

ulation participates in a MDNS radiation detection scenario, radiation threats can be

determined accurately inside the city to within a square mile. This is accomplished

while maintaining individual location privacy and the conservation of energy in the
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Figure 5.6: Comparison of MDNSs to RDP. MDNSs outperform RDP on discontin-
uous PDFs (two left panels), and PDFs whose derivatives are discontinuous (right
panel).

participant’s cell phone because of the elimination of encryption, key management,

and key distribution. MDNSs on continuous data provide better reconstruction of

perturbed data sets if the number of samples are large enough. They can also recon-

struct PDFs with discontinuities and PDFs with derivatives that have discontinuities

more accurately than RDP.

5.2 KIPDA PowerTOSSIM-Z Simulations

In this section, KIPDA is simulated on TOSSIM [103] with the aid of AVRORA [142]

and PowerTOSSIM- Z [122]. Attention is given to the amount of energy consumed,

comparing KIPDA to hop-by-hop encryption aggregation using various encryption

ciphers.

TOSSIM, or TinyOS Simulator, is a discrete event simulator of sensor networks

running the TinyOS operating system which can scale easily to thousands of simu-

lated mote nodes. Developers can test, debug, and analyze their algorithms directly

from code written for TinyOS in a controlled and repeatable manner. TOSSIM (ver-
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sion 2.1.1) was chosen for this simulation because it is readily available, widely used,

and can easily be configured for different topologies and noise models.

PowerTOSSIM-Z measures the amount of energy consumed by each node in the

TOSSIM simulator. It outputs debugging information which is parsed to obtain

the energy consumption per component per node in the network. These debugging

statements are generated each time a component changes power states.

KIPDA and hop-by-hop encryption aggregation were simulated in TOSSIM on

the MicaZ architecture, the only architecture in TinyOS 2.X that TOSSIM supports.

MicaZ is the architecture of a prototypical sensor mote, used by hundreds of research

groups. It contains an ATM128 micro-controller that runs at 7.37 MHz, at least

128KB of AT45DB flash memory, and a CC2240 radio chip that can run at a max

throughput of 250 Kbps, but realistic throughput can be half this amount [47].

5.2.1 Simulation Setup: Design Decisions

In this section, I describe seven steps the design decisions used to create the TOSSIM

simulations.

1. The first step implemented a base station querying (or disseminating) data

to each node. I used the TinyOS Enhancement Proposal (TEP) 118 for the

dissemination scheme because (1) it is already implemented and (2) many of

the design decisions are decided by these protocols. Since each test uses the

same underlying protocols (TEPs) to disseminate information, the conditions

for each simulation are the same.

2. In the second step, each node sends a response to the base station’s query

without aggregation. I used the TEP 119 collection scheme, which is based on

the Collection Tree Protocol (CTP) (TEP 123). CTP does not promise 100%
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reliability. “It is a best effort, but a best effort that tries very hard.” [118].

Duplicate packets were detected and dropped in the simulations. Creating a

technique to detect and retransmit dropped packets would involve higher energy

costs due to the extra network protocols, and would make direct algorithmic

comparisons difficult.

3. The third step aggregates the responses from the second step according to a

scheme similar to Tiny AGgregation (TAG) [110]. Timing is critical in ag-

gregation. A node cannot send its aggregate too early or it will miss some

incoming information. If it waits too long, its parent may have already sent its

aggregate. Hence, each node must wait a specific amount of time. I base this

time on the number of hops a node is from the root node. This information is

recorded with 16 bits in the dissemination’s protocol beacon. Each node then

waits according to the following equation:

x · (Max Hop Level - Current Level) (5.2)

where the unit is in seconds and x varies between 1 and 2. These values for x

give each node plenty of time to collect its children’s information.

The sum aggregate was used to test this step. Each node reported the value 1,

hence, the network aggregate would reflect the number of nodes in the network.

The correct aggregate was reported 98% of the time. Since radio noise levels are

consistent between all runs, and the same number of bytes are communicated

between KIPDA and hop-by-hop encryption, dropped packets should not affect

the simulations’ output.

Programming the aggregation was simplified by using CTP, which contains a

special function to intercept data en route to the base station. This intercept

function determines whether a message is forwarded or not (by returning true

or false respectively). Aggregation packets always return false (as opposed
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to packets which report voltage use for each node). The information from

an aggregate message is stored in the node where it is aggregated with other

received information until a timer determines to send the combined aggregate

to the next hop.

4. The fourth step implemented PowerTOSSIM-Z to determine the amount of

energy used in the third step. This was relativity straightforward with one

exception: how the radio draws power. The scripts for PowerTOSSIM-Z assume

the radio is always in receive mode, unless it is transmitting. One way to stop

the radio is through a system call to the operating system. However, when the

radio is off, it cannot receive any information, including beacon information

from the lower network protocols. Low power listening (LPL) [94] suggests

a solution by having the radio sleep in a very low power state, waking after

a random amount of time to listen for a packet. If the radio does not hear

anything, it goes back to sleep. However, LPL is not implemented in TOSSIM

or PowerTOSSIM-Z. Therefore, I made two assumptions about radio usage:

• Since TOSSIM cannot distinguish between the lower transmit power lev-

els, I assumed all radio transmissions occur at the highest power level.

• I assume a perfect LPL mode where power is drawn only when the radio

is broadcasting or receiving. This is an unrealistic ideal mode because

it assumes that the radio magically wakes up exactly when it needs to

receive a message.

5. The fifth step implemented hop-by-hop encryption in the network. The follow-

ing encryption ciphers were used: AES [114], RC5 [132], Trivium [41], Skip-

Jack [117], and TinyECC [106]. AES is a block cipher technique that operates

on blocks of 128 bits. RC5 uses variable key and block sizes, but for this re-

search, the blocks are 64 bits. SkipJack is a also block cipher with 64 bit blocks.

Trivium is a stream cipher that works on segments of 16 bits, and TinyECC
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Optimized Size of block Size (bytes)
Method Assembly? Type or stream (bits) ROM/RAM
AES No blocking 128 5,156/2,384
RC5 No blocking 64 2424/60
RC5 Yes blocking 64 3434/60
Trivium No steaming 32* 8366/108
SkipJack No blocking 64 4458/316
TinyECC No asymmetric 648 24,232/2,019
TinyECC Yes asymmetric 648 24,952/1,990

Table 5.2: Various forms of encryption ciphers and their properties. *Trivium is a
streaming encryption technique and operates on segments of 16 bits, but needed an
extra 16 bits to determine its order in the stream.

is an asymmetric encryption scheme designed for resource-constrained devices

which uses 648 bits for its ciphertext. Table 5.2 gives the encryption technique

and their stream or block sizes. Optimized assembly code instructions existed

for RC5 and TinyECC on the MicaZ architecture and were included in the

analysis.

There were two complications involved with this step:

• Trivium was treated as a special case because it is a streaming encryption

technique. Stream segments are 16 bits. However, I discovered from the

simulations that Trivium needs to transmit an extra 16 bits to denote

the ciphertexts’ positions in the encryption stream. Ciphertexts must be

encrypted and decrypted in the same order because these primitives keep a

running state. WSNs are known to drop or send duplicate packets. Hence,

a mote that receives a ciphertext without its predecessors can decrypt null

information as many times as needed before the ciphertext is decrypted.

Precautions were added to the simulations to handle out of order Trivium

segments.

• Second, PowerTOSSIM-Z did not initially measure the time spent en-
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Encrypt Primitive Decrypt Primitive
Method CPU Cycles / ms / µJ CPU Cycles / ms / µJ
AES 7,816 / 1.061 / 24.07 11,288 / 1.532 / 34.76
RC5 1,534 / 0.2081 / 4.72 2,215 / 0.2883 / 6.543
Trivium 3,353 / 0.4550 / 10.32 2,672 / 0.3626 / 8.22
SkipJack 2,533 / 0.3437 / 7.78 2,935 / 0.3982 / 9.03
TinyECC 25,600,393 / 3,470.0 / 78,821.0 19,538,454 / 2,650.0 / 60,157.0

Table 5.3: Encryption/Decryption cost in CPU cycles, microseconds, and microjoules
reported from the AVRORA simulator for 5 encryption ciphers. Costs are given
for encrypting and decryption one block or stream segment whose size is given in
Table 5.2

crypting on a mote’s microcontroller. This complicated careful measure-

ment of energy usage. I addressed this problem by using an AVR micro-

controller simulator, AVRORA [142], which fully emulates the microcon-

troller produced by Atmel that runs on the Mica2 and MicaZ architectures.

AVRORA recorded the time it took to run each encrypt/decrypt primitive

1,000 times for the AES, SkipJack, RC5, Trivium, and TinyECC ciphers.

The average was then taken for each primitive. The results are shown in

Table 5.3 and were incorporated into PowerTOSSIM-Z.

6. The sixth step implemented KIPDA. This was straightforward, given the ex-

perience from the previous five steps. Emphasis was given to energy use and

the size of the message vector, rather than implementing all possible security

enhancements.

7. The final step involved comparing hop-by-hop encryption to KIPDA. I used

the three different network topologies given in Figure 5.7. For each topology,

each encryption cipher was compared to KIPDA that used the corresponding

number of bytes sent over the radio, e.g., AES’s block size is 128 bits, hence

it was compared to KIPDA that sent 16 bytes of data over the radio. Each
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Base station Base station Base station

Figure 5.7: Example of three different topologies: chain, grid, and tree, used to
test KIPDA against hop-by-hop encryption. Squares represent the base stations and
circles represent the nodes. 49 nodes were used in all simulations.

test ran 40 times for 10,000 virtual seconds. When x=2 in Equation (5.2),

the maximum number of hops from the base station is set at 13, and the base

station waits an additional 4 seconds, an aggregation epoch took place every

30 virtual seconds. This gave a total of approximately 333 aggregations per

simulation. Because this is a small number, small differences in Figures 5.8, 5.9,

and 5.10 will be magnified over the complete lifetime of an actual network.

5.2.2 Simulation Results

Figures 5.8 reports the total energy used in the network for chain, grid and tree

topologies for each encryption cipher in hop-by-hop aggregation, and is compared to

KIPDA configured to send the same amount of information over the radio. TinyECC

is not represented because it uses a significant amount of energy. From Figure 5.8 it is

evident that KIPDA conserves energy. In addition, it protects sensitive information

from in-network nodes, which hop-by-hop encryption does not. Figure 5.9 gives the

average energy used per node. While network-wide energy use has little variance,

each node’s energy use varies significantly depending on its location. There has been
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much research into the maximum lifetime routing problem in WSN [30], yet, this is

beyond the scope of this dissertation.

The results show that KIPDA conserves energy when broadcasting the same

amount of information over the radio compared to hop-by-hop encryption. I next

determine how many messages KIPDA can send before exceeding the energy used by

hop-by-hop aggregation for various encryption ciphers. A threshold ratio was defined

to compare energy use between the two schemes. The denominator represents hop-

by-hop encryption, while the numerator represents KIPDA. Values higher than one

indicate that KIPDA uses more energy, while values lower than one indicate that

KIPDA saves energy. The threshold ratio is given as follows:

Energy[Tx(l bits) +Rx(l bits)]

Energy[Tx(m bits) +Rx(m bits) + Enc(m bits) +Dec(m bits)]
(5.3)

where Tx is transmit, Rx is receive, Enc is encrypt, Dec is decrypt, and Energy

is the energy used to perform these tasks. This ratio predicts and quantifies how

many decoy messages it takes to either conserve or waste energy in the network

compared to hop-by-hop encryption. Figure 5.10 illustrates when Equation (5.3)

is set to one, the same amount of energy is used between KIPDA and hop-by-hop

encryption aggregation.

The following justifies the threshold ratio. Given a network with N nodes, there

will be N aggregation messages sent by each node. Each message sent must also be

received by another node. The size of the message vector for KIPDA is l bits, while

for hop-by-hop encryption it is m bits. In hop-by-hop encryption, each packet must

also be encrypted and decrypted. This ratio measures the total network use, and as

a caveat, cannot predict any single node’s energy use.

The following can be observed from the simulation results:

• The threshold ratio predicts for most forms of encryption the number of bytes
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Figure 5.8: Total energy consumption for a WSN of 49 nodes using KIPDA
MAX/MIN aggregation and hop-by-hop aggregation using AES, SkipJack, RC5 and
Trivium encryption for three topologies from Figure 5.7. 333 Aggregations were
performed. The number after KIPDA indicates the number of bytes for a message
vector.

that KIPDA can use and still consume an equivalent amount of energy to that

of hop-by-hop encryption. However, KIPDA with 33 messages appears to use
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Figure 5.9: Average energy used per node in a WSN using KIPDA MAX/MIN
aggregation and hop-by-hop aggregation using AES, SkipJack, RC5, and Trivium
encryption for three topologies from Figure 5.7. 333 Aggregations were performed.
The number after KIPDA indicates the number of bytes for a message vector.

more energy than hop-by-hop AES encryption. This could be attributed to

packet loss from transmitting 33 bytes of data. Because of the larger packet
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Figure 5.10: Comparisons of total network energy used between hop-by-hop en-
cryption aggregation and KIPDA MAX/MIN aggregation where the threshold ratio
equals one. The number after KIPDA indicates the number of bytes for a message
vector.

size, there is a higher probability that at least one packet would be dropped

due to noise in the environment. Retransmitting these dropped packets could

account for the extra energy use.

• The standard deviation is low for the total encryption energy used in the net-

work. The nodes themselves vary in their energy use, which is due to their

individual location in the network, e.g. closer or further to the base station.

• The results show that, as expected, a considerable amount of energy is spent on

the radio. This is due to the underlying dissemination and collection protocols

which often transmit beacon packets to discover the best routes.

• Sometimes it takes half as much energy to encrypt and decrypt a message as it

does to send and receive the message. For example, on the MicaZ architecture it

takes 24.07 microjoules to encrypt and 34.76 microjoules to decrypt using AES,

and 53.45 and 60.31 microjoules to send and receive the messages respectively,

assuming the average bandwidth of the MicaZ architecture is one half of the

maximum bandwidth.

• It is clear where KIPDA gets its energy advantage. AES uses 17,000 and 2,046
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microjoules in the radio and encryption respectively. KIPDA takes advantage

of the eliminated 2,046 microjoules to communicate up to 33 bytes of data.

• Because of the timing inefficiency of the underlying dissemination and collection

protocols, KIPDA could not capture timing information. Future work can focus

on delay intolerant networks where timing is critical, such as the work by Quan

et al. [129].

I have shown that the elimination of encryption in KIPDA allows extra en-

ergy to be spent in the radio, allowing a modest amount of camouflage data to

be transmitted. This modest amount of data conserves overall energy use with k-

indistinguishable privacy.

5.3 Implementations on Physical Devices

The goal of this section is to measure the energy savings of the MDNSs and KIPDA

protocols on actual physical devices. MDNSs were implemented on Android smart

phones and two experiments were performed. The first experiment determined how

many more messages can be transmitted compared to messages that are encrypted

with the Secure Sockets Layer protocol. The second experiment illustrated the func-

tionality and feasibility of MDNSs. It tested whether smart phones following the

MDNS protocol that sample their microphone can determine noisy locations on a

university campus.

KIPDA was implemented on Moteiv T-mote Invent sensors. Three experiments

were performed to determine that KIPDA, transmitting 18 bytes per message vector,

uses less energy than hop-by-hop aggregation with the AES cipher transmitting 16

bytes per message. First, I measured the time it took to drain the battery for each

method. Second, I measured the voltage level of each sensor after 10 aggregations.
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Third, I measured the time for the AES encrypt and decrypt primitives. Collecting

energy information from the Moteiv T-mote Invent sensors is challenging. While

voltage information could be obtained, current level could not be determined due to

the limitations of the devices. The state of the art solution would require electrical

engineering expertise. While none of these three methods are perfect, they do not

disprove that KIPDA can conserve energy when it transmits extra information over

the radio.

5.3.1 MDNSs on Android Smart Phones

Implementation Setup

The MDNS node protocol was implemented on Android OS smart phones. Two

experiments were performed:

• The first experiment tested the energy cost of communicating data with and

without the Secure Sockets Layer (SSL) encryption. SSL was chosen because it

is popular and easily implemented on smart phones. In the first test, messages

were sent using SSL until the battery was drained to half its fully charged

level. The phone was then recharged and the experiment repeated without

SSL. To maintain uniform experimental conditions, the phone stayed at the

same location, all other non-essential applications were regularly closed every

15 minutes, and experiments were performed in the middle of the night to

prevent unwanted calls or text messages.

• The second experiment posed the task of identifying the noisiest locations on

the University of New Mexico’s campus. Three smart phones were programmed

to collect sound samples, approximately 7,300 in total. The three participants

carried their phones throughout the campus, spending about the same amount
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of time in each different location. Latitude and longitude were divided into

4 and 6 categories respectively for a total of 24 different locations. Because

of the limited number of samples, longitude was dimensionally adjusted to

two dimensions of 2 and 3 categories. Sound was sampled from the phone’s

microphone and quantized into three different volume levels. Volume levels

were calibrated to 3 different categories corresponding to a room with normal

conversations, outside in a quiet environment, and outside next to rush hour

traffic. Since the campus is surrounded on 4 sides by busy streets, I expected

the highest noise from the perimeter locations. The phones sampled volume

and location, perturbed the information, and sent it back to a base station

implemented in Java.

For both experiments, location was obtained from GPS satellites. Although this

consumes more energy than other methods such as multilateration of radio signals

between cellular towers, I required precise location information because the experi-

ments were performed in a small geographic area.

Implementation Results

For the first experiment, the base station was able to receive 8,612, or 16.22% more

messages without encryption, than the 7,401 messages that used SSL. It took 159.2

minutes to send the messages with SSL, and 143.6 minutes to send the messages with

no encryption. This implies that approximately 4.836 more milliseconds was spent

per message using SSL, which involves exchanging symmetric keys with asymmet-

ric encryption, encrypting the data with the RC4 stream cipher, and calculating a

message authentication code (MAC). While this experiment is not a formal detailed

verification of energy use, it does illustrate how encryption consumes extra energy.

The results of the second experiment are shown in Figure 5.11. 7,433 samples were
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Figure 5.11: Experimental results of MDNSs accuracy when implemented on smart
phones. Sound levels were sampled from the phone’s microphone. Left panel: the
original distribution of sound levels sampled from the environment, X. Right panel:
the MDNS reconstructed distribution, A. Bright red squares are louder locations
while bright green are quieter. Black represents the mean. Yellow denotes roads. One
can conclude from the reconstructed distribution that the noisier locations correspond
to those that contain the roads.

collected from 3 smart phones. From the figure it is clear that the louder locations are

the perimeter locations, which appear as brighter red. The quieter locations inside

the campus appear brighter green. Black represents the mean sound level. Color in

the figure was determined from the slope of a linear regression with the reconstructed

histogram of volume levels at each location, assuming histogram bins are one unit

apart. Ideally, positive slopes indicates noisy environments. Samples were taken

from the campus during rush hour between 4pm and 6pm. With approximately 7,300

samples, MDNSs were able to reconstruct the profile of sound in the environment.

5.3.2 KIPDA on Moteiv T-mote Invent Sensors

KIPDA was implemented on Moteiv T-mote Invent sensors. These motes use the

TelosB architecture, have a bandwidth of 250 Kbps, and a CPU frequency up to
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8MHz.

Implementation Setup

Three experiments were performed. The first experiment measured the times it took

for the encrypt and decrypt primitives of the AES cipher. These times should reflect

with results in the literature. The second experiment measured the times it took for

each node to deplete its battery. Nodes using KIPDA should stay alive longer. The

third experiment was similar to the second, except voltage information was taken

from each node after 10 aggregations. With consistent current between all nodes and

techniques, hop-by-hop aggregation with the AES cipher should draw more voltage.

For all three experiments one sensor (mote 0) was connected to the base station,

a PC, which gave the device a constant supply of power. This mote communicated

with the PC through a virtual serial port over USB. The same code base used in the

TOSSIM simulations was used in the experiments with minor modifications, such

as communicating with the PC. 10 sensors were used in total, and their topology is

given in Figure 5.12.

Experiment One: This experiment measured the times to encrypt and decrypt for

AES, RC5, SkipJack, Trivium, and TinyECC on a single mote. The cipher primitives

(encrypt and decrypt) were performed 1000 times and averaged. Because timers on

the mote did not provide adequate precision, the standard deviation is not reported,

i.e., each individual measurement was below the minimum value of the timer.

Experiment Two: For the second experiment, I arranged the sensors in a tree

topology inside a building with no partitions. With 9 sensors at full charge, I ran

hop-by-hop multiplicative aggregation with AES encryption until each node’s energy
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Figure 5.12: Topology used for the KIPDA implementations.

supply was insufficient to communicate. Since each node reported a unique prime

number and multiplication aggregation was used, I could determine when nodes

stopped communicating through prime factorization of the network-wide aggregate at

the base station. The sensors were then recharged and the experiment was repeated

with KIPDA sending 2 more bytes per message than AES. To determine when a

node using KIPDA stopped communicating, each node after 10 aggregations sent

its ID plus 100 to the base station. Nodes staggered their reporting between 10

aggregations, giving each a chance to tell the base station it was still alive. With

MAX aggregation, and by the way the other nodes chose their sensitive data, a

node’s ID plus 100 was guaranteed to be the reported network-wide aggregate. If a

node was down, the network-wide aggregate would be less than 100. Energy used

by the two different aggregation functions (multiplicative aggregation for hop-by-hop

encryption and MAX aggregation for KIPDA) is small enough that when compared

to radio and encryption energy use it does not affect the experiment’s outcome. For

both tests, the maximum hop depth was set to 6, and an aggregation took place

every 8 seconds.
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Encryption Type Time to encrypt (ms) Time to decrypt (ms)
AES 1.847 2.162
RC5 1.314 1.273

SkipJack 0.466 0.453
Trivium 0.667 0.653
TinyECC 4,057.0 5,085.0

Table 5.4: Average time in microseconds to encrypt and decrypt a block or stream
segment (size of which is given in Table 5.2) on a T-mote Invent sensor.

Experiment Three: This resembled Experiment 2, except that voltage informa-

tion was recorded from every node every 10 aggregations.

Implementation Results

Experiment One: The results of Experiment 1 are shown in Table 5.4.

Experiment Two: The results are shown in Table 5.5 and differ on average by

1.1%, with the exception of nodes 2 and 3 which crashed during the KIPDA run.

This small amount of difference between the two protocols was unexpected. It is pos-

sibly due to the variability of the underlying dissemination and collection protocols,

temperature in the room, electronic noise in the environment, etc. To obtain better

results, future work could re-design the underlying protocols, or have the sensors

forward aggregates repeatedly after a certain amount of time, eliminating the need

for the underlying dissemination and collection protocols.

Experiment Three: Assuming voltage drops are a proxy for the energy use in a

battery, Figure 5.13 illustrates the voltage of mote number one, using both KIPDA

and hop-by-hop aggregation with AES encryption. From the figure it is clear that

encryption draws more voltage. Other motes show similar behavior.
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AES Encryption KIPDA 18
Number of Time to failure Number of Time to failure

Node Aggregations (minutes) Aggregations (minutes)
1 17,872 2,327 17,937 2,336
2 18,335 2,388 16,338 2,128
3 18,153 2,364 13,639 1,776
4 18,864 2,457 18,850 2,455
5 18,371 2,392 18,351 2,390
6 17,738 2,310 17,532 2,283
7 17,080 2,224 17,903 2,332
8 18,166 2,366 18,194 2,370
9 17,541 2,284 17,945 2,337

Table 5.5: Comparison between AES hop-by-hop encryption and KIPDA with a
message vector of 18 bytes. Motes running KIPDA should have a longer lifetime,
even though 2 more bytes per packet are transmitted.

Figure 5.13: Comparison of voltage used between KIPDA with a message vector of
18 bytes, and hop-by-hop aggregation with the AES cipher that used 16 byte blocks.
Comparisons took place on Moteiv T-mote Invent (TelosB architecture) sensors.

It should be noted that these 3 experiments do not use state-of-the-art techniques

to measure energy usage in a device. For example, voltage alone does not give a
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sufficiently accurate estimate. A better technique would be to solder a resistor in

parallel to the battery and use a multimeter to determine current. With voltage,

current, and timing information, energy could then be measured accurately. This

hardware solution is beyond the scope of my dissertation. Instead, I used three

different low-technical experiments to measure energy, previously discussed. Two

of these three experiments indicate that KIPDA uses less energy than hop-by-hop

aggregation with AES encryption. The third was inconclusive. Future work can

investigate if the third technique sent uniform sized packets in the lower network

protocols, or if the amount of energy used in the lower networks protocols overshadow

the energy used in the application layer.

5.4 Summary of Chapter

In this chapter, I presented two MATLAB simulations which illustrate the feasibility

of using MDNSs to protect location privacy and data samples. TOSSIM simulations

show that motes using KIPDA have extra available bandwidth because encryption is

eliminated. While the privacy guarantee is not as strong as traditional encryption, it

does protect in-network nodes from easily learning the sensitive information. An im-

plementation of MDNSs on Android smart phones and an implementation of KIPDA

on T-mote Invent sensors show that these techniques can be successfully deployed on

physical devices. In each application, economies of scale were leveraged to achieve

accurate reconstruction while protecting privacy and placing very low communica-

tion and computation overheads on the sensor nodes. The next chapter discusses

how these applications can be improved, the trade-offs involved, and their strengths

and limitations.
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Discussion

In this chapter, I provide examples of other possible applications, and discuss the

strengths and limitations of MDNSs and KIPDA, along with their trade-offs between

energy and privacy. I also present previous approaches that gave rise to MDNSs, and

compare the three different techniques used to estimate energy usage of KIPDA: the

analysis in Chapter 4, Section 5, the TOSSIM simulations in Chapter 5, Section 2,

and an implementation on physical devices in Chapter 5, Section 3.2.

6.1 Possible Applications

Beyond radiation detection, perturbing continuous data, and determining noisy lo-

cations discussed in the previous chapter, there are several other possible application

scenarios for both KIPDA and MDNSs. One such scenario includes public health, for

example, collecting body temperatures and other data to detect disease outbreaks

such as influenza. In privacy-preserving data mining, a data set of financial transac-

tions could be perturbed with the MDNSs protocols, then released, allowing patterns

of financial transactions to be discovered. Additionally, instead of detecting radiation
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with MDNSs, sensors could be located on vehicles to monitor air pollution, commu-

nicating with existing cellular phone networks. This could protect location privacy

in the scenario presented by Zappi et al. [154]. Many eco-conscious drivers would

be willing to participate in such a scheme, and participants with health conditions

such as asthma could avoid certain parts of a city. Another scenario would include

usage statistics of cable television channels, protecting the information of what a

participant watches while allowing a station manager the ability to determine which

shows to air. Additionally, MDNSs could be deployed in Africa to query human

users through cell phones on their malaria [158] or HIV status, using their perturbed

locations to identify possible outbreaks.

6.2 MDNSs

The previous chapters presented algorithms, evaluation metrics, simulations, and a

prototype implementation for enhancing the privacy of participatory sensing applica-

tions with MDNSs. The approach is notable because it is computational and energy

efficient and does not rely on encryption, key management, or a trusted base station.

In this section, I summarize the tunable trade-offs among granularity (precision of

data), accuracy (utility) and privacy, which were illustrated by the simulations and

Android implementation. I then discuss the strengths and limitations of my current

work, indicating areas for future extensions. Finally, I touch on some prior work that

led to the current version of MDNSs.

6.2.1 Trade-offs

The balance among privacy, data granularity and reconstruction accuracy can be

adjusted to meet the needs of a particular application as follows:
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• Data granularity: Collecting information with finer granularity generally

enhances the quality of the data, provided the number of participants scales

accordingly. Given a constant number of participants, however, there is a

trade-off between data granularity and reconstruction error. In some settings

is may be preferable to report data with less precision (e.g., fewer locations,

each covering a larger area) in exchange for higher accuracy of the reconstructed

distributions.

• Privacy: Privacy increases with granularity. As the number of categories

increases, it is more difficult for an adversary to guess the category that any

individual mote has sensed [58].

• Utility: Utility suffers when the data have been altered or perturbed to a

point that useful statistics can no longer be reconstructed. MDNSs manage

this trade-off, maintaining usefulness while preserving privacy. With a fixed

level of granularity, utility can be increased by adding more participants.

• Energy: While this may not be a tunable parameter in MDNS, it is worth not-

ing the trade-offs between energy and privacy. Energy is conserved in MDNSs

but the notion of privacy relaxed from 100% inability to determine sensitive

data (such as in encryption) to k indistinguishability where the sensitive data

cannot be determined from k − 1 other data. This shows evidence of one of

the main themes of this dissertation: more privacy requires more energy. In

KIPDA, energy and privacy are actually tunable parameters.

6.2.2 Strengths

MDNSs using NSPMs enhance privacy in resource-constrained devices. The algo-

rithms are efficient, all samples are guaranteed to be perturbed, utility metrics can

be well-approximated regardless of the data distribution, they can be tuned using
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DA to improve performance when the number of participants is limited, and they

are the optimal Warner scheme perturbation matrix when the data distribution is

not known a priori :

1. Efficiency: Because the algorithms at the nodes and the base station are so

simple, the method is energy and computation efficient. The time complexity

of the node protocol is O(1) for each sensed value. M does not need to be

stored or used in the perturbation process at the nodes. The base station’s

time complexity is the product of the number of categories for each dimension

and the number of dimensions.

2. All samples are guaranteed to be perturbed: My algorithms use a per-

turbation matrix with zeros on all diagonal entries. If the matrix has non-zero

values on the diagonal, a sample could, in principle, be reported with all of its

original values. In some cases this would be viewed as a privacy breach even if

it only occurred in 1 record out of a million [64].

3. Utility is nearly independent of the prior data distribution: The dis-

tribution of values in the environment is often not known before sensors are

deployed. In Chapter 3, Section 3.3, I show that with a NSPM the effect of

the underlying original distribution, X, on utility is small enough to safely

assume it is independent. Other methods, however, require prior knowledge

of the data distribution for computing an optimal perturbation matrix. For

example, Hung and Du [89] argue that NSPMs (or any Warner scheme) are

not the most optimal perturbation matrices for maximizing both privacy and

utility. They use genetic algorithms to evolve an optimal perturbation matrix,

taking privacy and utility metrics as components of the fitness function. Since

their privacy metric assumes an underlying original distribution, X, the only

way their scheme can evolve the best perturbation matrix is to know X.
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4. DA improves performance of NSPMs when the number of partici-

pants is limited: Other perturbation matrices do not have straightforward

implementations of this idea.

5. NSPMs are the optimal Warner scheme when the prior data distribu-

tion is not known: Figure 6.1 illustrates the optimality of different Warner

scheme perturbation matrices when using 10 categories. The left panel of Fig-

ure 6.1 shows several data distributions (uniform, normal, random, uniform

50/50, exponential and spiked) with varying normalized Shannon entropies.

The right panel plots privacy and utility metrics (y-axis) against different val-

ues of p (x-axis) in Equation (2.2). The spiked distribution is omitted from

the right panel as its privacy is 1 for all values of p. Because utility is largely

independent of the underlying distribution, the values appear as a single curve

for all distributions. The underlying distribution, however, does affect privacy.

The uniform distribution provides the best privacy (lower values are better) as

it has the highest entropy.

The figure also illustrates the trade-offs between privacy and utility as p varies.

As p approaches 0.1, utility increases asymptotically for all distributions. This

occurs at 0.1 because if they are 10 categories, p = 0.1 implies that random

values are being reported independent of what is sensed. Values closer to 0.1

also provide excellent privacy, but because of the asymptotic increase in utility

(higher is worse) they are not viable parameter settings. Moving away from

0.1 improves utility symmetrically, but privacy does not degrade symmetrically.

Because of this, p = 0 provides the same utility as p = 0.2, but with better

privacy. Generally, lower p values will provide a better utility/privacy trade-

off, however this breaks down when the underlying distribution does not have

sufficient entropy, as is demonstrated by the exponential distribution.
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Figure 6.1: (Left) Six representative distributions with 10 categories and 10,000
participants used to compute data in left panel. (Right) Privacy and utility values
using different values of p in Equation (2.2). Each curve represents the privacy value
of a different underlying distribution, listed in the legend with its Shannon entropy.
Utility is nearly the same for all 6 different distributions and is plotted once. I
exclude the spiked distribution because it has a privacy value of 1 for all p.

In the cell phone implementation, because the data are perturbed, it is almost

impossible for the collection server to determine a participant’s true location. (A

cell phone tower could potentially reveal the node’s location, but the base station

cannot determine individual locations from its own information.) Most, if not all,

encryption methods must eventually trust the final recipient of the data. In con-

trast, MDNSs do not require such trust because the data are never “decrypted.” My

method also does not incur the extra computational and energy costs associated

with encryption/decryption algorithms and the additional communication overhead

required to transmit encrypted data. Finally, it does not require a key distribution

and management system.
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6.2.3 Limitations and Caveats

In the following, I discuss some limitations of the method and the experiments and

how they might be addressed.

A sensor node might be captured by an adversary and report faulty data, either

reporting the original sensed value or biasing the reported value in other ways. Sim-

ilarly, if human inputs were solicited directly (e.g., please send us the name of one

candidate you did not vote for, or which malaria symptoms you do not have), their

(negative) answers might be biased [63]. This issue can be addressed if it is known

how the negative answers are distributed, for example by adjusting the perturbation

matrices used in reconstruction, Mδ, for each dimension δ, with the correct probabil-

ities. A more extreme approach would authenticate the packets to ensure that they

originate from a secure sensor or device.

If a mobile sensor is stationary, moving slowly or following a regular pattern,

an adversary might be able to infer its location through long-term monitoring of

the transmitted (negative) values. This would be especially important if an ID was

required with the data. This threat can be mitigated if participants respond to a base

station query only if their location has changed since the last query or to limit the

amount of information sent to the base station if the participant’s device determines

more responses would decrease privacy.

For MDNSs that operate on continuous data with a small number of samples,

repeated samples from the participants can be accumulated at the base station over

a long period of time. For many participatory sensing applications, a long period of

sensing is expected. However, as explained in the previous paragraph, nodes that

continually sense the same information over long periods of time are prone to sta-

tistical attacks. Hence, this technique (continuous MDNSs) is more appropriate for

privacy-preserving data mining. In addition, DA can improve accuracy of continuous
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MDNSs data by using a lower base or radix for the samples. Also, if the first dimen-

sion (the most significant digit) contains a smaller range of categories, e.g. 0-5, this

dimension can use fewer categories.

The reconstruction algorithm occasionally generates negative estimates for some

categories. This statistical artifact arises when the expected contribution for a par-

ticular category exceeds the actual reported total for that category. As the number

of samples increases, the number of negative estimates decreases, along with recon-

struction error. If negative values appear in the reconstructed distribution, these can

be mapped to zero. If the total number of participants must be consistent, then the

negative amount can be deducted in equal amounts from the rest of the categories.

For example, if I had a negative survey of ten categories and category one was recon-

structed to negative nine, this value could be changed to zero and one value removed

from each category between two and ten.

In the cell phone simulation each node reports directly to the base station. Rout-

ing in traditional wireless sensor networks is often organized as a tree with the base

station at the root. Data aggregation in the network can improve efficiency but

is challenging if privacy is important. This is an area of active investigation, for

example, the work of Castelluccia et al. [24] and KIPDA.

The implementations indicated that duplicate packets need to be prevented. This

could be solved with a unique user ID and packet ID numbers. The base station can

authenticate participants’ information, varying from an insecure but energy cheap

technique such as accepting a unique ID, to a more secure and energy intensive

technique such as signing the information with an asymmetric encryption key. Any

authentication will increase data integrity, however, data integrity is left for future

work.

In another limitation of MDNS, privacy protection depends on underlying distri-
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Table 6.1: Cell phone radiation detection simulation for an example city such as
Boston. Location was dimensional adjusted to 3 dimensions of 4, 4, and 2 categories
each.

Locations adjusted to 3 dimensions of 4, 4 and 2 categories each

False False Acc. of True Avg. Avg.

Samples Neg. Pos. Pos. % (Ratio) Privacy Utility

100,000 44 44 98.5 (449/456) 0.1013 1.5479e-05

200,000 7 5 100 (495/495) 0.0989 7.7398e-06

300,000 1 1 100 (499/499) 0.0980 5.1600e-06

400,000 0 0 100 (500/500) 0.0976 3.8700e-06

500,000 0 0 100 (500/500) 0.0972 3.0960e-06

butions with a sufficient amount of entropy. Take for example the following scenario

that preserves location privacy. It is 3 am, there is only one night club in a city, and

sensors monitor noise. A sensor that returns a low amount of noise can be deter-

mined to be at the night club. This was explored in Chapter 5, Section 3.3, where

the spiked distribution (low entropy) from Figure 6.1 (left) gave a privacy metric

value of one, the worst privacy.

Another example of trade-offs occurs in the cell phone radiation detection simu-

lation where the k value of k-indistinguishability with DA using 4 dimensions is 6.

If 32 locations are used, this increases utility, however, the granularity of a location

also increases. If the 32 locations use DA with 3 dimensions of 4, 4, and 2 categories

each, a higher k value of 9 is obtained. These parameters are realistic for a city such

as Boston, where each location would represent 1.5 square miles. Simulations similar

to those presented in Chapter 5, Section 1.1 were performed for this scenario and

the results are shown in Table 6.1. It takes twice as many samples to obtain 0 false

negatives and false positives and 100% determination accuracy than the simulations

presented in Chapter 5, Section 1.1, however, this simulation increases k from 6 to

9.

MDNSs with DA do not perform well with a high number of categories. For
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example, if DA sets all dimensions as two categories except for the last dimension,

which is set as three categories (this provides the best utility), I could only reconstruct

music usage statistics 1 with good enough utility to obtain in a reasonable order the

top 100 listened to artists when the overall number of categories (artists) was less

than 3,000.

6.2.4 Previous Approaches

The idea of MDNSs stemmed from spatial negative surveys where reconstruction is

based on the assumption that neighboring nodes have similar values. This assump-

tion allows accurate reconstruction of the original environment from the perturbed

readings, as illustrated in Figure 6.2 for a gradient temperature map of a 1000x1000

grid of sensors. Each sensor perturbs its temperature reading once and sends the

perturbed datum back to the base station. The base station then takes a sliding

window over the environment centered on the node it is estimating. It assigns to this

node the value that appears least often in the window. The caveat with this tech-

nique is that the base station could infer the sensitive value for each node. However,

this technique gave rise to MDNSs.

It was originally thought that the reconstruction problem in MDNSs was NP-

complete. The first devised solution was based on the box packing problem. The

next solution was based on an extension to the SDNS reconstruction equation and

is similar to the inclusion exclusion principle [15] (also known as the sieve princi-

ple), yet, it also had exponential complexity. I then used the Kronecker technique

to further improve the running time. Finally, matrix memoization was created to

cache calculations back into the disguised distribution’s matrix to achieve reasonable

polynomial time complexity.

1Data set used was from the Yahoo KDD Cup Challenge [49].
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Figure 6.2: A spatial negative survey. From left to right: The original environment,
the negated readings, the reconstructed environment. The sensors are evenly spaced
on a one hundred by one hundred grid. The zth dimension is the sensor readings.
Each sensor sends back only one reading.

6.3 KIPDA

In this section, I summarize the adjustable trade-offs between privacy, efficiency, and

accuracy which were illustrated by the analysis in Chapter 4, Section 5.1, the simu-

lations in Chapter 5, Section 2, and the implementations in Chapter 5, Section 3.2;

I later discuss the accuracy of estimating energy usage between these three sections

and I present the strengths and limitations of KIPDA, indicating areas for future

extensions.

6.3.1 Trade-offs

There exists a spectrum of privacy-preservation versus energy usage. On one extreme

exists maximum privacy, for example public/private key encryption. Unfortunately

methods such as these consume a great deal of energy and other computing resources.

On the other end of the spectrum is the case of no privacy. This uses the least amount

of energy but provides no data protection. I examine the area in between and use

the following characteristics to aid in explaining this spectrum:
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1. Privacy: Different notions of privacy ensure that data are either, 1) not re-

vealed, 2) partially revealed, or are 3) indistinguishable from other data. Ideally

the sensitive value di of node i should not be known to any other nodes j in

the network, or outside observers listening to radio communications. However,

this notion can sometimes be relaxed to conserve energy. For example, KIPDA

provides k-indistinguishability that hides sensitive data among k − 1 items

of camouflage data. CDA schemes should also be robust enough to tolerate

collusion among several nodes, at least to some extent, such as with KIPDA.

2. Efficiency: Data aggregation is able to reduce the number of messages trans-

mitted within the sensor network, thus reducing bandwidth and energy use.

However, additional overhead is introduced to protect privacy. If the energy

cost of a CDA scheme is greater than the benefit of data aggregation, it accom-

plishes nothing. A good CDA scheme should have low overhead. Bandwidth,

energy consumption, and delay are three important metrics to measure the

protocol efficiency. KIPDA reduces the overhead associated with encryption

for a modest increase in bandwidth. For optimal energy use, the increase in

bandwidth should be less than the overhead of encryption.

3. Accuracy or Utility: Accuracy is an important characteristic of any CDA

scheme, as a low or inaccurate aggregation result may affect the decisions made

from these results. Accuracy and utility are usually sacrificed to achieve privacy

and efficiency. However, KIPDA achieves 100% accuracy in an efficient manner,

at the cost of a different notion of privacy.

Trade-offs among privacy, efficiency, and accuracy are complicated and must be

tailored to different applications. These considerations highlight the importance of

choosing the proper parameters for different applications.
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6.3.2 Strengths

KIPDA keeps MAX/MIN information protected from other in-network nodes. To

determine the sensitive information several nodes have to collude. Thus, KIPDA

provides a level of privacy in an honest-but-curious network, and a higher level of

privacy to outside observers. It conserves overall energy usage in a network, but en-

ergy use can be increased to provide more protection. Additionally, KIPDA provides

fast aggregation, which can conserve energy if nodes use an LPL scheme.

6.3.3 Limitations and Caveats

If values are the same or even correlated after every aggregation epoch, the sets GSS

and Ri can be changed over time. This would also help against statistical attacks that

monitor message vectors. One solution involves the base station securely assigning Ri

and P i to every i. Because this consumes extra energy, it needs to occur occasionally.

One way to disseminate this information is to establish session keys. Session keys

can be distributed with an asymmetric (public/private key) encryption method such

as TinyECC. Once the session keys are distributed, cheaper symmetric encryption

can be used to disseminate Ri and P i.

Ideally, instead of continually distributing P i and Ri, a symmetric key could

be used in a random number generator that generates just enough information for

Ri and P i, but not enough so that i can determine Rj or P j for any j. In this

sense, the problem is not completely solved. Hopefully, this research will inspire a

new technique that can generate and keep secret a set of numbers that are partially

shared among nodes. This KIPDA random number generator is left for future work.

One possible attack is for an adversary to control the external property of a sensor

and examine the message vector to find the sensor’s restricted slots. For example,
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she might put an ice block on top of a sensor so that the measured temperature is 0

degrees. Then, she can guess the restricted slots by looking at values less than 0 (for

MAX aggregation). A possible solution, assuming the adversary cannot examine the

internal state of a sensor, is to have the sets Ri and P i change every aggregation

epoch. Another solution is to have nodes vote out an aggregate that does not meet

the typical distribution in the environment. Another possibility is to tighten the

range camouflage values are drawn from to a range that is closer to the sensed value,

or, assume the environment will have a high enough entropy of sensed values.

KIPDA works best for data that have a small range, i.e., use a small number of

bits. Larger ranges such as 16 bits of data or more could use an excessive amount

of energy for some applications. There is a relatively small number of messages that

can be sent to maintain energy savings compared to the Trivium, RC5, and SkipJack

ciphers which the threshold ratio predicts as 7, 10, and 11 bytes respectively. Energy

use in KIPDA is compared to hop-by-hop encryption aggregation, however, hop-by-

hop encryption does not secure information against other nodes. If security against

in-network nodes is truly desired, and the energy is available, then the message vector

size in KIPDA could be increased. Additionally, the same argument applies if fast

aggregate responses are necessary. In this case, however, the underlying dissemina-

tion and collection protocol would need to be optimized for speed and energy. This

is left for future work.

It is difficult in MAX/MIN aggregation to fill the restricted set, if the theoretical

minimum or maximum values are sensed. One way to solve this is to assume that an

adversary does not know these theoretical values, and to increase the range of values

in the message vectors beyond them.
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6.3.4 Comparisons of Energy Analysis, Simulations, and Im-

plementations

This section compares the energy estimates between KIPDA and hop-by-hop ag-

gregation with various forms of encryption from the analysis given in Chapter 4,

Section 5.1, the TOSSIM simulations given in Chapter 5, Section 2, and the imple-

mentation on T-Mote Invent sensors given in Chapter 5, Section 3.2.

Since RC5 on the MicaZ architecture was used in both the analysis in Chap-

ter 4, Section 5.1 and the TOSSIM simulations in Chapter 5, Section 2, they can

be compared. From Table 4.7 in the analysis, the average RC5 primitive took 7.03

milliseconds, using 181.5 microjoules. From Table 5.3 in the TOSSIM simulation,

the average RC5 primitive took 0.2483 milliseconds and used 5.63 microjoules. The

analysis in Chapter 4, Section 5.1 overestimated encryption costs by 3,124% for en-

ergy and 2,821% for time. When comparing RC5 on the TelosB architecture, the

analysis in Chapter 4, Section 5.1 overestimated the time to encrypt and decrypt by

401% compared to the time reported by the implementation on a TelosB device in

Chapter 5, Section 3.2. Energy results for the encryption primitives of RC5 were not

obtained from the TelosB device, but could be obtained for future work.

When comparing encryption and decryption primitive times in the literature to

the TOSSIM simulations, RC5 and SkipJack come close to what is reported by

Singh and Muthukkumarasamy [136]. RC5 (the average between encrypt and de-

crypt primitives) deviates by 1.8 µs or 0.7%, while SkipJack deviates by 6 µs or

1.7%. The difference could be explained by the different architectures. Singh and

Muthukkumarasamy [136] used Mica2 physical devices, while I used a MicaZ emu-

lator. Because the results from the simulator agree with what is in the literature, it

appears that the analysis in Chapter 4, Section 5.1 needs re-evaluation. However, this

is why I implemented KIPDA in simulators and on physical devices — to determine
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the correctness of the analysis.

In summary, the original analysis, based on the estimates taken from the litera-

ture, overestimated the energy and time costs of encryption. Also, based from the

literature, the energy costs determined from the TOSSIM simulations appear close

to the actual energy and time costs observed on physical Mica2 devices.
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Related Work1

I begin with a general literature review, and then compare separately literature that

is specific to MDNSs and KIPDA.

Privacy-preserving algorithms have been developed for data mining [64, 90, 95,

127], data aggregation [26, 65, 71, 73, 83, 85], and other applications [108, 138].

There are four main classes of solutions: perturbation, k-anonymity, secure multi-

party computation, and homomorphic encryption.

In data mining, data values are typically hidden by perturbing individual data or

query results [64, 90, 95]. To obtain accurate results, these methods typically assume

that the distribution of data/noise is known ahead of time. However, as shown

by Kargupta et al. [95] and Huang et al. [90], certain types of data perturbation

might not preserve privacy well. MDNSs on continuous data is another perturbation

approach for data mining which does not assume the distribution of data is known

ahead of time.

1Related work was left till later in the dissertation to give the reader enough information

to compare my approaches with existing techniques.
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K-anonymization [5, 113, 133, 139] in WSNs makes a participant indistinguish-

able from k−1 other nearby participants. It was originally designed for privacy-

preserving data mining, but in participatory sensing applications individual partic-

ipants can sense and share their own data. Thus, there is limited potential to mix

participants’ data with others’ data as required for k-anonymity. MDNSs protect

data before it leaves the individual’s device, with more potential to mix participants’

data.

Secure multi-party computation (SMC) [38, 81, 88] methods specify a joint com-

putation among a set of involved peers. This is problematic in a participatory sensing

setting, because of high communication or computation overhead when the partici-

pant population is large, and some participants may not trust their peers.

There is a growing body of work developing techniques for aggregating data that

have been encrypted using homomorphic functions [26, 56, 73], which allows a user

to calculate some aggregate values (e.g., product, or summation, or both) using

the encrypted values. However, encryption, such as those based on the Domingo-

Ferrer’s [46] symmetric key technique, is energy-intensive, which can limit its ap-

plicability to resource-constrained devices. Additionally, only summation and/or

multiplication aggregate functions can be computed using these approaches, and for

some techniques, in order to interpret the final aggregation result, a server needs

to know which nodes reported data to know which encryption keys to use [24, 26],

which is not always desirable.

A slightly different approach from the previous four is taken in SMART [83],

which slices individual data, sending the slices through the aggregation network, and

reassembling the data pieces later. However, SMART requires the availability and

trust of neighboring peers, which may not always be available.
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7.1 MDNSs

Randomized response techniques (RRTs) have been used to obtain answers to sen-

sitive questions when respondents might be reluctant to answer truthfully [89, 147].

While originally designed for dichotomous populations, they were generalized by

Abul-Ela et al. [2] for polychotomous responses by using several different samples.

Bourke and Dalenius [18, 19] suggest a different scheme that uses a single sample.

While RRTs and my method both strive to protect privacy in surveys, RRTs use

the random device to choose among several questions, where at least one is sensitive;

while in negative surveys the perturbation matrix guarantees no one answers with

the sensitive question/data. The subjects in RRTs that are asked the sensitive ques-

tions must ultimately trust the information collector, while negative surveys never

require participants to respond honestly to any sensitive questions.

The most optimal perturbation matrix for RRTs has received some research.

Agrawal and Haritsa initially studied the problem [11]; however, they only focused

on symmetric matrices and used only accuracy (utility) for comparison. Huang

and Du achieved better results by using a multi-objective optimization technique

to study various matrices with measures of both privacy and utility [89]. However,

while they state their method can be used for multi-dimensional data, they only

studied one dimension. They argued that NSPMs, and ultimately all schemes based

on the Warner matrix are inferior, while Chapter 6, Section 2.2 suggests they have

an advantage in resource-constrained devices and WSNs.

A common practice for privacy applications is to remove users’ identifiers; how-

ever, multiple attributes of the records or external data can often be combined to

uniquely identify individuals [139]. Previous privacy-preserving proposals for multi-

dimensional data were designed for databases and data mining, where a database

server stores records of multiple users. In this situation, the server is able to infer
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users’ data from others [5, 113, 133, 139] and alter or change the responses to protect

privacy; however, this assumption is not true in participatory sensing applications,

where individual users have only their own sensed information to report. MDNSs

are a reverse of this scenario, where the client alters the response to protect herself

from the server.

In participatory sensing applications, data points are often tagged with location

information, and a rich set of location-based privacy and anonymity rules have been

developed for this situation [112, 126]. These schemes, however, typically hide or

perturb single-dimensional continuous location information. For multi-dimensional

data, privacy-preservation involves trade-offs among accuracy (or information com-

pleteness), computational complexity, and the level of anonymity. Aggarwal et al.[5]

has shown the curse of high dimensionality for k-anonymization in data mining,

even if k=2. MDNSs are able to handle about 3,000 categories before the curse of

dimensionality affects accuracy.

Dora et al. [48] present a similar idea that hides or lies about true information.

This idea works on delay tolerant networks with the store-carry-and-forward principle

by perturbing categorical information. Their work differs from mine because they

perturb a bit vector, a user interest profile, so that it cannot be linked to a user.

As a result of this perturbation, a node can hide its interest in a category so that

less messages of that category are stored, carried, and forwarded; or it can lie about

its interest in a category so that more messages are stored, carried, and forwarded.

MDNSs perturb the data that are sensed and communicated, instead of sending more

or less information.

Dwork et al. [54] introduced the term pan-private in the context of streaming

algorithms which can protect the state of information inside a node. This is useful

for protecting against node capture attacks that examine internal data. However, it

assumes a secure stream as a precondition of the algorithm. In contrast, the work
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reported in Chapter 3 protects the stream of information in transit. Pan-private

algorithms, however, are preferable for complex aggregates such as the t-incidence

items, the t-cropped mean, and the fraction of k-heavy hitters [54].

Differential privacy [52, 53, 149] aims to provide the maximal accuracy of re-

sponses for users querying a statistical database, while minimizing the ability of

these users to identify the records in the database. Differential privacy assumes that

a trusted server handles and responds to the queries, while negative surveys, on the

other hand, do not assume that the server is trustworthy.

Negative surveys [59] are closely related to negative databases (NDBs) [60, 61, 62],

which are an alternative representation of information that stores the set complement

of data instead of the actual data. Both negative surveys and NDBs store or report

data in this way, yet NDBs differ because the information is stored in a compressed

form that adds additional security. It is provably NP-complete by a reduction to

3SAT, to try and extract the positive database from the NDB. Negative surveys,

unlike NDBs, do not store the entire set of the strings representing the data comple-

ment.

Silence in communication [157] is similar in spirit to the negative representations

of information, yet it does not attempt to provide anonymity. Instead, the protocols

attempt to reduce communication overhead. This is accomplished via start and stop

tokens, where the amount of time between the tokens represents the transmitted

data. This method has the advantage of low communication overhead, although

transmission bandwidth may suffer. Currently, a complete protocol based on this

unique idea does not exist, and would seem problematic with current carrier sense

multiple access with collision avoidance (CSMA/CA) [140] protocols.

Gaussian negative surveys (GNSs) reduce the number of participants needed for

accurate negative survey reconstruction. Xie et al. [150] propose a special perturba-
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tion matrix where the cells in each column of the matrix assume Gaussian distribution

values with the mean centered over the original category, which is represented as zero.

With location data, this perturbs an individual’s location a Gaussian random dis-

tance away from the original location. This special perturbation matrix eliminates

the need for reconstruction at the base station. However, GNSs with location data

do not protect privacy as well as traditional negative surveys. The privacy guarantee

of an individual participant depends on the variance of the Gaussian distributions

in the perturbation matrix. This variance must be small enough to maintain an

acceptable level of utility and number of participants, however, smaller values do not

perturb a location a sufficient amount of distance. This may make it easier for an

adversary to determine the general location of an individual participant. It is not

until the variance is increased to cover more than the entire column of the perturba-

tion matrix that GNSs approach the same privacy guarantee as traditional negative

surveys.

Quercia et al. [130] propose a randomized response technique similar to MDNSs.

Instead of perturbing a location to a different location, each location is perturbed

to a yes or no bit with a probability that includes whether a participant is at that

location. For each sample a bit vector whose size depends on the number of locations,

O(number of locations), is transmitted, while MDNSs transmit a smaller vector,

O(log(number of locations)).

MDNSs could use a scheme similar to the negative quad tree proposed by Horey

et al. [84] where locations are nested inside other locations. Each level would repre-

sent a dimension in MDNSs. In their scheme, levels were recursively divided into 4

categories. MDNSs can use an arbitrary and varying number of levels and categories.

However, using a negative quad tree or similar approach could increase the total area

coverage in the cell phone simulation from a city to a metropolitan area.
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7.2 KIPDA

Data aggregation without privacy achieves bandwidth and energy efficiency in re-

source-limited WSNs [109]. Previous work [1, 33, 44, 91, 92, 104, 137, 141] addresses

data aggregation in various application scenarios with the assumption that all sensors

are working in trusted and friendly environments. However, sensor networks are likely

to be deployed in an untrusted environment, where links can be eavesdropped and

messages can be altered. LeMay et al. [102] summarize the functional characteristic of

wireless metering sensors and categorize attacks, where both privacy and security are

concerns in the given scenarios. Previous work [29, 128, 151] investigates secure data

aggregation against adversaries who try to tamper with the intermediate aggregation

result. CDA is also closely related to and has been studied in the data mining

domain [9, 90, 95] and peer-to-peer network applications [88].

The most secure data aggregation methods use either a symmetric or an asym-

metric key approach. Symmetric keys, which use less resources, are similar to KIPDA

which uses a global symmetric key approach, but differs in the sense that each node

has a random part of the global key. The key is, in essence the set GSS. Only

by capturing enough nodes will an adversary determine the correct global key in its

entirety.

KIPDA differs from hop-by-hop and end-to-end encryption aggregation. Infor-

mation is kept confidential from other nodes, which is not the case with traditional

hop-by-hop encryption. End-to-end encryption is expensive since most implemen-

tations involve public/private key encryption. Other less expensive techniques that

use symmetric keys such as the one presented by Castelluccia et al. [26] require the

base station to know every node that participated in the aggregation.

Although the concept of camouflage has not to the best of my knowledge been

applied to data aggregation, it has been applied to routing methods [45, 76]. Conner
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et al. [35] use decoy sinks and perturb network traffic to protect the location of the

real sink.

k-Indistinguishability is closely related to k-anonymity [5, 6, 13, 139] which is

designed to prohibit linking attacks. In a linking attack, an adversary matches aux-

iliary information with public or broad-casted information to determine the identity

of one or more individuals. In contrast, KIPDA ensures the indistinguishability of

the data itself instead of the identity of individuals or the source of the data.

Girao et al. [73] developed end-to-end encryption for the average and movement

detection functions using Domingo-Ferrer’s privacy homomorphism. Privacy homo-

morphism, however, was shown by Rivest et al. [131] to be insecure against ciphertext

only attacks, if a comparison operation is supported. As a response, Acharya et al. [3]

apply a type of privacy homomorphism developed by Agrawal et al. [8] called order

preserving encryption scheme (OPES), to WSNs. In this scheme, nodes map their

plaintext measurements to a set of ciphered values which preserves the order of the

measurements. However, this scheme cannot prevent in-network nodes from learning

private data if all sensors use the same set of mapping functions.

Zhang et al. [156] provide an aggregation of histograms where values are hashed.

However, they can only produce approximates of the maximum or minimum value

in the network, which will not work with WSNs that need accurate information.

Ertaul et al. [55] proposes an alternative scheme to OPES, where the maximum

and minimum functions are computed using addition in a secure homomorphic en-

cryption scheme. They encrypt messages of zero and z, where z is non-zero. This

encryption does not have to take place at the sensor nodes as long as the results are

stored in the nodes. Their scheme is secure against eavesdropping, and node collu-

sion. However, the communication cost does not scale well to large sensed values,

even sensed values that use 8 bits. This is because n encrypted messages need to
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MAX/MIN Accurate Efficient Level 1 Level 2
Ability Privacy Privacy

Girao et al. [73] No Yes Yes Yes Yes
Ertual et al. [55] Yes Yes No Yes Yes
Zhang et al. [156] Yes No Yes Yes Yes
Yao et al. [153] Yes Yes Yes Yes No
Groat et al. [79]

Yes Yes Yes
Indistin- partial

(KIPDA) guishablity resilience

Table 7.1: Comparison of different secure data aggregation technologies.

be sent, where n is the largest sensed value. For sensed values with 16 bits, this is

over 65,000 messages per node, per aggregation. Additionally, each message needs

enough bits to protect against statistical attacks.

Yao et al. [153] provide another secure MIN/MAX scheme. Their scheme uses

more energy than hop-by-hop aggregation with RC5 encryption. Additionally, it is

insecure to eavesdroppers or colluding nodes if the global key is compromised, which

can be accomplished by capturing one node. With the global key, an adversary can

encrypt ranged HMAC messages such as [dadversary, dtop] or [dbottom, dadversary], where

dadversary is chosen by the adversary and dtop and dbottom are the max and min network

wide values. She could then test against captured non-range HMAC messages which

contain the sensitive value. The value dadversary can be lowered or raised iteratively

until the intersection of the captured message and the adversary ranged message are

no longer non null, which will reveal the sensitive information.
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Future Work and Conclusion

8.1 Future Work

In this section I outline future work for MDNSs and KIPDA, in addition to general

future work related to this dissertation.

8.1.1 MDNSs

A major assumption of negative surveys [85] is that the data from different sensor

nodes are not correlated. I assume that each measurement made by a sensor node

is independent of the other sensor nodes. However, this may not be the case in all

applications. Two sensor nodes placed in close geographic proximity may sense cor-

related temperature values. Therefore, by knowing the locations of these nodes, more

information could be gained from a single negative reply. Similarly, data reported

by a sensor node may be correlated with past data. This correlation could be used

to my advantage to estimate the individual data values and perhaps aggregate the

results. Future work will examine the effects of correlation in the underlying data in
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single-dimensional and multi-dimensional negative surveys, quantifying the amount

of privacy lost, and finding a solution that perhaps aggregates the correlated data

efficiently.

Future work on MDNSs can examine non NSPMs that make the distribution of

disguised data uniform, with the constraint of zeros on the diagonals. I propose to

study whether the reconstruction error decreases if I choose the negative categories

with a non-uniform probability such that the distribution of negative histograms is

uniform. Preliminary results show that it is sometimes impossible to achieve complete

uniformity since it involves inverting a non-invertible matrix. Yet, if the probability

matrix were chosen to maximize uniformity of the negative histogram, this might

have a beneficial effect on the reconstruction error. The perturbation matrix could

then be transmitted instead of the negative data, especially if it is sparse.

Future work could examine the limits of DA on real-world data sets with large

numbers of categories. Although histograms are useful, other aggregates could be

explored. Additionally, a privacy metric for MDNSs based on indistinguishability

adjusted by the underlying distribution could be useful. Furthermore, I could devise

more complicated and accurate methods for threat determination in the radiation

detection simulation. Another possible idea is to report the histogram, but randomize

the bins in the histogram, perhaps at each hop level.

8.1.2 KIPDA

Energy usage of KIPDA could be compared to other schemes such as OPES, or the

schemes presented by Ertaul’s et al. [56] and Yao et al. [153]. Additionally, energy

comparisons with homomorphic encryption which provides a good level of privacy

protection would be beneficial if KIPDA could be extended to the summation and

multiplication aggregation functions.
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KIPDA could be modified to use variable sizes for the sets I, GSS, and Ri.

Further future work could investigate how to distribute efficiently the sets Ri (or

U i) and P i to each node. These two suggestions would help thwart adversaries

monitoring repeated aggregations.

Results from Meulenaer et al. [42] conclude that energy is wasted in an LPL

scheme when the radio has to wait for encryption. LPL could be implemented in

TinyOS, TOSSIM, and PowerTOSSIM-Z to verify if KIPDA has an advantage over

encryption aggregation schemes.

Additional future work could implement or use existing energy-conserving dissem-

ination and collection protocols and convert KIPDA to report other order statistics

such as the mode, mean, median, or k-heavy hitters.

8.1.3 General Future Work

Future work in CDA could create a method that will not only securely report the

MAX or MIN aggregate, but securely report which node generated the value. Fast

data aggregation is starting to appear in the literature [129] which could benefit from

privacy-protection schemes similar to KIPDA. Additionally, future aggregation work

could devise a homomorphic compression scheme, where the aggregation function is

performed on the compressed data.

The computational power in WSNs may eventually increase to allow more com-

plicated algorithms to run on them, such as those from machine learning. These

collaborative machine learning algorithms will depend on the amount of energy avail-

able to determine a sensor’s lifetime, and ultimately their ability to learn. While the

complexity for machine learning algorithms currently depends on their input, they

may eventually depend on the energy available 1.

1Idea from Terran Lane.
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Future work could incorporate data integrity into both MDNSs and KIPDA by

authenticating data and determining whether it has been altered. Also, indistin-

guishability and negative representations of data could be applied to different fields

such as cloud computing or privacy preserving data mining; future work will continue

to look for new applications that can incorporate these ideas.

8.2 Concluding Remarks

MDNSs provide a more efficient and robust way to protect individual information

while providing the utility to mine group information. Information such as physical

locations, driving speeds, or medical data can have devastating effects if intercepted

by adversarial parties. MDNSs perturb data for participatory sensing applications,

providing high levels of privacy. The privacy preservation problem addressed here is

challenging, because (1) users may not trust the information collection server, and (2)

embedded or sensor devices may have limited resources. Therefore, I do not rely on

standard encryption schemes or key distribution and management. MDNSs scale well

because the communication and computational overhead is low for the sensor nodes,

especially when compared to expensive encryption and key management schemes. An

advantage of my work is that privacy and accuracy can be managed by simply tuning

parameters of the protocols, as evident from the simulations and implementations in

Chapter 5. If the base station receives enough information, an aggregate distribution

in multiple dimensions can be reconstructed efficiently and accurately. The DA

technique produces less reconstruction error with the same number of participants.

Continuous MDNSs have implications for privacy-preserving data mining where there

is minimal research on reconstructing perturbed multi-dimensional categorical data.

KIPDA is the first work I am aware of that provides indistinguishability to CDA.

It saves energy and time even though more messages are transmitted over the radio.
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While encryption provides a stronger level of privacy, I have shown in Chapter 4,

Section 5, and Chapter 5, Sections 2 and 3.2 that it is more energy efficient to

slightly increase radio usage with decoys than to use conventional methods of hop-

by-hop encryption. I have also shown howWSNs can protect confidentiality by hiding

sensitive values in plaintext along with decoy values. By allowing the sensitive values

to be in plaintext, aggregation can take place efficiently, which would otherwise be

difficult. Confidentiality is achieved through k-indistinguishability with the sensitive

aggregates hidden among k−1 other values. Dividing a message vector into different

subsets (Ri, P i, and U i) provides the capability to camouflage message vectors with

restricted and unrestricted decoys. A semi shared global key, GSS, creates resistance

to node collusion and capture attacks.

Trade-offs exist between energy and privacy. This dissertation has shown that by

relaxing the notion of privacy to k-indistinguishability, energy can be conserved. In

KIPDA, sensitive data in a message vector are indistinguishable from some of the

other members of the message vector depending on the number of nodes colluding,

or radio messages intercepted. MDNSs also provide k-indistinguishability, where

location information is indistinguishable from k other locations where k depends on

whether or not an adversary has knowledge of the underlying distribution. These

algorithms are appropriate for resource-constrained devices as they reduce energy

usage and protect what they are sensing.
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