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What are Resource-Constrained 
Devices?

● Small, ubiquitous sensors that are 
common in our physical environment. 
● Limitations of memory, energy, radio 

range, CPU complexity, etc.

● Or, larger personal devices that have 
a limited battery, e.g., smart phones.

● These devices increasingly collect human related   
   data, which needs to be secured.

● The standard methodology is encryption.
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Problem: Encryption is Expensive

1) Energy expensive [1]. 

2) Slow. 

3) Must ultimately trust a final recipient.

 This dissertation addresses these problems, using         
   non-cryptographic methods.

[1] C. Karlof, et al., “Tinysec: a link layer security architecture for wireless sensor 
networks,” in SenSys ’04, pp. 162–175.
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Why is this Problem Important?

● Protecting the privacy of unwilling participants    
   caught in the growth of ubiquitous sensors is     
   also important.

● People's privacy matters.

● Energy consumption.



5

Key Idea: Data Indistinguishability

Images from www.findwaldo.com

● Definition: A single element in a set of size k is k-indistinguishable if 
cannot be identified with a higher probability than random guessing. 

● I apply indistinguishability in novel ways to resource-constrained devices.
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Dissertation Overview

● Thesis statement:  If the privacy requirement can be relaxed to 
indistinguishability then:
● Sensor data can be protected.

(and)
● Energy can be saved. 

● I achieve this goal with two information collection protocols:

1) Multidimensional negative surveys (MDNSs).

2) k-Indistinguishable privacy preserving data aggregation (KIPDA).

● The protocols are studied with analysis, simulations, and 
implementations.
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Chapter 2: Background 
& Preliminary Work
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Negative Surveys

● Preliminary work done in collaboration with James Horey.
● An extension of random response techniques from privacy   
  preserving data mining:

1) Each sensed sample (of 10,000 samples) is perturbed     
  according to a matrix of probabilities.

2) The original distributions is estimated using                      
  reconstruction algorithms.

 Equation for the one-dimensional case is efficient.                 
  However, in the multidimensional case it is                             
  exponential with the number of dimensions. 
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Privacy-preserving Data Aggregation 
(PDA)

● Wireless sensor    
network (WSN) No data aggregation With data aggregation

● Data aggregation is trivial, until privacy adds the following challenges:
1) Untrusted nodes in the network. 
2) Untrusted base station(s).
3) Non-linear aggregation functions.
4) Energy budget.

● Two main-stream solutions: hop-by-hop and end-to-end encryption.

Data collection:
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Privacy Assumptions and Definitions 
● Privacy notions:

● Indistinguishability (KIPDA).

● Perturbation (MDNSs).

● Not binary.

● Threat model:
● Level 1: Eavesdroppers intercepting packets.

● Level 2: Honest but curious [2] nodes in the network.

● Level 3: Honest but curious base station.

 

● Assumptions:
● Only a small number of nodes or data are compromised. 

● Polynomial time adversaries based on their input size.

[2] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications. New York, NY: 
     Cambridge University Press, 2004.
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Chapter 3: Multidimensional Negative Surveys 
(MDNSs)
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MDNS Protocols

● Node protocol: 

1) The sensor records data.

2) For each data dimension, the sensor           
chooses a category other than what was     
sensed.

3) Transmits the negative data.

● Base station protocol: 

1) (Optional) Request the data.

2) Collect the data.

3) Estimate the sensed data from the negative 
values with a reconstruction algorithm. 

 a  b  c
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Reconstruction Algorithm

● Problem: Natural extension from the one-
dimensional case has exponential time with 
respect to the number of dimensions.
● Example with two dimensions:

● Solution: Matrix memoization.
● Partial results are cached back into the perturbed 

data to be reused.

A i , j =∑a=1, b=1

1 ,2

R a ,b−1−1⋅∑a=1

1

R a , j −2−1⋅∑b=1

2

R i , b

i−1⋅ j−1⋅R i , j∣∀ i , j
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Reconstruction Algorithm

● Example: 2 dimensions of 4 and 3 categories, 
and 10,000 samples.

  957   982  1010

  632   664   731

  719   718   646

 1010   991   938

Perturbed data in two 
dimensions, Y(:,:)

A matrix multiplication with a vector is performed:

R : ,1=[
0 1/3 1/3 1/3

1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0

]
−1

⋅[
957
632
719
1010

]
But since this is a negative survey reconstruction, the 
single dimensional reconstruction equation is faster.

R  j ,1=P1−⋅R j ,1 | ∀ j
Y(:,:) is similar to 
the perturbed one-
dimensional 
histogram seen 
earlier.

O(2 )

O( )
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Reconstruction Algorithm

● Example: 2 dimensions of 4 and 3 categories, 
and 10,000 samples.

  447   982  1010

 1422   664   731

 1161   718   646

 288   991   938

R = perturbed data

And the results are stored back in R.
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Reconstruction Algorithm

● Example: 2 dimensions of 4 and 3 categories, 
and 10,000 samples.

  447   405  1010

 1422  1365   731

 1161  1203   646

 288   384   938

R = perturbed data

We continue in the same dimension
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Reconstruction Algorithm

● Example: 2 dimensions of 4 and 3 categories, 
and 10,000 samples.

  447   405  295

 1422  1365  1132

 1161  1203  1387

 288   384   511

R = perturbed data
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Reconstruction Algorithm

● Example: 2 dimensions of 4 and 3 categories, 
and 10,000 samples.

  253   337  557

 1422  1365  1132

 1161  1203  1387

 288   384   511

R = perturbed data

The stored information is then used in 
the other dimensions.
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Reconstruction Algorithm

● Example: 2 dimensions of 4 and 3 categories, 
and 10,000 samples.

  253   337  557

 1075  1189  1655

 1161  1203  1387

 288   384   511

R = perturbed data
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Reconstruction Algorithm

● Example: 2 dimensions of 4 and 3 categories, 
and 10,000 samples.

  253   337  557

 1075  1189  1655

 1429  1345   977

 288   384   511

R = perturbed data
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Reconstruction Algorithm

● Example: 2 dimensions of 4 and 3 categories, 
and 10,000 samples.

  253   337  557

 1075  1189  1655

 1429  1345   977

 607   415   161

R = perturbed data
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Reconstruction Algorithm

  253   337  557

 1075  1189  1655

 1429  1345   977

 607   415   161

Reconstructed data

  202   391  664

  988  1287  1468

 1468  1287   988

 664   391   202

 Original sensed distribution

RMSE = 81.45. 10,000 samples.
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Privacy and Utility Metrics

● Originally used the relative root mean square error, now I use 
the following:

● Privacy Metric:
● Measures the probability of guessing the original data from the 

disguised values, and is based on the maximum a posteriori estimate.

● Utility Metric:
● Measures the difference between the original and reconstructed data 

distributions with the mean square error.

● For both metrics a lower value is more desirable.  Privacy 
ranges from [0,1], while utility ranges from [0, +∞). 
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Dimensional Adjustment
● Addresses problem of having too few participants to maintain 

a given level of utility.

● Sacrifices a smaller amount of privacy for a greater gain in 
utility.

● 1 dimension of 9 categories can be           
   adjusted to 2 dimensions of 3                   
   categories each.
● Trade-off example:

1 dim
10,000 cats.

6 dims.
5x5x5x5x4x4 cats.

Utility 0.00100 0.00014

Privacy 0.01457 0.01960

● Privacy degrades 34% while   
  utility increases 86%.

 a

 b

 c  X

 d

 e

 f

 g

 h

 i

1 2 3

1 a b X

2 d e f

3 g h i
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Radiation Detection Simulation

● Assume cell phones equipped with        
  radiation detectors.
● Phones perturb their location and           
  radiation level.
● Then report this information to a base    
  station
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MDNSs on Android Smart Phones
● Physical cell phones were programmed with the MDNS node protocol, 

and a server with the base station protocol.

● Categories included:

● 4 latitudes

● 6 longitudes, dimensionally adjusted to 3 and 2 categories

● 3 sound levels, sampled from the phone's microphone.

Original sensed distribution Reconstructed distribution

●  Energy is conserved because encryption and key                   
    management and distribution are eliminated.  
●  7300 samples with 72 overall categories.  RMSE is 86.43.
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MDNS: Impact of Research

● Xie et al.[1] propose a special perturbation 
matrix for Gaussian negative surveys.

● Quercia et al.[2] propose a yes/no RRT for 
every location.

[1] Xie et al. “Privacy-aware Collection of Aggregate Spatial Data”. Data Knowledge  
     Engineering, 2011, Vol. 70, No. 6, pp. 576-595.

[2] Quercia et al. “SpotME If You Can: Randomized Responses for Location              
     Obfuscation on Mobile Phones”, ICDCS, 2011, pp 363-372.
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Chapter 4: KIPDA
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PDA: Literature Review

● Girao et al. [3], and other mainstream end-to-end encryption schemes only support    
  addition and/or multiplication aggregation functions.

● Rivest [4] showed homomorphic privacy (HP) is insecure against ciphertext only        
   attacks, if a comparison operator, such as the MAX or MIN functions, is supported.

● Acharya et al. [5] use OPES (a type of HP) in WSNs. However, it is insecure for         
   Level 2 privacy.

● Zhang et al. [6] uses histograms with hashed message authentication code (HMAC)  
   messages.  However, it is secure but not accurate.

● Ertual and Vaidehi [7] use additive HP to calculate comparison operations. However, 
   it is accurate but not efficient.

MAX/MIN Accurate Efficient Level 1 
Privacy

 Level 2 
Privacy

Girao et al. No Yes Yes Yes Yes

Acharya et al. Yes Yes Yes Yes No

Ertual et al. Yes Yes No Yes Yes

Zhang et al. Yes No Yes Yes Yes

KIPDA Yes Yes Yes  Indisting.  k
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KIPDA: Introduction

● Aggregates are hidden in plain sight            
  among camouflage data inside a message  
  set (vector).

● The positions in the message set obey        
  special properties and vary between            
  nodes, such as dividing them into restricted 
  and unrestricted sets.

45 34 12 56 3 31

45 34 12 56 3 31

●  I propose an energy-efficient k-indistinguishable                   
   MAX/MIN aggregation scheme that satisfies:

●  Level 1 privacy with indistinguishability. 
●  Level 2 privacy that scales.

45 34 12 56 3 31



31

KIPDA: Example

● Example of aggregation:
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KIPDA: Properties

● Property 1:
The Real Value Position is a 
subset of the Global Secret Set 
(GSS).

● Property 2:
The Restricted Value Positions 
must contain elements from both 
GSS and GSS.

● Property 3:
The Restricted Value Positions 
contain every element of GSS.

● Property 4:
In the reporting phase, The 
Restricted Values must be less 
than or greater (MAX or MIN Agg.) 
than the Real Value. Unrestricted 
positions can be either.
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KIPDA: Protocols

1) Pre-distribution

2) Reporting

3) Aggregation

4) Base station post            
    processing
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Optimal Sizing of Sets: GSS, NSS

Set sizes are determined in the following 
order:

1) The message set
●  According to energy available.

2) The node secret set NSS
● According to protect against one rogue node or 

many nodes.

3) The global secret set GSS
● According to the intersection of two lines that 

are based on the coupon collection problem.
● The ability to pick GSS elements.
● The ability to pick GSS elements.
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Determining k
● An upper bound on k is:

● To an outside observer k is 
the size of the message set.

● I build, with a series of 
equations, the k value when 
x nodes collude (see figure).

● For space and time 
reasons, I have left these 
equations out. However, 
they are in the supplemental 
slides.

k≤min∣NSS∣1,∣NSS∣−1
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POWER-TOSSIM-Z Simulations

● Implemented KIPDA and hop-by-hop aggregation in TOSSIM, 
TinyOS simulator, with care to energy use. 

● Compared energy use between KIPDA and hop-by-hop 
aggregation with AES, Skipjack, RC5, Trivium, and no 
encryption.  
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KIPDA Implementations

KIPDA was implemented on Moteiv                                              
T-mote Invent sensors.

● However, without physically altering the device, direct energy 
measurements were not possible.

● Voltage level could be obtained, but energy use cannot be 
completed.

● Ran three tests :
● Voltage level between KIPDA and hop-by-hop aggregation with AES

● Life time of each device in the network between KIPDA and hop-by-hop 
aggregation with AES.

● Measured the time for each encryption primitive for AES, SkipJack, 
RC5, Trivium, and TinyECC
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Discussion

● Other applications:
● Pollution monitoring. 
● African malaria surveys.

● Trade-off analysis
● MDNS: granularity, privacy, accuracy. 
● KIPDA: Privacy, efficiency, accuracy.

● Theoretical analysis overestimated encryption energy use.
● However, I mostly used numbers and results from the literature.
● TOSSIM simulations agree with other energy results in the literature 

using actual devices.
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Limitations and Caveats

● MDNS
● Rogue sensors that try to disrupt the aggregate.

● Mobile sensors that don't move, or move between only a few locations.

● MDNS do not perform well with more than 3,000 categories.

● KIPDA

● Susceptible to statistical attacks if the sets GSS, NSSi, and NSSi
T  are not 

regularly refreshed.

● Network wide MIN and MAX needs to be kept secret.

● Sensors work best in high entropy environments.
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Future Work
● CDA

● Secure knowledge of which node generated the MAX or MIN.
● Privacy preserving fast aggregation (which KIPDA excels at).

● KIPDA 
● Variable sizes for the Restricted Value Positions and message set.
● Compare energy use to other related work such as those in the 

related work matrix (Slide 29).
● Nodes determine which are rogue.

● MDNS 
● Correlations between dimensions.
● Other aggregates besides histograms

● General 
● Other areas where indistinguishability saves energy and preserves 

privacy.
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Conclusion

● MDNSs 
● Protect location privacy
● Still allow useful information to be collected.

● KIPDA:
● Addresses MIN/MAX PDA efficiently and accurately.
● Provides partial protection against in-network nodes.  
● Indistinguishability replaces encryption.

● Simulations and implementations show the 
feasibility, possibility, and tunability of the two 
presented protocols.
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Publications

● In submission:

● Michael M. Groat, Benjamin Edwards, James Horey, Wenbo He, Stephanie Forrest,   Applications 
and Analysis of Multidimensional Negative Surveys in Participatory Applications. In 
submission to Pervasive and Mobile Computing Journal.

● Refereed Conferences:

● Michael M. Groat, Benjamin Edwards, James Horey, Wenbo He, and Stephanie Forrest, Enhancing 
Privacy in Participatory Sensing Applications with Multidimensional Data, In Proceedings of the 
Tenth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 
'12), March 2012, pp. 144-152, Lugano, Switzerland. (Acceptance ratio: 10.7% = 16/150)

● Michael M. Groat, Wenbo He, and Stephanie Forrest, KIPDA: k-Indistinguishable Privacy-
preserving Data Aggregation in Wireless Sensor Networks, In Proceedings of the Thirtieth 
Annual IEEE International Conference on Computer Communications (InfoCom '11), April 2011, pp. 
2024-2032, Shanghai, China. (Acceptance ratio: 16.0% = 291/1823)

● James Horey, Michael M. Groat, Stephanie Forrest, and Fernando Esponda, Anonymous Data 
Collection in Sensor Networks, In Proceedings of the Fourth Annual International Conference on 
Mobile and Ubiquitous Systems: Networking & Services (Mobiquitous '07), August 2007, pp. 1-8, 
Philadelphia, PA, USA. (Acceptance ratio: 22.7% = 27/119)

● Workshops:

● James Horey, Stephanie Forrest, Michael Groat, Reconstructing Spatial Distributions from 
Anonymized Locations, In ICDE Workshop on Secure Data Management on Smartphones and 
Mobiles, April 2012. In Press, Washington DC, USA.
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Thank you

Questions?
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KIPDA Supplementary Material
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Devices that Sense Low Entropy 
Distributions

● KIPDA:
● Assume sensors only sense a high entropy environment.

● Assume an adversary has no knowledge of the environment

● Send a distribution in the message set that is tight around the sensed 
value.

● Assume that the adversary knows just one node that senses a low 
entropy environment, and treat this node as rogue and only a partial 
amount of privacy is lost.

● MDNSs
● Individuals sense low entropy distributions.

● The sensor can keep track of negative information sent over time (see 
Information gained graph), and discontinue responses when a threshold 
has been reached. Then perhaps the individual can request a new 
unique user id from the base station?
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Why Secure Multi-party 
Computation (SMC) is not Feasible

● MAX/MIN PDA and SMC are very similar
● SMC is a general case of Yao's millionaire problem.
● Solution to the problem is too resource intensive.
● Previous solutions [1,2] leverage public/private key 

cryptography.

[1] I. Damgard, M. Geisler, and M. Kroigard, “Homomorphic encryption and securecomparison,” International 
Journal of Applied Cryptograhpy, vol. 1, no. 1, pp. 22–31, 2008.

[2] A. C.-C. Yao, “Protocols for secure computations (extended abstract),” in 23rd Annual Symposium on 
Foundations of Computer Science (FOCS). IEEE, November 1982, pp. 160–164.
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Comparison to Chaffing and 
Winnowing

● Chaffing and Winnowing concept.

● Requires 3rd party trust.

● Each bit requires a MAC, this is both expensive to create and 
expensive to transmit. (Especially per bit.)

● Camouflage is call chaff (like the wheat).

● Random number for chaff. Bob (Alice, Charles and Bob) knows 
the secret key shared with Alice, and know which MACs are 
valid.

● More for political reasons and export control.

● Method is not a homomorphic privacy technique, hence at best 
it could be used in hop-by-hop aggregation.   However, I believe 
it is energy expensive.
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KIPDA Analysis

● Results of the Analysis of Chapter 4.

MicaZ TelosB Timing - Both.
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KIPDA Threshold Ratio

● Determines how large a message set can be sent that 
uses the same energy as hop-by-hop schemes.

● Where Tx is transmit, Rx is receive, and E is the 
energy of these events.

● Predicts network wide energy use.

E Tx mbitsRx mbits 
E Tx l bits Rx l bitsEnc l bitsDec l bits
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KIPDA Simulation Design Steps

1) Query all nodes

2) All nodes respond to query

3) Aggregate the responses

4) Implement power readings and energy use.

5) Implement hop-by-hop encryption with the responses.

6) Implement KIPDA

7) Run simulations for various topologies, and types of    
 encryption: AES, SkipJack, RC5, Trivium, and              
 TinyECC



51

Average Value of k

● Average k value against a single rogue node.

By NSS By NSS
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k Values from x Colluding Nodes

  

Where γ (gamma) is the Euler-Mascheroni 
contant, 0.577215, and W is the Lambert W-
Function, or product log.
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MDNS Supplemental Material
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Adversarial Information Gained

● 200 category SDNS, and a 20 by 10 2-
dimensional negative survey. Max information 
to gain is log2(200).
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Comparison of Continuous MDNSs 
to Random Data Perturbation

● Continuous negative surveys:
● Original idea by Benjamin Edwards.

● Each digit is a dimension of 10 categories, 0 
to 9. 

● Data from a distribution is perturbed and 
reconstructed at the base station for both 
RDP [1] and continuous negative 
surveys.

● Comparison to RDP shows strengths and 
weaknesses.

[1] R. Agrawal, and R. Skrikant. “Privacy-
preserving Data Mining.” in Proc. of 2000 Int. 
Conf. of Management of Data. pp 439-450.
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Effects of the Original Distribution
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Variance and Covariance

● Variance

● Covariance

● These equations produce the same results when 
compared to the Kronecker method.

Var  x i=
[∏i=1

D
i ]−1

2

N
⋅P Y=x i ⋅1−P Y=x i 

Cov  xi , x j=
[∏i=1

D
i ]−1

2

N
⋅P Y=xi ⋅P Y=x j 
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Complexities of the Reconstruction 
Equations

● One-dimensional matrix multiplication:
● O(α2) 

● One-dimensional negative survey equation:
● O(α)

● D-dimensional reconstruction of natural extension.
●

● D-dimensional reconstruction with matrixes.
●

● D-dimensional reconstruction with negative surveys
●

O ∑i=1

D [∏ j=1 , j≠i

D
i

2
 j ]

O D⋅∏i=1

D
i 

O [∏i=1

D
 i ]⋅[∑i=1

D

Di (D - i)⋅max ]
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Kronecker Technique

● Turns a MDNS into a SDNS.
● The perturbation matrix used is the Kronecker 

Product of the individual perturbation matrices for 
each dimension.  

● Y is marshalled into a vector.
● The kronecker product is multiplied with the vector 

to obtain the estimated distribution A.
● A is then demarshalled.
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MDNS Strengths

● Energy  efficient at both node and base station.
● All samples are guaranteed to be preserved.
● Allows dimensional adjustment which other 

perturbation matrices do not.
● Allows utility to be known                          

apriori.
● Most optimal warner                               

scheme.
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Magnification of Errors

● Probability of the expected value for the bins of 
Y deviating passed one standard deviation.


