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Abstract—Sensor networks involving human participants will
require privacy protection before wide deployment is feasible.
This paper proposes and evaluates a set of protocols that enable
anonymous data collection in a sensor network. Sensor nodes,
instead of transmitting their actual data, transmit a sample of
the data complement to a basestation. The basestation then
uses the negative samples to reconstruct a histogram of the
original sensor readings. These protocols, collectively defined
as a negative survey, are computationally simple and do not
increase communication overhead. Thus, the negative survey can
be implemented efficiently on existing sensor network platforms.

We analyze the accuracy of the negative survey under a
variety of conditions and define a range of parameter values
for which it is practical. We also describe an example traffic
monitoring application that uses the negative survey to classify
traffic behavior. We demonstrate that for reasonable traffic
scenarios, the system accurately classifies traffic behavior without
revealing private information.

I. INTRODUCTION

Many sensor networks in social settings will require new
privacy and confidentiality guarantees in order to protect
individual participants[20][16][18].Privacy and confidentiality
issues have not been adequately addressed in sensor net-
works for at least two reasons. First, early sensor network
deployments, such as environmental monitoring[3], did not
have strong privacy or confidentiality requirements. Second,
implementing traditional forms of data protection on resource
constrained devices such as sensor networks is difficult. Al-
though recent research has demonstrated that encryption is
possible within the constraints of these devices[17][21], the
relative overhead remains imposing, and other issues such as
key propagation remain challenging[6].

We adapt a set of protocols that enable anonymous data
collection[8] and evaluate these protocols in the context of
sensor networks. By anonymity, we mean that it should not
be possible to match sensitive data to a specific sensor node.
Anonymity is accomplished by ensuring that sensor nodes,
instead of transmitting their actual data, transmit a data value
that was not collected. The basestation then uses these negative
samples to reconstruct a histogram of the actual data. These
protocols, collectively referred to as a negative survey, are
computationally simple and do not increase communication
overhead. Thus, the negative survey could be implemented
efficiently on existing sensor network platforms.

In this paper, we describe the protocols that constitute the
negative survey and describe their mathematical properties
(Section II). We also discuss the computational requirements

of the individual sensor nodes. Section III examines various
computational tradeoffs and validates the analysis using a
Matlab simulation. This information is used to predict the
circumstances under which the approach is practical. The
results of the analysis suggest that the approach can be
employed under a wide variety of conditions.

In Section IV, we describe a hypothetical traffic analysis
application that highlights how the negative survey could
be applied to classify traffic behavior. Initial results suggest
that the negative survey can classify traffic accurately for
reasonable traffic scenarios. Section VI discusses related work.
Finally, Section VII discusses future work, and we summarize
our conclusions in Section VIII.

II. PROTOCOLS

The proposed system, referred to as a negative survey,
consists of two protocols. These protocols and the discussion
regarding their information-theoretic characteristics were orig-
inally detailed in [8] and are replicated here for completeness.
Each node in the sensor network runs a node protocol that
determines what data a sensor node sends back to the basesta-
tion. For example, in the traffic monitoring application, sensor
nodes embedded in the vehicle would transmit automobile
speeds. Once the sensor nodes have propagated the relevant
data to the basestation, the basestation then runs a corre-
sponding basestation protocol to reconstruct the statistical
distribution of the data.

A. Node Protocol: Selecting a Negative Category

The node protocol determines what data the sensor node
transmits to the basestation. This protocol selects data from
a finite set of discrete data values. For many applications,
such as traffic monitoring, these data values represent mutually
exclusive and exhaustive categories. For example, categories
for traffic monitoring would consist of speed increments (0−9
mph, 10 − 20 mph, etc). When discussing the node protocol,
we use the terms categories and data values interchangeably.

We assume that every sensor node chooses from the same
set of categories. Each node in the sensor network occasionally
receives a query requesting data. These queries are similar in
concept to those used in query-based languages[23][14][15]
and are used to trigger the node protocol. We currently assume
that each sensor node has exactly one category to report.

Upon receiving a query, the node protocol determines which
category the node will transmit to the basestation. The node



first identifies the initial category p. Instead of transmitting p
to the basestation, the node selects another category uniformly
at random and transmits this category. More precisely, let
U be the set of all categories. The protocol then chooses a
category uniformly at random from the set U − {p}. In this
way, nodes are said to transmit negative values. If the sensor
node transmits p, the original category, we say the node is
participating in a positive survey.

If an adversary intercepts a transmission from a sensor node,
he or she learns only a category that the sensor node did not
record. Assuming that there are more than two categories,
the protocol preserves a high degree of privacy by making
it difficult to correctly guess the actual category which was
sensed. The node protocol is computationally simple and does
not increase communication overhead because the number of
messages transmitted remains the same compared to a positive
survey.

B. Basestation Protocol: Reconstructing the Histogram

Once the sensor nodes transmit the negative values, the
basestation protocol reconstructs the original frequency distri-
bution. This protocol assumes that the basestation knows both
the number of sensor nodes and the set of categories used by
the nodes. Assume that there are t categories and n sensor
nodes. Let Ri be the reported count for category i transmitted
by the sensor network. Let Ai be our estimate of the number
of nodes that belong in category i. Finally, for a particular
category i, let Ci,j be the expected number of sensor nodes
in category j that report i.

In order to calculate Ai for all i, the basestation protocol
uses the equation:

Ai =
∑

j 6=i (Rj −
∑

k 6=i,j Cj,k)

The node protocol dictates that given a category to which
the sensor node belongs, the probability of selecting another
category is 1

(t−1) , giving∑
k 6=i,j Cj,k = ( 1

t−1 )
∑t

k 6=i,j Ak

Finally, by observing that:∑
j 6=i Rj = n − Ri∑
j 6=i Aj = n − Ai

we derive:

Ai = n − Ri(t − 1)

Because Ai represents the estimated number of sensor nodes
in category i, dividing both sides of the equation by n gives
the relative proportion (represented as Âi). Using this estimate,
we next estimate the variance associated with each category:

var(Âi) = (t−1)2

n−1 (Ri

n )(1 − Ri

n )

Similarly, the covariance with respect to two proportional
category estimates is given by:

cov(Âi, Âj) = − (t−1)2

n−1 (Ri

n )(Rj

n )

C. Discussion

Due to the limited computational capabilities of current
sensor nodes such as the Mica21 and TelosB2 platforms, it is
desirable to shift computational burden to the basestation when
possible. This division of labor extends the overall lifetime of
the sensor network[11]. The negative survey gives an example
of how this can be achieved in a way that enhances the privacy
of individual observations.

The basestation protocol itself could be distributed by allow-
ing nodes, other than the basestation, to reconstruct a partial
histogram. These partial histograms could then be merged to
produce a final histogram. Investigating distributed basestation
protocols is a subject of future work.

The node protocol is simple and adds only a small compu-
tational overhead: choosing the negative data category requires
randomly selecting an index in the array representing all the
categories and checking to ensure that the selected value is not
equal to the original data category. We assume that choosing a
random value takes constant time. The node protocol also does
not increase communication overhead. Because the negative
answers are drawn from the same pool as the positive answers,
there is no increase in message size.

The basestation protocol runs in O(t) time, where t is the
number of categories used in the survey, assuming that all the
Ri values have been tabulated.

The confidentiality of sensor nodes relies on minimizing the
amount of information gained by an adversary. Because an
adversary who observes a single transmission from a sensor
node learns one category that the node is not a member of,
the adversary learns a small amount of information about
the node. The amount of information can be characterized
using Shannon’s uncertainty measure, in which the amount
of information gained from a positive survey can be written
as:

−
∑

i

pilog pi (1)

where pi is the probability of category i being true.
The information gained from a negative survey, in which

only one category Xs is selected, can be computed as the dif-
ference in information of two positive surveys: the information
obtained by the positive version of the survey (given in Eq.
1), minus the information gained from the same survey once
Xs is no longer an option. This can be written as:

−
∑

i pilogpi +
∑

i 6=s P (Xi = T |Xs = F )log P (Xi =
T |Xs = F )

where P (Xi = T |Xs = F ) is the probability that category
i is true in a positive survey after Xs has been removed as
an option. It is easy to see that the information gained from
a negative survey is at most the quantity obtained from its
positive counterpart.

1www.xbow.com
2www.moteiv.com



III. EVALUATION

There is a tradeoff between protecting the confidentiality
of a node’s data values and the ability of the basestation
to reconstruct the data. This tradeoff can be managed for
particular applications by varying the number of sensor nodes
participating in the survey and varying the number of cate-
gories each sensor node transmits.

A. Methods

We simulated the node and basestation protocols in Matlab
to test the accuracy of the reconstructed distribution and to
determine the conditions under which it can be applied. We
varied the number of sensor nodes, the number of categories
used in the survey, and the distribution of the data (positive)
values, while restricting a sensor node to choose only a single
category per query.

For our tests, we pre-selected a distribution; each node was
assigned a random variable drawn from that distribution, which
indicated its positive category. The simulation ran the node
protocol on each sensor, transmitted the negative data, and then
ran the basestation protocol to reconstruct the distribution. This
procedure allowed us to compare the results of the histogram
reconstructed from the negative data with the actual positive
data.

We tested the algorithm on three different distributions:
normal, exponential, and uniform. The uniform distribution
chooses each category with uniform probability between 0
and 1. Each test was run with twelve categories and 6000
sensor nodes. We normalized and compared the reconstructed
histogram with the original using the following root mean-
square error (RMSE) test:

RMSE =
√∑n

i=1(positive(i) − negative(i))2

As Figure 1 shows, the reconstructed histogram matches the
original distribution well for all three distributions. However,
the negative survey occasionally generates negative solutions
for some of the categories. Negative values arise when the
expected contribution for a particular category exceeds the
actual reported total for that category. This is a statistical
artifact; as the number of samples is increased the number
of negative solutions will also decrease.

B. Varying the Number of Categories and Samples

In order to understand the effect of the number of categories
and samples on error, we conducted tests that varied the
number of sensor nodes participating in the survey, and the
number of categories from which each sensor node must
choose. Intuitively, we expect the error to decrease as the
number of samples increases, assuming a constant number of
categories. We also expect the error to increase as the number
of categories is increased since the number of choices for the
sensor node also increases.

For the first test, we used 6000 sensor nodes and varied the
number of categories from 4 to 204 in increments of 2. We
ran this test independently ten times and took the average error
from all ten runs. We ran this test for the normal, uniform, and

Fig. 1. Each panel shows the reconstructed histogram with the corresponding
actual histogram for three distributions. Each trial used twelve categories and
6000 sensor nodes.



Fig. 3. As the number of categories is increased, the number of sensor nodes
needed to maintain a constant RMSE also increases. Each point represents a
measured RMSE value that is within a ±.008 range of the tested RMSE
values.

exponential distributions. Figure 2 shows that error increases
with the number of categories in a near-linear fashion.

For the second test, we tested the effects of varying the
number of sensor nodes. We used 14 categories and varied
the number of nodes from 100 to 6000 in increments of 100.
Again, we ran this test for normal, uniform, and exponential
distributions and plotted the average error from ten indepen-
dent runs. Figure 2 shows that the error falls off quickly as
we increase the number of samples and then levels off.

In order to compare the error associated with the negative
survey to a baseline sampling error, we ran a simple positive
survey with 14 categories and varied the number of sensor
nodes from 100 to 6000. We used RMSE to characterize
the difference between the positive survey histogram and the
actual histogram used for the test. As expected, the error
quickly decreases to zero for both the normal and exponential
distributions as we increase the number of sensor nodes (data
not shown). Although the error associated with the uniform
distribution also decreases, it does not reach zero due to the
nature of the distribution.

C. Maintaining a Target Accuracy

Given a target RMSE, we tested the relation between the
number categories and the number of sensor nodes. This
information is useful for applications where a tolerable error
threshold is known beforehand. In Figure 3, we plot the
number of sensor nodes needed to maintain a target RMSE
while increasing the number of categories. We did this for
target RMSE values between 0.1 − 0.8 in increments of 0.1.

As the number of categories increases, we must also in-
crease the number of samples to maintain a constant RMSE
value. All three distributions (normal, exponential, and uni-
form) behave similarly. This implies that we can adopt one
method for maintaining a constant accuracy without neces-
sarily knowing the distribution of the positive data ahead of

time.

IV. APPLICATIONS

This section describes how the negative survey could be
used in privacy-sensitive applications. The negative survey is
appropriate for applications in which the distribution of data is
important rather than specific answers from sensor nodes. For
example, an application in which users want to know how busy
a restaurant is could aggregate discrete location data (such as
a city block) provided by individual users’ mobile phones.
Applications in which data must be associated with specific
sensor nodes will likely require other forms of anonymization.

A. Anonymous Traffic Monitoring

Sensor networks have the potential to simplify automo-
bile traffic monitoring[5] and have been used in real-world
applications[12]. Traffic monitoring is used in major cities,
for example, to make decisions regarding street layouts. It
can also be used to identify bottlenecks due to traffic signals.
Traffic monitoring could also be useful for individuals. Some
road intersections may be congested, while others may be
frequented by dangerous drivers. By monitoring traffic con-
ditions, individual drivers could avoid roads with problematic
conditions.

Although aggregated information about traffic could be
useful, both for individuals and traffic engineers, most drivers
would naturally be reluctant to have their driving monitored
for fear of legal or insurance repercussions. If, however, the
privacy of individuals could be guaranteed, then the larger
community could benefit from aggregated information without
loss of individual privacy. Similar considerations constrain the
collection of health information in epidemiological settings.
Although privacy enhancing databases address some concerns,
they generally require the individual to trust that his or her
information will be sanitized in a way that protects privacy.

In the traffic monitoring example, the negative survey is
used to provide end-to-end anonymity to individual drivers.
Observers monitoring the traffic would still have access to the
real traffic distribution. Note that in the earlier sections, we
considered the case in which a single reading is transmitted to
the basestation. For the traffic application, sensors might send
a periodic tally, say every five minutes.

We assume that each vehicle is equipped with a speed
sensor. The speed sensor records the current speed of the
host vehicle and the actual speed limit of the road on which
the vehicle is traveling. We assume that the speed limit is
provided to the sensor, possibly by a basestation located near
the road. The basestation collects the sensor data and performs
the histogram reconstruction within a locally constrained area,
e.g., a single intersection or section of roadway. As explained
in Section II, each sensor contains a list of pre-determined
categories. For this application, each category represents a
set of relative speeds above and below the speed limit. An
example with six categories is given below:

1) 10+ mph over the speed limit
2) 5 - 9 mph over the speed limit



Fig. 2. The error increases with the number of categories in a near-linear fashion. As the number of sensor nodes is increased, the error initially decreases
quickly and subsequently decreases at a slower rate.

Fig. 4. Three speed distributions characterize different traffic conditions.

3) 0 - 4 mph over the speed limit
4) 0 - 4 mph under the speed limit
5) 5 - 9 mph under the speed limit
6) 10+ mph under the speed limit
In order to determine the proper category, each sensor

node takes the difference between its current speed and the
known speed limit and chooses a category according the node
protocol. The sensor node then transmits this negative value
to the basestation.

The basestation, in turn, receives data from all the sensors
and reconstructs the histogram. After constructing the his-
togram, the basestation classifies the histogram into one of
three traffic behaviors. Each traffic behavior is distinguished
by a canonical speed distribution as illustrated in Figure 4.
These speed distributions attempt to capture congested, safe,
and fast traffic behaviors. We assume that all traffic obeys one
of these three behaviors.

A safe speed distribution is characterized by a normal curve

centered in the 0 - 4 mph category. A congestion speed
distribution is characterized by a skewed-normal curve that
leans towards the categories under the speed limit. Finally,
the fast distribution is a bi-modal curve. The larger mode
represents speeds centered near the 0 - 4 mph category, while
the smaller mode is centered near the faster speeds. These
speed distributions were derived from real-world patterns[4].

The simulation recorded the average classification accuracy
with respect to the number of vehicles participating in the
survey. The accuracy was measured as the ratio of the number
of correct classifications to the total number of classifications
over ten independent runs. We varied the number of vehicles
from 100 to 10000 in increments of 100. Each sensor had
access to 12 speed categories. We ran the experiment once for
each of the speed distributions. Within a single experiment,
the actual speed distribution was assumed to remain constant.

After the basestation constructed the histogram, the negative
survey results were compared to the three canonical speed
distributions using a modified RMSE test. The comparison
that yielded the lowest RMSE value was chosen as the actual
speed distribution. Results of this test are shown in Figure 5.

In order to validate the algorithm, we also ran the test using
a positive survey protocol. 100% accuracy was observed using
the positive histogram for all settings. Therefore, we conclude
that any error is due to the inaccuracy of the reconstructed
histogram.

The classification scheme performed well for all three
speed distributions. On average, classification accuracy reaches
80% with 3000 readings. Increasing the number of vehicles
increased accuracy to over 90% and eventually to 100%. More
complex classification algorithms could increase the accuracy
(or the number of categories could be reduced) to improve
accuracy in settings with a low number of vehicles. However,
4000−6000 vehicles in a traffic area is consistent with typical
highway and interstate flow3. These results illustrate the kind

3http://www.mrcog-nm.gov/maps_on-line.htm



Fig. 5. Classification accuracy for three traffic conditions. Each point is the
percent correct classifications in ten trials.

of data rates that would be appropriate for a negative survey
approach.

The purpose of this application scenario is not to demon-
strate a real-world classification algorithm for traffic monitor-
ing. Real-world deployments would likely include more kinds
of traffic behaviors and use more sophisticated classification
algorithms. The application does show, however, that a nega-
tive survey could supplement existing applications to increase
anonymity.

V. COMPARISON TO RANDOM DATA PERTURBATION

The negative survey resembles the data perturbation algo-
rithms proposed by Agrawal et al[1] and more recently by
Zhang et al[24]. Their technique perturbs the original data set
with random noise drawn from a known distribution. This per-
turbed data is then used to reconstruct the original distribution
using an iterative algorithm based on Bayes Theorem.

The data perturbation algorithm assumes that the data
and the additive noise are both drawn from a continuous
domain. However, our work assumes the opposite: the data are
drawn from a set of discrete categories. To compare the two
approaches, we modified the data perturbation algorithm to
handle data and noise drawn from a discrete set of categories.
With our modification, it is possible that the perturbed value
will lie outside the discrete data domain. In that case, we can
either perform the modulo operation on the perturbed data or
allow the boundary domain values to subsume all extreme data
values. For our tests, we used the former method.

We compared the negative survey and the data perturbation
algorithm on two datasets. Each dataset consists of a unimodal
Gaussian distribution. For the perturbation algorithm, the noise
values were drawn from the set of discrete categories ac-
cording to a Gaussian distribution. The first dataset contained
12 categories and 6000 sensor nodes. The second dataset
contained 64 categories and 32000 sensor nodes. We chose
interval sizes of three and four categories for the perturbation
algorithm and assumed that the distribution within an interval
was uniform.

Figure 6 shows that both algorithms perform well and are
able to identify the distribution for 12 categories. However,
the negative survey reconstructs the original distribution more
accurately. This is because, for a low number of categories,
the data perturbation algorithm produces perturbed values that
exceed the data domain set. The modulo operation modifies
the noise distribution, making reconstruction prone to error.

For 64 categories, the Agrawal algorithm is able to ac-
curately reconstruct both the flat tail and the mode of the
distribution. The negative survey, on the other hand, is able to
reconstruct the mode of the distribution but fails to accurately
reconstruct the tail. We conclude that the negative survey is
advantageous for applications with a relatively small number
of discrete categories. The random data perturbation algorithm
is more applicable for scenarios involving a large number of
discrete categories or a continuous data domain.

Finally, reconstructing the histogram using the Agrawal
algorithm is relatively computationally intensive. The algo-



Fig. 6. Comparison of the negative survey and random data perturbation on a unimodal distribution for a low and high number of categories.

rithm is quadratic[1] with respect to the number of intervals
and is run multiple times until the algorithm converges. Our
algorithm, however, is strictly linear with respect to the number
of categories. This implies that the negative survey can be run
on less capable basestations.

VI. RELATED WORK

The negative survey[8] is an extension of negative
databases[10][9]. The negative database, similar to the neg-
ative survey, stores a compressed form of the complement of
a data set instead of the actual data. The negative database is
able to answer certain queries, such as SELECT, in reasonable
time. Reconstructing the entire positive database, however, is
known to be NP-Hard. Unlike negative databases, our methods
do not explicitly store the set of all strings representing the
data complement.

Randomized response techniques (RRTs)[22] are an alterna-
tive surveying method designed to estimate the proportion of a
population that belongs to a particular group while protecting
the privacy of individuals participating in the survey. It does
this by offering surveyors two possible questions in lieu of a
single question. For example, the interviewee might be asked:
Q1: Do you belong in Group A?
Q2: Do you belong in Group B?
Individuals are asked to select one of the two questions to an-
swer given a randomizing device provided by the interviewer.
Individuals give a yes or no answer to one of these questions,
but do not reveal which question was answered. In this way,
the results of the survey combined with the characteristics
of the randomizing device provides enough information to
reconstruct the proportion of population members in each
group.

Zhu et al[25] propose using silence to communicate useful
information between sensor nodes. Although this method is
in a similar spirit to the work reported here, it does not
attempt to provide anonymity. Instead the protocol attempts to
reduce communication overhead while ensuring confidentiality
between two nodes. This is accomplished via start and stop

tokens; the amount of time between the start and stop tokens
represents the data to be transmitted. This method has the
advantage of low communication overhead, although trans-
mission bandwidth may suffer. Currently, a complete protocol
based on this unique idea does not exist.

Data privacy can be ensured using cryptographic techniques
and recent work has shown that it is possible to use encryption
techniques on existing sensor platforms[21][13]. However, the
computational costs are still large compared to our protocol,
and key distribution remains a challenge[6].

Our work has similar characteristics and goals as secure
election algorithms based on cryptographic methods. However,
secure election algorithms generally involve the exchange
of private and public keys to sign and encrypt the rele-
vant election results. Using public and private keys, accurate
election results can be tabulated with zero or more central
tabulating facilities. For more information regarding this class
of algorithms, the reader is referred to [19].

Secure multiparty computation algorithms allow nodes to
compute any function of many variables without each node
knowing the inputs of the other nodes. For instance, secure
multiparty algorithms can be used to calculate the average
salary of a group of people without the individuals learning
the actual salary of each person. These algorithms, unlike
the negative survey, require cryptographic methods and of-
ten require synchronized communication between a known
number of participants. Recent work on collaborative filtering
with privacy could also be adapted for the scenarios we are
addressing[2].

VII. FUTURE WORK

Social aspects of negative surveys remain an interesting
avenue of research. Users may be more willing to participate
in negative surveys and may be more honest while taking
such surveys This could reduce the amount of bias in the
data. Further analysis of the negative survey with respect to
surveys conducted by humans, as opposed to sensor networks,
is explored by in[7][8].



A major assumption in the current work is that the data
from different sensor nodes are not correlated. We assume
that each measurement made by a sensor node is independent
of other sensor nodes. However, this may not be the case in
all applications. Two sensor nodes placed in close geographic
proximity may sense correlated temperature values. Therefore,
by knowing the locations of these nodes, more information
could be gained from a single negative reply and the level of
anonymity decreased. Similarly, data reported by a sensor node
may be correlated with past data. This additional information
could also be used to our advantage to estimate individual data
values.

We are interested in using the negative database framework
more directly on sensor networks. Assuming that the sensor
network is a massively distributed database[15][23], with each
node containing a small portion of the entire database, each
sensor node could then store its own portion as a negative
database. This would increase security in the face of node
capture; even if intruders are able to obtain the sensor node
physically, it would be difficult for an intruder to reconstruct
the entire positive database.

VIII. CONCLUSION

This paper describes the application of novel methods for
sensor networks to collective sensitive data. Our methods,
collectively described as a negative survey, do not require any
form of encryption, and have low computational overhead.
Because the negative survey transmits the same amount of
data as a corresponding positive survey, there is no additional
communication overhead.

A detailed performance study was conducted, in simulation,
with a wide range of parameter values. An interesting result
suggested by the simulations is that the accuracy of the
reconstructed data is relatively insensitive to the underlying
distribution from which the samples are drawn. This property
increases the likelihood that we could design a sensor network
based on these techniques even when the underlying distribu-
tion of data is unknown ahead of time.

Finally, realistic application scenarios, using the negative
survey, was described. One of these applications, anonymous
traffic monitoring, uses the negative survey protocols to clas-
sify traffic behavior. The classification scheme was shown to
be accurate for a reasonable number of vehicles in high traffic
areas.

The negative survey technique shows how the redundancy of
sensor networks can be exploited to enhance privacy. As sensor
network applications become more human-centric, we expect
that this basic principle of trading redundancy for privacy
enhancement will become an important tool in sensor-network
design.
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