
The Visibility Graph Among Polygonal Obstacles:
  a Comparison of Algorithms

by John Kitzinger
bejmk@yahoo.com

B. S., Computer Engineering,
University of New Mexico,1993

M. S., Computer Science, 
University of New Mexico, 2003

ABSTRACT
This paper examines differences of four approaches 
in finding the visibility graph of a polygonal region 
with obstacles defined by simple polygons.  Each 
has been implemented and tuned.  Experimental 
comparisons via time measurements have been 
carried out against a variety of testcases ranging in 
graph density from maximal, O(

† 

n2), to minimal, 

† 

W(n).  In this manner, expected asymptotic time 
bounds have been verified with crossover points 
between the algorithms identified.
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Introduction

In computational geometry problems, visibility has been an important property to find.  Of 
course, computational visibility problems vary in form.  Among the two dimensional variety, 
sometimes the problem is restricted to visibility in a simple polygon (no obstacles) [Her87] 
[GHLST87] [KM00].  More generally, there can be obstacles, sometimes called holes or 
islands.  The obstacles can be restricted to special shapes, such as rectilinear, circular, line 
segments, or convex polygons; or they can be more general, such as simple polygons1.  The 
problem may be in finding the visibility of just one vertex or finding the visibility of all 
vertices.  A visibility graph, 

† 

Gs =(V,E), may be the structure that contains the visibility 
information.  The edges of the visibility graph are represented between any two vertices if 
there are no edges obstructing the visibility between them.  Other structures include the 
vertex-edge visibility graph [GM91] [OS97a] [OS97b], the visibility polygon (or view from 
a point) [EGA81] [EOW83] [AGHI86] [Poc90] [Veg90] [HM91] [PV93] [OS97a] 
[Riv97], the visibility diagram [Veg90] [Veg91], the visibility complex [PV93] [PV95] 
[Riv95] [Riv97], the parallel view [EOW83] [AGHI86] [GM91], and neon visibility 
[Poc90] [Veg91] [PV93].  The vertex-edge visibility graph is touched upon in the “Other 
Aspects and Comparisons” section, but none of these other ideas are explored in this paper.

This paper focuses on finding the entire visibility graph among polygonal obstacles.  The 
obstacles are only restricted to being simple, i.e. no edge can intersect any other edge.  The 
visibility graph problem itself has long been studied and has been applied to a variety of 
areas.  A common use for it has been for finding the shortest path2.  Exploiting the fact that 
the shortest path consists of arcs of the visibility graph, one can find the shortest path by 
running Dijkstra’s algorithm [Dij59] on it.  The shortest path has been used in robot 
motion planning.  This was identified in 1979 in Lozano-Perez and Wesley’s work 
[LPW79].  The visibility graph can also be used to solve the art gallery problem by finding 
the minimum dominating set of the visibility graph (NP-hard).  More recently, visibility has 
been used in pursuer-evader problems, e.g. in [LSC99].  Finally, the visibility complex, 
which contains more information than the visibility graph, has been used in illumination 
problems [ODRP96].

D.T. Lee in his 1978 Ph.D. dissertation [Lee78] wrote about the first nontrivial solution to 
the visibility problem running in O(

† 

n2 log n ) time.  In the mid-to-late1980’s a series of 
1 The term “simple” is a misnomer because it actually permits concavity to any degree - the only restriction 
is that the edges form a closed chain with no intersections.
2 Some work has been done for finding the partial visibility graph where only the tangents around obstacles 
are included since the shortest path would not need other visibility edges to the obstacle [KM88] [PV95].
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O(

† 

n2) papers appeared.  In 1985, E. Welzl described a technique [Wel85] based on an 
arrangement of the dual of the vertices [CGL83] [EOS83] followed by a topological sort to 
order the vertex pairs in O(

† 

n2) time.  This technique is used in other computational 
geometry problems as well.  Welzl’s technique requires O(

† 

n2) working space.  It works for 
a set of line segments and can be adapted for sets of polygons.  Edelsbrunner and Guibas 
[EG86] later improved the working storage of the topological sweep to O(

† 

n).  About the 
same time, Asano, et. al. offered two other versions with arrangements also requiring O(

† 

n2) 
space:  the first via triangulation and the second via scanlines and segment splitting.  These 
techniques construct the polar order one vertex at a time as opposed to Welzl’s technique 
that produces a good permutation (not strictly sorted, but good enough) among all vertex 
pairs at once.  Asano’s technique can also handle dynamic updates in O(

† 

n) time.  In 1988, 
a paper by Overmars and Welzl describes yet another O(

† 

n2) technique that does not need to 
calculate the dual arrangement and uses only O(

† 

n) working space.  The paper also 
describes a second algorithm running in O(|e|

† 

log n ) time and O(

† 

n) space, where |e| is the 
number of edges in the visibility graph.  It is efficient for sparse graphs, i.e. when |e| = O(

† 

n
).  Of course, all of the O(

† 

n2) algorithms are optimal when the graph is dense, in other 
words when |e| = O(

† 

n2).

Towards the end of the appearance of the O(

† 

n2) papers, two output-sensitive approaches 
became known [GM87] [GM91] [KM88] [KM00].  Ghosh and Mount show a planar-scan 
technique using triangulation and funnel splits to achieve O(|e| + 

† 

nlog n ) time bounds.  
The other work by Kapoor and Maheshwari essentially achieve the same time bounds using 
corridors which are based on a triangulation dual.  With both of these, the time is basically 
bounded by the number of edges in the visibility graph, but it can be dominated by the time 
it takes to triangulate (which optimally is O(

† 

nlog n ) for a polygon with simple polygonal 
holes).  Thus, both of these approaches are optimal for graphs with density as low as |e| = 
O(

† 

nlog n ) but no lower.
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What is described here is the performance achievable with several of these algorithms.  For 
comparison, a naive (i.e. trivial) approach is included which runs in O(

† 

n3) time.  After this, 
Lee’s algorithm is described which runs in O(

† 

n2 log n ) time, followed by Overmars and 
Welzl’s method (being one of the more elegant O(

† 

n2) algorithms).  Finally, the Ghosh and 
Mount approach represents the last algorithm described which has a theoretical running 
time of O(|e| + 

† 

nlog n ).  Certain parts of the implementations required some adaptation.  
First, in the Overmars and Welzl method, the algorithm had to be adapted from strictly non-
intersecting line segments to polygons.  Second, in the Ghosh and Mount paper, problems 
were identified and corrected.
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Input/Output Assumptions

Input
Across all implementations, the same input file format is used.  To specify a polygonal 
region, the user specifies the outer polygon plus m polygonal obstacles.  The polygons can 
be simple where the vertices appear consecutively, counter-clockwise for the outer polygon 
and clockwise for the obstacles.  The general rule is that the inside of the polygon (free 
space) lies to the left of an edge, where direction of the edge is defined going from the 
lower-numbered vertex to the higher-numbered vertex.  Of course the segments of a 
polygon may not intersect itself, as per the definition of simple, and the usual assumption 
that the obstacles are disjoint from each other is made.

Two other important input assumptions often found with many computational geometry 
problems are general position and non-collinearity.   These assumptions might be made in 
order to make a proof easy to follow.  However, the implementations described in this paper 
were coded for practical use, so alleviating these assumptions allows more realistic input.3  
 
General position  General position means the restriction of making all vertices have unique 
x-coordinates, i.e. not allowing the vertices to lie along the same vertical line.  This 
assumption is not made in any of the implementations.

Non-collinearity  By definition, non-collinearity disallows any three points from lying on 
the same line.  This restriction has been partially alleviated (see Figure 1).  As long as the 
points are not adjacent along the polygonal boundary, then collinear points are allowed.  
Only points along adjacent edges may not be collinear.  However, even in this case, the 
restriction is not too severe because the input could be preconditioned in O(

† 

n) time to 
remove instances of this kind of collinearity.

A B
C

(a)                                               (b)

Figure 1 - Examples of Collinear Points
(a) allowed (b) disallowed

3  Of course, when this kind of assumption is relaxed, it should have no impact on overall time or space 
bounds.  The tradeoff to this is that it may increase code complexity and constant factors of time.

4



In all the implementations, collinearity does not imply visibility, i.e. collinear points are not 
transitive with respect to visibility.  For example, in Figure 1(a), vertices A, B, and C are 
collinear to each other, with A being visible to B, and B being visible to C, but A is not 
considered visible to C.  This interpretation actually will produce less edges in the visibility 
graph as compared to the interpretation of transitivity (making A visible to C).  On the 
downside, this affects shortest path calculations by adding hops; for example, the shortest 
path from A to C is {A,B,C}, not {A,C}.  However, the overall distance will turn out to be 
the same as compared to visibility among collinear points having a transitive meaning.

Another issue about collinearity is that sometimes it is difficult to exactly specify the 
coordinates of points that are supposed to be collinear to each other.  To help with this, all 
of the implementations described in this paper allow the user to specify a tolerance (given 
by some small epsilon) in which the angles or slopes may deviate to still be considered 
collinear.  This also allows slope and angle calculations within the implementations to lose 
some precision (which is inevitable with IEEE floating point representation).

Output
All of the implementations calculate the inner visibility graph.  The inner visibility graph 
only includes those visibility segments that are inside the polygon (and outside the 
obstacles).  The segments that would occur on the outside (and on the inside of obstacles) 
are not included.  In the section called “Other Aspects and Comparisons” section, there is 
more discussion of the outer visibility graph.

The expected output of the visibility graph can be in standard output text.   For example,
visible segment from 0 to 1
visible segment from 1 to 0

shows that visibility exists between vertex #0 and #1.
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Naive Algorithm

Overview
A simple solution to the problem would be to just look at every edge to see if it 
blocks/interferes with a given pair of vertices.  If none interfere, then the two vertices are 
visible to each other (otherwise not).  Of course, to produce the entire visibility graph, the 
procedure loops through every pair of vertices.  The time analysis is simple also:  there are 
(n choose 2) pairs of vertices which is O(

† 

n2) and there are O(

† 

n) edges (one for every 
vertex) so this means the total time is O(

† 

n3).  As for storage, the algorithm requires O(

† 

n) 
working space (at least to store the input), and if the visibility graph is stored - not just 
reported - then it requires O(|e|) memory.

Implementation Details
The implementation is straight forward.  Some tricks are obvious and are detailed in 
Appendix A along with what timing difference they make.  Two methods were identified for 
distance calculation:  law-of-sine method and intersection method.  It was found that the 
intersection method is slightly faster.  Also, this method can be modified (as was done for 
the timed version) to calculate squared distances which saves on a square root operation.  
However, the intersection method deals with slopes, so verticals have to be handled with care 
since slopes can be +Inf and -Inf.  Collinear points (three or more points on a line) gave 
some difficulty also.

As with all the algorithms, during development an openGL version was used for 
visualization and debugging.  Of course, the graphics part was removed to make a text-only 
version for performance measurements (timings).

6



Lee’s Algorithm

Overview
The algorithm attributed to D. T. Lee [Lee78] represents the first nontrivial solution running 
in O(

† 

n2 log n ) time.  The basic idea is simple:  for each vertex, sort the other points in 
angular order around it, then visit each one keeping track of the order of intersected edges 
made by the scan-line.  If the visited point is associated with the first edge in this ordered 
list, then it can be reported.  Otherwise, it must be obscured by some other edge appearing 
before it (with respect to the center) and so would not be reported.  Of course, the edge list 
must handle inserts and deletes in O(

† 

log n ) time which means using optimal sorting (of 
which many are available).

direction of 
angular scan

scan line

center

edge list: {5, 2, 1, 4, 3}

5
2

1
4 3

Figure 2 - Example of Lee Scan with Edge-List
 
Figure 2 shows the intuitive idea.  The edge-list here would be {5, 2, 1, 4, 3} - the order of 
intersecting edges from the center along the scan-line.  Of course, in reality, the scanline 
only stops at vertices (not in the middle of edges). 

a
b

c
d

center

5

9 10
3

8 7

6
2

1

Figure 3 - Basic Cases in the Lee Scan

What happens at each vertex visit depends on the polygonal edges associated with that 
vertex.  There may be two inserts, two deletes, or an insert and a delete.  Figure 3 shows 
these situations with vertices marked a, b, and c with edges marked 1-10.  Collinear points 
are handled as follows:  if several points lie along the same scan-line, the order is 
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determined by the distance from the center.  In Figure 3, vertex a would be visited, followed 
by vertex b, followed by vertex c.  Before a is visited, the edge-list would be {5, 9, 10, 3, 6, 
2}.  When a is handled, both its edges are deleted, so the edge-list afterwards would be {5, 
3, 6, 2}.  When b is handled, both its edges are inserted, so the edge-list becomes {5, 3, 8, 7, 
6, 2}.  When c is handled, one edge is deleted and the other is inserted.  The edge-list at the 
end would be {5, 3, 8, 7, 6, 1}.

Time analysis:  there are (n-1) vertices to be visited for each of 

† 

n2 centers.  At each of the 
(n-1), it takes O(

† 

log n ) for the search/insert/delete, thus making the time for one scan
(n-1)*O(

† 

log n ) = O(

† 

nlog n ).  The time for all 

† 

n  scans would then be 

† 

n*O(

† 

nlog n ) = 
O(

† 

n2 log n ).

Space analysis:  in the worst case, there may be O(

† 

n) edges in the edge-list at any one given 
time, but no more.  The angularly sorted list also requires O(

† 

n) storage during one scan, but 
can be freed after the particular center has completed.  Of course, in order to store the 
visibility graph, it takes O(|e|) space.

Implementation Details
This implementation uses an AVL tree for both the angular-sorted list and the edge-list.  
Many optimizations can be found which are detailed in Appendix B with the corresponding 
timings of the performance increases observed.  One trick was identified for vertices which 
require one edge insertion and one edge deletion.  Instead of doing these two operations, a 
single replace can be used keeping the order of the edge-list intact.  Also, the scan itself 
works when going only halfway around since visibility between a pair is mutual.  Lastly, 
distance calculations can be optimized as in the Naive method.

One hard part of implementing the Lee method is initialization of the edge-list.  If the scan 
starts at -

† 

p /2, all 

† 

n2 edges of the input have to be checked for inclusion into it.  When one 
or both of the endpoints are collinear to -

† 

p /2, it may or may not appear in the initial edge 
list depending on the direction of the edge.  Some other the difficulties arose with collinear 
points.  For instance, collinear edges never appear in the edge-list (at any angle) and this 
kind of edge’s furthest endpoint (and maybe its closest endpoint also) does not get reported 
as visible (because of the chosen semantics of collinear points).

Another difficulty was handling two adjacent edges that both have to be inserted at the same 
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time.  The basic distance calculation would return values that are almost equal (but not quite 
equal due to precision).  In this case, the angle made by the edge to the scan line must be 
used to determine the order of the two edges with respect to each other.
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Overmars and Welzl’s Algorithm

Overview
Welzl originally published a paper [Wel85] describing a technique based on a topological 
sort of the dual arrangement of segments in a plane.  Because it effectively sorts all (n 
choose 2) pairs of vertices, it runs in O(

† 

n2) time (as opposed to Lee’s O(

† 

n2 log n ) 
algorithm which scans one vertex at a time with a sort of all other points at each step).  The 
space required is O(

† 

n2).  This was later improved by Edelsbrunner and Guibas [EG86] to 
O(n) space.  Asano, et. al. [AGHI86] has one version of this based on triangulation and set-
union and another based on scanlines and splitting.  The Overmars and Welzl paper 
[OW88] represents a practical version without using dualization.  Instead, it is based on the 
concept of rotation trees.

The idea is simple:  for each vertex, a scanline is kept which runs from -

† 

p /2 to 

† 

p /2 hopping 
from vertex to vertex in its path.  During the main loop, it appears that all of the scanlines 
are proceeding simultaneously.  In fact, there are exact rules about determining the next 
vertex to process, and some vertices may finish their scan before others.

To understand the rules about finding the next vertex, the rotation tree must be understood.  
A rotation tree is a rooted planar tree where each vertex is a node and points to its parent.  
There are two special nodes: +Inf and -Inf, where -Inf is infinitely below and just to 
the right of all regular points, and +Inf is infinitely above and just to the right of all regular 
points.  Initially, all vertices point to -Inf as their parent and -Inf points to +Inf.  Also 
stored is the rightmost child (if a node is a parent), and its right and left siblings (if they 
exist).  The ordering of children is by slope:  the one with the smallest slope is the leftmost.

The loop that examines all pairs simply takes the rightmost leftmost leaf as the next segment 
to process and then reattaches it to the tree (while maintaining the property of being a 
rotation tree).  It can reattach to the left of its parent or to the tangent of the chain above it.  
Figure 4 and 5 show examples of the next segment processed and where it reattaches (the 
thick line).  When a vertex attaches to +Inf, it is finished.  The loop continues when all 
points have attached to +Inf.
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Figure 4 - Looping the Rotation Tree (One Iteration Re-Attaching to Grandparent)

Figure 5 - Looping the Rotation Tree (One Iteration Re-Attaching to Chain Above)

The details of the rotation tree can be found in Appendix F.  It has been used for other 
problems as well, but first appeared for the purposes of determining the visibility graph.  
Some extra information and processing of course is needed for this.  For each vertex, the 
nearest visible segment is kept.  If a point is associated with the nearest visible segment, then 
visibility between the two points is known.  When the point is not associated with this 
nearest segment, there is no visibility.  The nearest visible segment changes only when the 
scan passes it.  In this case, the new nearest visible segment becomes that of the endpoint of 
the segment just passed.  In this way, no edge-list must be maintained as in Lee’s algorithm.
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Implementation Details
Implementation was straightforward with the pseudocode telling almost every detail.   First, 
all the regular vertices point to -Inf in the right order, i.e. the leftmost child is the vertex 
with the greatest x-coordinate.  This requires a reverse-x-sort and was implemented with an 
AVL tree.

Another implementation decision concerns keeping track of the leftmost leaves.  Actually, 
the paper suggests a stack and it was implemented as an array.  So, all leftmost leaves are 
kept in this stack where the rightmost is kept at the top.  This eliminates the need for a 
priority queue and thus keeps the running time at O(

† 

n2).

A significant part of implementation lies in the fact that the algorithm was designed for 
visibility among nonintersecting line segments, not polygons.  So some adaptation was 
required.  With polygons, it gets a little more complicated because there are two edges 
associated with each vertex.  For instance, the nearest visibility edge can switch at a point to 
the adjacent edge (instead of inheriting the point’s nearest visible edge).

Finally, handling collinear vertices proved to be somewhat troublesome.  Here, because of a 
user-specified epsilon which defines the angular range of collinear vertices, the scanline for 
a particular vertex may reach any of the vertices among a set of collinears in any order.  The 
solution is to look ahead and delay processing until the scanline has finally gone beyond the 
set of collinears, keeping track of the nearest one.  Only the nearest one has a chance of 
being visible and only it can be used for the inherited nearest visible edge.
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Ghosh and Mount’s Algorithm

Overview
The approach detailed by Ghosh and Mount [GM87] [GM91] is basically a planar 
scan left to right proceeding by a variant of the Mehlhorn triangulation [Meh84c].  It 
runs in O(|e| + 

† 

nlog n ) time.  The 

† 

nlog n  factor represents the time for the 
triangulation (both at the start for sorting the vertices according the their x-
coordinate and a constant number of AVL insert/delete/finds at each point in the 
scan).  The |e| factor is the size of the visibility graph.

The convex chains of triangulation edges form a scan boundary by which new 
vertices being incorporated into the partial visibility graph can attach - see Figures 6 
and 7.  This then alters the shape of the scan boundary.  The algorithm also 
maintains a funnel data structure for each such edge and another data structure to 
hold the visible segments (as the algorithm proceeds in the scan) for each vertex.

1
5

14 13
12

1110

9

87

6
5
4

3

2

1 0

in

in

in

out

out

out

out

chain: [ edge(0,1), 1, 3, edge(3,4) ]
rightmost = 1

chain: [ edge(5,6), 6, 8, 9, 10,
         edge(10,11) ]
rightmost = 9

chain: [ edge(12,13), 13, 14, 15,
         edge(15,16) ]
rightmost = 13

16

Figure 6 - Chains in the Mehlhorn Triangulation
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Figure 7 - Various Cases of the Mehlhorn Triangulation

Some description of the funnel data structure follows here.  For each triangulation 
edge on the scan boundary, there are vertices to the left which can see it.  Each 
visible vertex is an apex of something called a funnel (also used in other 
computational geometry problems), where a funnel is defined uniquely by its apex 
and its lower parent.  An apex has two parents, lower and upper, where a parent is 
simply the first vertex in the convex chain toward one of the vertices of the 
triangulation edge.  One property of funnels is that they are empty.  Another 
property of funnels is that the apex sees the edge in the range of the intersection of 
the tangents between the apex and its parents.  A vertex visible to the edge can be 
part of more than one funnel since there can be more than one path to the edge 
vertices.  See Figures 8 and 9.
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Figure 8 - A Vertex As Apex of More than one Funnel
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7
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5
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3
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y

x

z(high)

z(low)

x
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sequence order:
 [ x( ), 10(x), 9(10),
   8(10), 7(8),  6(8),
   4(10), 3(x),  2(x),
    1(2), 0(x),  y(x) ]

Figure 9 - An Example of the Lower and Upper Tree for an Edge (x,y)  and the 
Induced Funnel Sequence (Lower Parent in Parens)

A hierarchical clockwise ordering of the funnels form a funnel sequence which can
be maintained by a doubly-linked list of funnels (id of apex + id of lower parent).  
The ordering can be found by means of a clockwise preorder traversal of the lower 
tree or a clockwise postorder traversal of the upper tree (Figure 9).  It turns out these 
are equivalent.  However, in implementation, no tree is stored.  Instead, a doubly-
linked-list maintains this funnel sequence order.

At each new vertex, two new triangulation edges are formed from one already on the 
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scan boundary.  With a procedure called split, the funnel sequences of the new 
edges can be determined from the funnel sequence of the one being split.  All of the 
funnels of the old edge will be visible to one new edge or both (in the case of both it 
is necessarily visible to the new vertex).

In order to meet the time bounds (|e|), the algorithm only visits apexes that are 
visible (to the new vertex).  But it also has to keep track of vertices that are hidden to 
the new vertex but which can see one of the edges because subsequent splits for 
vertices after this vertex (to the right) might have visibility.  So, from one visible 
vertex the algorithm must jump to the next one in constant time also appending these 
hidden pockets.  It does this using clever convex chain walks which exploit the 
emptiness of funnels, e.g. finding the upper and lower parents quickly.  For this, the 
following constant time operations have to be defined:  clockwise segment (CW), 
counter-clockwise segment (CCW), clockwise extension (CX), counter-clockwise 
extension (CCX), and reverse (REV).  CW and CCW are simply the next and 
previous visible segments. CX(a, b) is the very next vertex visible to b around the 
corner (turning right) from a to b.  CCX(a, b) is the same thing but turning left4.   
The reverse is simply the same visibility segment but going the opposite way, e.g. 
REV(a, b) = (b, a).
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Figure 10 - The Relevant Vertices of a Split when Adding a New Vertex
(a) The Emptiness from a Visible Vertex u to the Next One t

(b) The Upper Chains

Figure 10 depicts a simple situation during a split.  Figure 11 shows pseudocode of 
the split.  The edge split starts with vertices x  and y  which define the old 
triangulation edge.  Unless it is a trivial edge, there will be points in between x  and y  
4 The extensions may not be defined if the polygon edges get in the way.
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which are visible.  This is where the split procedure becomes recursive.  If some 
visible vertex u  is found, split will be called between it and its upper parent (parent 
along the convex chain to y).  Since this can repeat, the recursion can have arbitrary 
depth.  The work in the split procedure between a visible vertex, u, and its upper 
parent, w, has several steps.  The object is to find t, the next visible vertex in 
clockwise order.  Also, between u  and t  in the funnel sequence lie the hidden 
vertices (there may be none).  However, the hidden vertices are visible to either the 
upper edge or the lower edge.  Suppose the funnel sequence (not showing lower 
parents) has the following form:  [..., u, ..., q, r, ..., t, ...].  Again, everything between 
u  and t  (non-inclusive) is hidden.  The vertices after u  up to a certain point define 
the hidden pocket that is only visible to the upper edge.  The vertices before t  up to 
a certain point define the hidden pocket that is only visible to the lower edge.  The 
algorithm defines vertices q and r  to be the limits of the pockets.  Finding r  
actually requires a backward walk from another vertex, called u’, which is the CCX 
of the new vertex and u.  It is also the child of u with respect to the upper edge.  In 
the walk, when the child is no longer the extreme clockwise child, this other 
clockwise child will be r.  q is just the funnel previous to r5.

After finding q and r, the algorithm needs t.  However, in order to do this, it must 
walk the upper chain from w  back to r6.  In the walk, there can be many visible 
vertices, all of which have not been visited.  But in order to meet the time bounds, the 
walks must only occur once (or a constant number of times).  This means all the 
visible vertices found from w  to r must be stored and subsequently split 
(recursively) because otherwise the walk might occur O(n) times.  The newly found 
visible vertices are stored in a stack/queue.  Another point here is that the walk 
cannot go from r  to w  because there could be O(n) hidden points between r  and t.

1. find u’ - the CCX of (v, u).
2. find r and q by walk from u’ along convex chain to x

u’’ = u
while (u’ is extreme CW child of u’’ && u’’ is not x)

grandparent = CX of (u’, u’’)
u’ = u’’
u’’ = grandparent

r = CCW(u’’, u’)
5 Note that the walk cannot go from u  to q because there may be O(n) vertices in this hidden pocket and 
this would break the time bounds.  Walking from u back along the lower convex chain towards x  only 
visits visible vertices and is only be carried out a constant number of times, thus preserving the time 
bounds.

6 r can be t, t can be s, s can be w, w can be y.  
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q = r->prev
(special case if u’ does not exist - q=u, r=q->next)

3. find s - the upper parent of q
s = CCW(q, lower parent(q))

4. find next visible vertices
k = 0
for next = walk s to w - found by CCW

k++
enqueue(next)

for next = walk s to r - found by CCX(q,s) then CX
(can stop when vertex is not visible to newv)

k++
push(next)

let t be the last visible vertex (top of stack/queue)
note w is the on the bottom of the stack/queue

6. recurse on newly found visible vertices
for i = 1 to k - the visible vertices from t to w

split(pop(), pop())

Figure 11 - Pseudocode of the Split Procedure

To explain how CW, CCW, CX, CCX, and REV are implemented also explains how 
the visibility segments are stored.  The visibility segments are actually stored in two 
phases - A and B.  After incorporating a new vertex, the only known visibility 
segments lie to the left - this is known as phase A.  These are found in clockwise 
order and can be stored in an array after the new vertex has finished its splitting(s).  
Vertices visible on the right-side are in the vertex’s phase B.  When phase B 
segments are found, they come in any order, so they have to be stored in a linked 
list.  The two phases relate to each other in the CW, CCW, CX, CCX, and REV 
operations.  For REV, if (a, b) is in a’s phase A, REV(a, b) will be in b’s phase B.  
As for CW and CCW, they usually stay in the same phase, but CW could go from 
phase A to phase B or from phase B to phase A, and similarly for CCW.

For the extensions (CX and CCX), the paper requires the use of phase A intervals 
(or groups) and the split-find data structure7 [HU73] [GT85] [LaP90].  When no 
phase B segments have been found, only one phase A interval exists which holds all 
the phase A segments.  When a phase B segment is found, its extension may split 
up an interval into two.  The intervals are kept in a linked list.  Each phase B 
segment points to an associated phase A interval and each interval has an associated 
phase B segment.  Initially, there is an imaginary vertical representing the associated 
phase B segment for the one and only phase A interval.

7 An interval split should not be confused with an edge split.
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To find the CX of a phase A segment, it is first necessary to locate its interval.  Then 
CX is found by taking the next interval’s associated phase B segment.  To find the 
CCX of a phase A segment, it is simply the interval’s phase B segment.  To find the 
CX of a phase B segment, one takes the first phase A segment of the associated 
interval.  To find the CCX of a phase B segment, one takes the last phase A segment 
of the interval previous to the associated interval.8

When a phase B segment is added, it may split the next higher phase B segment’s 
phase A interval.  The first challenge is finding out where to make the interval split.  
The algorithm makes use of a dovetailed doubling search9  which is a binary search 
preceded by finding the exponential bounds on the right side of the array.  This is 
necessary to meet the time bounds.  Specifically, if 

† 

ma  is the number of phase A 
segments, the following recurrence holds:

† 

T(ma ) = max
0£k< ma

T (k) + T(ma - k) + min(log(k), log(ma - k))[ ]

It solves to O(

† 

ma ).  This means that the amortized time for interval splits is linear in 
the number of phase A segments.  The second challenge is to make finds run in 
amortized O(

† 

mb ) time, where 

† 

mb  is the number of phase B segments.  Together the 
split-finds associated with one vertex would run in O(

† 

ma  + 

† 

mb ) time which is 
O(|e|) over all vertices.  It is assumed that the linear time union-find algorithm by 
Tarjan-Gabow [GT85] can be reversed for the rest of the split-find, i.e. regrouping.

Implementation Details
An AVL tree holds the scan order (left to right, followed by bottom to top when x-
coordinates are equal), and another AVL tree holds the chains (y-structure) of the 
triangulation.  Doubly-linked lists represent the chains of the scan boundary, the 
funnel sequences, the phase A intervals, and the phase B segments.  The phase A 
segments for each vertex exist as an array.
   
It was difficult to generalize the split procedure to all geometric situations.  Part of 
the difficulty of implementing the algorithm is that the loops (or walks) are 
deceptively simple as described in the paper.  This is so because the walk can go 
from one phase to the other.  For instance, in the walk from u’’ to x along this 

8 CX and CCX may wind up in the same phase if there is no previous or next interval or if the phase B 
segment is the imaginary vertical.

9 This is equivalent to the finger tree method described in Ghosh and Mount’s earlier paper [GM87].
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convex chain, the (u’’, u’) segment starts out in phase A of u’’, but after one 
iteration, this may turn over to phase B.  Also, the backward walk might end at x 
which is similar but requires extra code than if not.

Other difficulties are the special cases.  For instance, u’ may not be valid if not 
visible to (v, y).  A check must be in place for this.  It will be invalid if it is in phase 
B because it would not be in the funnel sequence if it is to the right of u.  Of course, 
handling collinear vertices requires extra coding and checks.

A major difficulty when coding was relating the funnel sequence to the visibility 
segments.  There was more than one occasion when it was necessary to have the 
position in the funnel sequence, but only the identity of the vertex was known.  For 
this, re-coding added funnel position into the segment structure.  Some of these 
positions then have to be maintained when splitting.

An instance of this is when finding r via the clockwise operation (CW).  In fact, one 
particular situation was overlooked in the paper and had to be corrected.  If the CW 
flips over into phase B, using the first phase B segment may not be the right one.  
This is so because this phase B segment might not have been added to the funnel 
sequence (even though visible to the (x,y) edge).  The case happens when a vertex is 
found to the right of the edge, as in vertex 8 for edge (6,7) of Figure 32.  When such 
a vertex is in phase B of a vertex that needs it as r, it will not be found in the funnel 
sequence.  One solution is to skip phase B segments until one is found that is in the 
funnel sequence.  However, the requirement of constant time makes finding a better 
solution necessary.  For this, storing the first phase B segment added (not 
necessarily the one with the highest slope) will yield the right r in this situation.  It 
can be shown that it will exist in the funnel sequence, and the vertices that got 
skipped will not be in the funnel sequence and so will not be visible to the new 
vertex anyway (at least in this path to the edge being split).
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Figure 12 - A Split Where r Is A Special Case

Going through the example of this in Figure 12, at vertex 7, the algorithm produces 
triangulation edges (5,7) and (6,7).  At vertex 8, because it lies to the right of the 
(6,7) edge, it will not be added to the (6,7) funnel sequence (even though it is clearly 
visible to the edge).  Because (0,9) and  (0,2) are derivatives of (6,7), vertex 8 will not 
be in their funnel sequences either.  So when vertex 1 is processed (and splits (0,2)), 
vertex 8 cannot be the r when u is 6.  The same is true for vertex 3.  The r that 
works here is vertex 7 - and this is the first phase B segment seen by vertex 6.

A case similar to the preceding arises in the traversal from s to r.  If in phase B, the 
CCX walk may visit a vertex that is not in the funnel sequence (because it is to the 
right of q).  It was solved with an extra check to skip one or more vertices.  If the 
vertex is to the right of q, then it must be skipped.  But, in order to meet the 
theoretical time bounds (because this may happen many times) the result of this 
skipping is cached.
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Figure 13 - Skipping Vertices in the s to r Walk

An example of this is shown in Figure 13.  Here, vertex 3 will not be in the funnel 
sequence of edge (0,5) even though it is visible to it.  When vertex 6 splits (0,5), it 
will have u=5 first.  In this case, u’=4 and since vertex 5 has no other children, r=2 
and q=4 since it is the predecessor of vertex 5 in the linked list.  Then, q’s upper 
parent (s) is vertex 0.  In the walk from s to r, it should visit vertices 1 then 2.  
However, after vertex 1, the CX(0,1) is found to be vertex 3(b) instead of vertex 2(r).  
Because vertex 3 is to the right of q, it should be skipped.  The skipping goes to 
vertex 2 - the correct one.   After vertex 6 is complete, vertex 7 is processed.  A same 
situation will occur, but because the result of the skip should have been cached 
(when handling vertex 6), the walk can go directly to the right vertex (2 in this case).

Finally, the split-find data structure was not fully implemented.  The split part was 
implemented (dovetailed doubling search), but the interval finds were coded as a 
linear search starting at the list head.  In the regular regression testcases, this search 
iterated no more than four times (effectively a constant).  Only in the random 
testcases did this count go up (to 16).  However, even with these testcases, the 
average number of iterations stays less than 4.0.  Given the theoretical nature of the 
full split-find, one would might even see a slow down if fully implemented.
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Performance Comparisons

Timing Methodology
At a high level, some rules about the implementation were enforced to get more meaningful 
comparisons.  For example, all implementations must handle collinearities and must use the 
same non-visibility interpretation (see Input/Output Assumptions).  Also, all codes must 
actually store the visibility graph - not just report the edges.  Finally, if the code uses a 
balanced binary search tree, it must use the same basic AVL implementation (only key 
comparisons can be altered).  As mentioned above, every algorithm should be a reasonable 
implementation, with performance enhancements added when found.  A reasonable attempt 
was made to find as many improvements as possible (none of which change the asymptotic 
bounds, only the effective constants).  These improvements are detailed in the appendices.  
Of course, the fastest running version of each algorithm was used for the timings.

Actual timings were carried out by instrumenting the codes with gettimeofday() calls.  
The start time is read after the input is read (in order to eliminate I/O variations in the 
operating system).  The end time is read when the algorithm has finished (and just before 
exit()).  For correctness, all implementations were first verified against a set of about 200 
regression tests.  Of course, during timings, all output is turned off (again to eliminate I/O 
delays in the timings).

The usual steps have to be taken to ensure equal comparisons.  All binaries were compiled 
with the same compiler and with the same optimization flags10.  All tests were done on the 
same hardware11 , same operating system12 , etc.  All timings were taken on a non-networked 
machine with no other user-level task running (and identical system-level processes).

Finally, when timings were taken, five consecutive runs were carried out on each testcase.  
The high time and the low time were discarded.  The middle three were then averaged.

Timing Results
Five basic sets of testcases were run and the results of these were plotted to verify the 
implementation’s asymptotic running time and to show the divergence of the algorithms’ 
running time for larger 

† 

n .  Also, it is instructive to know the crossover points, i.e. when one 
10 Gnu gcc 2.95.2 compiler with -O3 optimization
11 iMac G3 PowerPC 750 400Mhz CPU, 32K L1 cache, 512K L2 cache, 320MB memory
12 Mac OS X 10.1.5 (based on FreeBSD)
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algorithm becomes better than another due to constant factors.  These sets will be 
subsequently referred to as A) Circle of Obstacles, B) n-gon, C) Square Grid of Obstacles, 
D) Line of Triangles, E) Spirals, and F) Random.  Each (except for Random) has a known 
bound of the number of visibility edges.

Circle of Obstacles - The first set described here has O(

† 

n2) visibility edges.  It consists of a 
number of triangles spread equally apart around a center - see Figure 14.  In this manner the 
outer two vertices can see those of every other obstacle, so the bound is O(

† 

n2).  The number 
of obstacles range from three (13 vertices) to 24 (76 vertices).

(a)                                                        (b)

Figure 14 - Polygonal Region with O(

† 

n2) Visibility Edges, e.g. 

† 

n=25
(a) region with no visibility edges shown (b) one point’s visibility

Figure 15 - The Entire Visibility Graph of the Example in Figure 14
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Figure 16 - Plot of Execution Times for the Circle of Obstacles Set
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Figure 16 shows the results of the timings on this set of testcases.  The actual numbers are 
tabled in Appendix E.  Obviously, the Overmars/Welzl algorithm does best for large 

† 

n .  
The reason it runs faster than Ghosh/Mount (even though both have the same complexity 
with |e| = O(

† 

n2)), is that it has a low constant.  For example, it has no dynamic allocation 
(except to store the visibility graph itself).  Further analysis shows certain crossover points.  
The Naive algorithm does better than any other for 

† 

n

† 

£13, after this Overmars/Welzl 
method still performs the best.  Also, Lee’s method does better than Ghosh/Mount for 

† 

n

† 

£
19, but not beyond this.

n-gon - While similar to the Circle of Obstacle set, the n-gon set has no obstacles (holes).  
It also has O(

† 

n2) visibility edges.  Figure 17 shows an example.  The set has a range of 
vertices from ten to 90 vertices.  (Note: obviously a specialized program could be written for 
just convex polygons and would run incredibly fast in comparison, but it was thought that it 
might be interesting to see how these generalized algorithms will perform on a trivial 
problem.)

(a)                                                               (b)

Figure 17 - n-gon with O(

† 

n2) Visibility Edges, e.g. 

† 

n=10
(a) without visibility shown (b) one point’s visibility
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Figure 18 - Plot of Execution Times for the n-gon Set
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Figure 18 contains the plots of the results (see Appendix E for the exact numbers).  The 
main performance difference between this set and the Circle of Obstacles:  Lee outperforms 
Ghosh/Mount at large n.  (But the gap between Lee and Ghosh/Mount becomes smaller for 
large 

† 

n .  At 

† 

n=90, Lee runs in about 65% the time of Ghosh/Mount and at 

† 

n=5000, Lee 
runs about 76% of Ghosh/Mount.)  This somewhat surprising result can be explained by 
looking closer at what the Ghosh/Mount code is doing.  At each new vertex, only one 
Mehlhorn triangle gets added - thus at the top there is only one split operation.  All the other 
vertices must be reached by recursive calls to the split operation.  The Ghosh/Mount 
algorithm does well when it can eliminate pockets of visibility because these can be 
concatenated onto the end of the funnel sequence in constant time.  But, since there are no 
hidden pockets in this set of testcases, the constant is high for all pairs of vertices.  Table 1 
shows the running times for large n (n=5000).

224 seconds
= 3.73 minutes

90.7 seconds
= 1.51 minutes

171 seconds
= 2.84 minutes

>4 hours

Ghosh/MountOvermars/WelzlLeeNaive

Table 1 - Measurements for the n-gon Testcase with n=5,00013 

For very large visibility graphs, the Ghosh/Mount algorithm actually runs out of memory.  
With vertices of an n-gon at n=10,000, it ran out of memory (even with unlimit set in the 
shell).  The reasons are various.  First, the actual split function as coded has many local 
variables and because it is recursive, all the frames put together eat up stack space.  Also, the 
t-to-s chain of subsequent splits are placed on a linked list which is dynamically allocated.  
But more basically is the fact that each visibility pair (both from/to and to/from) requires15 
words of storage in the data structure.  When there are O(

† 

n2) edges in the graph, this really 
eats up memory.   This is in contrast to the other algorithms that require only two or three 
words per pair.  The reason the Lee algorithm does not hit this limit in the n-gon set is that 
at any stage in any of the scans, edge tree only has one node in it.

13 for these big testcases, the Naive method did not finish after 4 hours user time; also, the other 
measurements here are based on one sample with the BSD time utility (user time)
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Square Grid of Obstacles - The next set of testcases test the algorithms with a |e| 
somewhere between quadratic and linear.  In fact, these have O(

† 

n3/2 ) vertices.  This set 
ranges 

† 

n2 from eight to 148, with 

† 

n=68 shown in Figure 19.

Figure 20 shows the plots of the timings (see Appendix E for the exact values).  Here, the 
timings for large 

† 

n  reflect exactly what one might expect, i.e. Ghosh/Mount does best, 
followed by Overmars/Welzl, followed by Lee, followed by Naive.  The crossover points 
show that Naive does best with 

† 

n

† 

£8, Lee never does better than Overmars/Welzl, and 
Ghosh/Mount does better than Overmars/Welzl only when 

† 

n  exceeds 68.  Also, to give an 
idea of running times with many vertices, this testcase was run on 

† 

n=7748 (a grid of 44x44 

squares).  Table 2 shows the results.

(a)                                                                 (b)

Figure 19 - Polygonal Region with O(

† 

n3/2 ) Visibility Edges, e.g. 

† 

n=68
(a) region with no visibility edges shown (b) one point’s visibility

9.37 seconds128 seconds
= 2.13 minutes

540 seconds
= 9.00 minutes

>4 hours

Ghosh/MountOvermars/WelzlLeeNaive

Table 2 - Measurements of the Square Grid of Obstacles Testcase with 

† 

n=774814

14 for these big testcases, the Naive method did not finish after 4 hours user time; also, the other measurements here 
are based on one sample with the BSD time utility (user time)
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Figure 20 - Plot of Execution Times for Square Grid of Obstacles Set
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Line of Triangles - This set has a linear number of visibility edges, i.e. O(

† 

n) with most 
vertices being able to see just a few others (essentially a  constant).  The timings were 
carried out in the range 22

† 

£

† 

n

† 

£154.  Figure 21 shows an example.  

The timings across n are plotted in Figure 22 (see Appendix E for the exact values).  The 
results are as expected for large 

† 

n  with Ghosh/Mount being quicker than Overmars/Welzl, 
followed by Lee, and lastly Naive.  The crossover points in this set:  Naive faster than Lee 
until 

† 

n=46, Lee never beating Overmars/Welzl, and Ghosh/Mount outdoing 
Overmars/Welzl at 

† 

n

† 

≥28.  To give an idea about how much faster Ghosh/Mount is for 
large 

† 

n , some additional measurements were taken for 

† 

n=10,000.  Table 3 shows the 
results.

   

(a)

(b)

Figure 21 - Polygonal Region with O(

† 

n) Visibility Edges, e.g. 

† 

n=22
(a) region with no visibility edges shown (b) one point’s visibility
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Figure 22 - Plot of Execution Times for the Line of Triangles Set
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0.730 seconds234 seconds
= 3.90 minutes

1410 seconds
= 23.6 minutes

>3 hours

Ghosh/MountOvermars/WelzlLeeNaive

Table 3 - Measurements of the Line of Triangles Testcase with 

† 

n=10,00015 

Spirals - The spirals represent another linear set of testcases, except this set is a single 
polygon (no obstacles/holes).  O(

† 

n) is the upper bound on visible edges since each vertex 
has a small constant of other vertices which it can see.  Here 

† 

n  ranges from six to 196.  
Figure 23 shows an example with 

† 

n=86.

Figure 24 shows the timings plot.  For large 

† 

n , the algorithms diverge as the Line of 
Triangles set.  One difference earns mention.  Here, Lee does considerably worse than with 
the Line of Triangles set.  One explanation is that with Lee and this sort of polygon, many 
vertices have deep edge trees as the scan sweeps around them.  

(a)                                                           (b)

Figure 23 - Spirals with O(

† 

n) Visibility Edges, e.g. 

† 

n=86
(a) without visibility shown (b) one point’s visibility

15 for these big testcases, the Naive method did not finish after 4 hours user time; also, the other 
measurements here are based on one sample with the BSD time utility (user time)
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Figure 24 - Plot of Execution Times for the Spirals Set
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As for crossovers, these are similar to the other linear set (see Appendix E for exact values).  
Naive does better than Lee until 

† 

n

† 

≥26.  Lee has better times than Overmars/Welzl at 

† 

n=6 
but not after.  Finally, Overmars/Welzl is better than Ghosh/Mount but only for 

† 

n

† 

£26.

random - This set was randomly generated where the number of triangles can be specified.   
Their size, orientation, and placement are random within ranges.  Also, no overlaps are 
allowed.  Figure 25 shows an example with 50 triangles (n=154).

(a)                                                            (b)

Figure 25 - Random Region, e.g. n=154
(a) without visibility shown (b) with one point’s visibility
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Figure 26 - Plot of Execution Times for the Random Set
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Figure 26 shows the timing results (with the exact figures in Appendix E).  Towards larger 
n one sees the results resembling some of the other sets, i.e. Lee does worse than 
Overmars/Welzl and Ghosh/Mount does slightly better than Overmars/Welzl.  However, the 
visibility graph becomes more and more sparse as n becomes bigger.  So one sees a 
relatively high crossover point between Overmars/Welzl and Ghosh/Mount.  Here, the 
crossover happens at about n=150.  Another phenomena seen is that there is a point at 
which Ghosh/Mount actually performs better at larger n than it did for smaller n due to the 
fact that the triangular obstacles become more dense in the same area.  This is only seen 
between the last two data points of the graph, but it has been observed nonetheless.

As for very big n, one would expect an even greater separation and this can be shown in 
Table 4, when n=5000.
 

1.08 seconds63.9 seconds
= 1.06 minutes

253 seconds
= 4.22 minutes

>4 hours

Ghosh/MountOvermars/WelzlLeeNaive

Table 4 - Measurements of the Random Testcase with 

† 

n=5,00016 

 

16 for these big testcases, the Naive method did not finish after 4 hours user time; also, the other 
measurements here are based on one sample with the BSD time utility (user time)
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Other Aspects and Comparisons

This section merely discusses some other issues involved with the visibility graph and how 
they relate to the algorithms implemented here.

Space Complexity
The Naive implementation uses O(n) working storage and stores the graph in O(|e|).  The 
working arrays are allocated at the beginning after n has been read from the input.  The Lee 
implementation has the same space complexity, but requires dynamic allocation/deallocation 
in the AVL trees as each vertex is processed.  The Overmars/Welzl implementation has the 
same working storage and graph storage complexities and uses dynamic allocation in its 
only AVL tree, but it only needs to do this once to fill the tree at the beginning.  The 
Ghosh/Mount implementation inherently requires O(|e|) working storage and this can not 
be avoided since the walking operations (CX, etc.) need what has been discovered 
previously in order to work correctly.  This is in contrast to the other algorithms where it is 
an option whether or not to actually store the graph (however, in these tests, storing the 
graph was chosen in order to obtain a fair comparison).  One solution that can be applied to 
the Ghosh/Mount implementation is to free up the heavy representation (15 words) after the 
algorithm has finished and copy the relevant information into a lighter structure (two or 
three words) as the others have.

As for running out of memory, only the Ghosh/Mount algorithm ran into this problem (in 
some very large n-gon testcases as mentioned previously).  However, unrestricting memory 
usage in the shell alleviated the problem in all but the very biggest testcase.  In the paper by 
Agarwal, et. al. [AAAS93], it is shown that the visibility graph can be more compactly stored 
using clique covers, however, there is not much savings.  The paper shows that the space 
required for a visibility graph with quadratic number of edges has a lower bound of 

† 

W(n2 / log2 n) and an upper bound of O(

† 

n2 / logn ), where the sum of the clique sizes is of 
course n.  So, this would be some help for all the implementations, especially the Ghosh and 
Mount code since it needs so many memory words per visible pair.

Code Complexity
Naturally, the Naive method is the simplest, with Lee and Overmars/Welzl being about equal 
with medium complexity.  The Ghosh/Mount method is clearly the most complex requiring 
a triangulation, funnel sequences, the complicated split procedure, and structures needed for 
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the graph traversal operations.  Overmars/Welzl state something about Ghosh/Mount in 
their paper [OW88].  “Although the latest method is optimal in time, the authors themselves 
state that the method will be very hard to implement and implementations might be slow due 
to high constants”.   It goes without saying that code complexity is a factor for development 
time and maintenance.

Efficiency of Queries
The shortest path between two vertices (or even all-pairs shortest path) can be calculated 
using Dijkstra’s algorithm as mentioned previously.  However, often enough the shortest 
path between two arbitrary points within the free space of the polygonal region is desired.  
Without rerunning the program, it would be nice to keep the basic visibility graph stored, 
then run something quick on just the query points, and finally apply shortest path to the 
resultant graph.  This process could then be repeated as often as desired given that the 
polygonal region does not change - only the query points.

Perhaps the easiest way to do this in Lee’s algorithm is to run one iteration of the algorithm 
on the start and end points and include those visibility segments in the graph before running 
Dijkstra’s.  Here the running time of the queries would be O(

† 

nlog n ) which beats any 
algorithm run completely from scratch.  However, there does not seem to be a simple way to 
run just part of Overmars/Welzl or part of Ghosh/Mount.  For these algorithms, Lee’s 
algorithm could be imported for the queries.

Dynamic Changes to the Region
None of the algorithms compared in this paper were designed with dynamic changes to the 
region in mind.  As implemented, each would have to be rerun.  However, it is interesting to 
note that the Asano algorithm [AGHI86] can handle dynamic changes (inserts and deletes) 
each in O(n) time to maintain the visibility graph.  Also, one Vegter paper [Veg91] shows 
some results for dynamic changes via the visibility diagram.  The time here is 
O(

† 

log2 n + k log n ) where k is the number of visibility edges created or destroyed at the 
change.

Some other papers allow dynamic changes for maintaining the parallel view [EOW83] or 
the view from a point [EOW83] [Poc90] [Riv97].
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The Outer Visibility Graph
As the “Input/Output Assumptions” states, only the inner visibility graph is calculated.  
The outer visibility graph is not.  Comparing what it would take to allow this, in the Naive, 
Lee, and Overmars/Welzl methods, it is as easy as eliminating one line of code (one check).  
However, the Ghosh/Mount implementation would need some work.  The part that would 
require change is the Mehlhorn triangulation.  Instead of doing only the inner triangulation, 
it would have to calculate the convex hull followed by the complete triangulation.  As such, it 
would have to keep track of chains in the out-intervals as well (not just the in-intervals).

The Vertex-Edge Visibility Graph
Each algorithm can also be relatively easily modified to compute the vertex-edge visibility 
graph.  The vertex-edge visibility graph is a bipartite graph where the vertices are on one 
side and the edges are on the other.  It is considered a weak visibility graph since a vertex 
may be able to see only part of an edge.   From it, other structures including the visibility 
polygon, the visibility graph, and the visibility complex can be found [OS97a] (with some 
restrictions on collinearities).
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Conclusion

Four classical approaches to the visibility graph problem with general polygonal holes have 
been coded.  Each was tuned to get a reasonable implementation before overall 
measurements were taken.  The results follow the time complexity of each:  O(

† 

n3) for 
Naive, O(

† 

n2 log n ) for Lee, O(

† 

n2) for Overmars/Welzl, and O(|e| + 

† 

nlog n ) for 
Ghosh/Mount.  Crossover points have been identified so as to give an idea of which 
algorithms do best at different testcase sizes.

This paper’s main result is in the implementation of the Ghosh and Mount algorithm with 
complications identified and solutions found.  As a bit of a surprise, the algorithm does not 
have outrageous running-time constants and often betters other approaches for even 
medium-sized testcases.

Future work
A second algorithm for sparse graphs was detailed in Overmars/Welzl’s paper [OW88], 
and this could be compared against the implementations described here, especially against 
Ghosh/Mount.  If this O(|e|

† 

log n ) approach is as simple to implement as the O(

† 

n2) 
approach (first algorithm in the paper), it may end up being fastest on testcases yielding 
sparse graphs.  If it holds true, then for any conceivable testcase, exactly one of the two 
Overmars/Welzl approaches would run faster than any other approach.  However, choosing 
which one to run might be difficult to decide beforehand.  For completeness, Asano’s O(

† 

n2

) approaches [AGHI86] may do well also; but without an implementation, it is difficult to 
say.

Other output-sensitive algorithms exist.  First, Kapoor and Maheshwari’s approach 
[KM00] via triangulation corridors could be implemented to see how it does against 
Ghosh/Mount.  Also, Riviere’s work [Riv97] and Pocchiola and Vegter’s work [PV95] 
(appearing simultaneously) find the visibility graph of convex objects by effectively 
carrying out a topological sweep of the visibility complex [PV93].  This approach should be 
convertible to line segments (convex polygons with two vertices) and then adapted to simple 
polygons in the same way that the Overmars/Welzl implementation was adapted here.  
Doing this would add another O(|e| + 

† 

nlog n ) algorithm to the offerings.
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Appendices A-D list local optimizations for the methods under study.  This basically simply 
means “tricks” that were found in order to make the implementation more of a “reasonable 
implementation”.  These range from minor things like removing checks (after verification, 
of course) to more significant improvements, such as only scanning half the plane (-

† 

p /2 to 

† 

p /2) versus (-

† 

p /2 to 3

† 

p /2).  However, everything reasonable found to speed it up was put 
in (or taken out as the case may be), so as to make for comparisons that are as unbiased as 
possible when the algorithms are run against each other.  Code profiling17 served as a good 
tool in order to see where the most time was being spent.  The heavy functions would then 
yield the most gain if improvements could be found there.

During this stage, the algorithms were run against themselves as the optimizations were put 
in place one after another.  This shows incremental improvement.  The same test cases were 
used as each algorithm was improved in this local manner.  These testcases are the 
following:

“linear154” - a testcase with a linear number of visible edges.  It has 154 vertices.

“box148” - a testcase with a grid of boxes as obstacles.  It has O(

† 

n3/2 ) number of 
edges and 148 vertices.

“quad58” - a testcase with O(

† 

n2), or quadratic, number of edges.  It has 58 
vertices.

These testcases are some of the same as those used in the algorithm-to-algorithm 
comparisons seen in the main body of this paper.  The point was simply to get a rough idea 
of how the algorithm was running and then to show how well the optimizations were 
helping.  Of course, the tests were run under similar conditions, i.e. the same compiling 
(level 1 optimization), same operating system under similar loads, same hardware, etc.  
Times were taken for three consecutive runs and these averaged.  (See also “Test 
Methodology” under Performance Comparisons.)

17 profiling via the gcc -pg compile option and gprof

43



Appendix A - Tuning the Naive Method

The vanilla version of the Naive algorithm has none of the tricks to increase performance.  
About the only optimization it does do is to break out of the third level loop if a blocking 
(interfering) edge is found.  This is natural since there would be no sense in continuing with 
the loop if an interfering edge was already known to exist.

The second version has certain basic tricks to increase performance.  First, the second-level 
loop does not have to iterate between 0 and (

† 

n-1).  It can start at (center+1).  Thus, instead 
of 

† 

n2 third- level loop executions, it is (

† 

n2-

† 

n)/2 such loop executions.  Second, the third-
level loop does not have to be run at all if the visibility segment would be outside the 
polygon (the check for this runs in constant time).  Third, visibility segments to adjacent 
edges can automatically be reported.  This case, of which there are O(

† 

n) instances, allows 
the third-level loop to be skipped entirely.

The third version uses squared distances for all the distance calculations.  This saves on a 
square-root calculation for every such distance calculation.  There were also some checks 
removed and other minor cleanup in this final version.

Tables A-1 through A-3 shows the timings.

0.3812270.3991651.092338average

0.381415

0.381034

0.381233

0.397977

0.398765

0.400753

1.092338

1.089229

1.089229

run 3

run 2

run 1

version Cversion Bversion A

Table A-1 - “linear154” Measurements for Naive Versions (seconds)
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0.469210

0.467120

0.469526

0.470984

0.481655

0.485430

0.487799

0.471737

1.135274

1.135616

1.131248

1.138958

average

run 3

run 2

run 1

version Cversion Bversion A

Table A-2 - “box148” Measurements for Naive Versions (seconds)

0.088680

0.089207

0.089992

0.086841

0.092276

0.093823

0.091391

0.091614

0.160920

0.162831

0.160112

0.159817

average

run 3

run 2

run 1

version Cversion Bversion A

Table A-3 - “quad58” Measurements for Naive Versions (seconds)

An analysis on the data shows that the optimizations in the second version (version B) have 
the most effect.  Here the three tests show 63.5%, 57.6%, and 42.7% decreases in running 
time.  The third version improvements (from version B) are 4.49%, 2.58%, and 3.90%.  The 
net improvements (A to C) are 65.1%, 58.7%, and 44.9%.
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Appendix B - Tuning Lee’s Method

The initial version has no special optimizations.

The second version adds an AVL replace optimization.  This occurs when the scan line 
encounters a vertex where an edge has to be removed from the edge tree but at the same time 
the adjacent edge has to be added.  The initial version explicitly does an AVL remove 
followed by an AVL insert.  This version makes use of AVL replace because the structure 
of an AVL tree will be the same in this situation.

The third version cuts the scan to half the plane.  The technique was actually seen in 
Welzl’s paper [Wel85]:  the scan only goes from -

† 

p /2 to 

† 

p /2 instead of -

† 

p /2 to 3

† 

p /2.  In 
other words, points to the left can be ignored since visibility between left points and the 
center are checked when those left points become center.  This works because vertex #1 
being visible to vertex #2 implies vertex #2 being visible to vertex #1.  The expected 
improvement would be from 

† 

n2 to (

† 

n  choose 2) which is 

† 

n2 - 

† 

n .

The fourth version uses a different distance calculation.  The previous versions used a 
calculation based on law of sines.  This version uses an intersection method.

The fifth version further improves the distance calculation by using squared distances, 
saving a square root calculation each time.

Tables B-1 through B-3 show the timing results.

0.236261

0.236261

0.235235

0.235857

0.231642

0.230854

0.231688

0.2323840.403958

version Dversion C

0.2057740.4026130.466674average

0.207602

0.204244

0.205477

0.400092

0.403789

0.468591

0.465280

0.466150

run 3

run 2

run 1

version Eversion Bversion A

Table B-1 - “linear154” Measurements for Lee Versions (seconds)
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0.161612

0.160793

0.160045

0.163999

0.158229

0.156148

0.157366

0.161173

version Dversion C

0.1474780.2527730.306236average

0.146863

0.146518

0.149053

0.252590

0.252035

0.253694

0.306121

0.305961

0.306626

run 3

run 2

run 1

version Eversion Bversion A

Table B-2 - “box148” Measurements for Lee Versions (seconds)

0.019135

0.018905

0.019601

0.018899

0.018359

0.018289

0.018289

0.018498

version Dversion C

0.0175080.0635310.068018average

0.017181

0.018023

0.017319

0.063352

0.062913

0.064328

0.067858

0.068015

0.068181

run 3

run 2

run 1

version Eversion Bversion A

Table B-3 - “quad58” Measurements for Lee Versions (seconds)

The improvements are summarized in Table B-4.  As one can see, version D actually makes 
the performance decrease slightly.  However, with squared distances in version E (not 
possible in versions A, B, or C since they use the law-of-sine method for distances), the gain 
in going to intersection method for distances is realized in version E.

11.2%

6.79%

4.64%

C to E

8.50%

8.75%

11.2%

-4.23%

-2.14%

-1.99%

D to EC to D

74.3%

51.8%

55.9%

71.1%

37.4%

42.5%

6.6%

17.3%

13.7%

quad58

box148

linear154

net (A to E)B to CA to B

Table B-4 - Lee Measured Improvements from Version to Version
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Appendix C - Tuning Overmars and Welzl’s Method

The primary version of this method has most optimizations already in place.  A priori, the 
paper [OW88] specifies a fast loop and gives detailed pseudocode, so it is easy to code well 
the first time.  Also, the half-plane optimization for the scan, i.e. scanning in the range (-

† 

p /2 
to 

† 

p /2) versus (-

† 

p /2 to 3

† 

p /2) is inherent.  Next, initially choosing an array (of size n) to 
define the stack will automatically beat a slower dynamic memory implementation.

The secondary version basically just has slightly tighter integration and adds some “inline” 
keywords to key functions.

Tables C-1 through C-3 list the measurements taken for the three testcases.

0.080586
0.082210
0.079690
0.079857

0.082027
0.087848
0.087995
0.089400

average
run 3
run 2
run 1

version Bversion A

Table C-1 - “linear154” Measurements for Overmars/Welzl Versions (seconds)

0.076733
0.076842
0.081570
0.078487

0.077781
0.077023
0.076375
0.079429

average
run 3
run 2
run 1

version Bversion A

Table C-2 - “box148” Measurements for Overmars/Welzl Versions (seconds)

0.010862
0.010854
0.010867
0.010864

0.011215
0.011216
0.011243
0.011185

average
run 3
run 2
run 1

version Bversion A

Table C-3 - “quad58” Measurements for Overmars/Welzl Versions (seconds)

Some improvement can be seen here:  1.76%, 1.35%, and 3.15% for the three testcases run.  

48



Appendix D - Tuning Ghosh and Mount’s Method

The first version represents a good basic working version of the algorithm.  Some attempts 
at the start were made to make it efficient.  Some of these are listed here:

Inlining all the graph traversal primitives, such as CW, CCW, CCX, and CX instead 
of making them separate routines as the paper suggests.  This allows some 
invocations to be more optimal.  For example, sometimes CCX (counter-clockwise 
extension) does not need a check to see it exists before retrieving it.

Pre-calculating slopes between adjacent vertices since they are referenced so often.

Saving slope calculations between nonadjacent visible vertices.

The second version makes one optimization:  it replaces dynamically allocated phase-A 
segments in favor of an array.  This is possible because although during integration of a 
new vertex there is no way to know a-priori how many segments in phase-A there might be 
(making a linked-list the obvious choice), an array can be used because the count will never 
exceed n.

The third version removes over 20 checks, inlines some functions, and does some other 
minor cleanup.

0.009245

0.009240

0.009276

0.009218

0.009346

0.009290

0.009318

0.009430

0.009944

0.009941

0.009927

0.009963

average

run 3

run 2

run 1

version Cversion Bversion A

Table D-1 - “linear154” Measurements for Ghosh/Mount Versions (seconds)
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0.024304

0.024218

0.024438

0.024255

0.024362

0.024338

0.024217

0.024531

0.026836

0.026652

0.026874

0.026982

average

run 3

run 2

run 1

version Cversion Bversion A

Table D-2 - “box148” Measurements for Ghosh/Mount Versions (seconds)

0.015957

0.016026

0.015882

0.015962

0.015715

0.015854

0.015633

0.015657

0.017522

0.017602

0.017674

0.017291

average

run 3

run 2

run 1

version Cversion Bversion A

Table D-3 - “quad58” Measurements for Ghosh/Mount Versions (seconds)

The improvement from version A to B shows better times with 6.01%, 9.22%, 10.3% 
decreases in execution time.  The improvements between B and C show 1.08%, 0.238%, 
and -1.54% decreases.
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Appendix E - Tables of Measurements Used in the Plots

Ghosh/MountOverMars/WelzlLeeNaiven

25.345318.240329.6913122.89176
23.181316.972327.3473109.25173
21.079315.563325.01395.25670
19.577714.349722.906383.614767
18.135713.0120.713772.578364
15.942711.791719.131762.376361
14.003710.549316.909752.24158
13.39279.7286715.18146.20755
11.90678.6963313.529338.859752
10.28737.5503311.980331.651749
9.357336.7346710.46126.526346
7.941675.9239.1626721.301343
6.737675.018.1516716.517740
5.9284.330336.8083313.25237
4.894333.5985.69910.088334
4.260673.076334.7857.6276731
3.542.499333.7635.6643328
2.7391.971673.028673.9493325
2.2321.557672.3812.7053322
1.846671.2011.777331.8096719
1.4130.9221.276331.1086716
1.086330.6553330.8760.62733313

Table E-1 - Average Measures for the Circle of Obstacles Testcases (milliseconds)
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Ghosh/MountOvermars/WelzlLeeNaiven

50.156727.42132.6047267.31890
45.795324.92829.7587233.05586
41.65222.745327.101201.85182
37.573720.431724.3713173.6578
33.798318.409722.0687147.96874
30.180316.514319.52125.07570
26.906714.75317.3873104.98766
23.716313.23115.26586.75962
20.75511.39613.389371.036758
17.8349.90711.53257.071754
15.50738.5439.8633345.402750
13.08937.2618.33135.243346
10.90476.0986.96326.647742
8.969674.989675.6453319.724338
7.2323.991674.5583314.14334
5.657673.153673.4949.6436730
4.382.356672.613676.2706726
3.206671.766671.909333.73822
2.239671.219671.307332.0546718
1.508330.7756670.8113330.97614
0.8880.4890.4510.38610

Table E-2 - Average Measures for the n-gon Testcases (milliseconds)

Ghosh/MountOvermars/WelzlLeeNaiven

24.099346.1103115.255436.143148
14.42723.22555.0297159.865104
7.9013310.322.325348.260768
3.806673.767.4156711.033340
1.627671.126331.798671.71420
0.6473330.3446670.3626670.2178

Table E-3 - Average Measures for the Square Grid of Obstacles Testcases (milliseconds)
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Ghosh/MountOvermars/WelzlLeeNaiven

9.4833348.3293172.73348.924154
9.0236744.9147158.051310.975148
8.7433341.1747144.505275.976142
8.3903337.8487131.251244.684136
7.9666734.8673119.017215.851130
7.60931.682107.041189.036124
7.17328.804796.1663164.607118
6.9016725.970385.741142.427112
6.36923.314376.0343122.203106
6.0646720.812366.8503103.873100
5.6606718.592358.685787.914794
5.42916.4450.73973.231388
5.0686714.268743.717760.67782
4.7183312.371737.041349.121776
4.2783310.61930.798339.36270
3.988.9076725.23331.15664
3.591677.3706720.345323.844758
3.2616.03616.112717.850352
2.921674.81612.399312.97146
2.523.719339.113339.0516740
2.183672.775336.322335.9183334
1.8321.948334.192673.6766728
1.534331.291332.536671.9803322

Table E-4 - Average Measures for the Line of Triangles Testcases (milliseconds)
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Ghosh/MountOvermars/WelzlLeeNaiven

10.41189.2953205.62317.619196
9.95880.9153185.11276.804186
9.4496772.139162.067242.648176
8.95364.0077143.226212.922166
8.5533356.762124.506182.56156
8.0206749.878107.57155.649146
7.54543.577793.226131.42136
7.1486737.644377.739109.587126
6.8726732.07665.659391.11116
6.4563326.781753.226374.2973106
5.89422.104343.234359.215396
5.3706717.992734.365746.321786
4.6936714.206725.868735.617376
4.17710.9719.34925.77466
3.6768.08113.344718.173756
3.2845.652339.0973312.038746
2.771333.6145.2357.05536
2.038332.000332.714673.4786726
1.297670.9363331.177331.1153316
0.519330.2853330.2433330.1346676

Table E-5 - Average Measures for the Spiral Testcases (milliseconds)
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142.9215.486510.0734360.9286
153.243200.732455.5834004.03274
144.365185.35418.1653585.12262
141.015170.146375.1693123.42250
129.29154.054340.7342762.12238
121.109140.215304.5452403.76226
109.288125.927269.5492026.58214
103.5112.437240.2791717.15202
95.6897101.147209.7341441.2190
84.13688.7133183.4631237.04178
86.047379.8877156.4791088.76166
65.470767.03134.946812.984154
65.553359.0237113.798706.105142
56.971749.670394.045530.488130
48.56341.288377.1103417.984118
38.878333.218361.814302.939106
30.368326.31547.8077206.71194
26.282320.59136.048148.12682
19.323315.018726.29388.992770
14.320710.653317.555354.243758
10.0726.8996710.902728.288346
5.389673.8465.9373311.61434
3.106331.773332.458673.5203322
gmrotleeNaiven

Table E-6 - Average Measures for the Random Testcases (milliseconds)
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Appendix F - Rotation Tree Details

Listed here are properties, lemmas, theorems, and pseudocode of the rotation tree [OW88].

Property 1

1.  

† 

p+ INF  is the root of the tree

2.  The incoming edges of a node are ordered by slope where the edge with the smallest slope is the 
leftmost

3.  For each edge 

† 

pq , -

† 

p
2

† 

£

† 

pq

† 

£

† 

p
2

.

4.  If 

† 

pq  and 

† 

qr  are edges then slope(

† 

pq )

† 

£slope(

† 

qr )

Property 2 (order)

Let p, q, and r  be nodes in the tree where 

† 

pq  is an edge.

If slope(

† 

pq ) < slope(

† 

pr ) 

† 

£  

† 

p
2

, then r  precedes p in the preorder of the tree, or, in other 

words, either r  lies on the path from p to the root or it is in a left subtree of this path.  If -

† 

p
2

 

† 

£  

slope(

† 

pr ) < slope(

† 

pq ) then r succeeds p in the preorder of the tree. 

Property 3 (cone)

Let 

† 

pq  and 

† 

rs  be edges in the tree where slope(

† 

pq ) 

† 

£  slope(

† 

pr ) < slope(

† 

rs ).  Then no 

point in V lies in the cone which is the intersection of the open halfplane to the right of 

† 

rs  and the 

closed halfplane to the left of 

† 

pr .

Lemma 1
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Let G be a rotation tree on V and let 

† 

pq  be the rightmost leftmost leaf-edge in G.  If 

† 

pq  is 

replaced by 

† 

pz  where z  is the next point (after q) in order around p then the resulting graph is 
also a rotation tree.

Lemma 2

Let G be a rotation tree on V and let 

† 

pq  be the leftmost edge of q 

(q !=

† 

p+ INF ).  Let r  be the father of q and let z’  be the left brother of q, if it exists.  Then the next 

point z  around p (after q) is the tangent (from the right) from p  to the chain ending in 

† 

z' r , or, if 
z’ does not exist, z=r.

Theorem 1
Given a set of n  points in the plane, in time O(

† 

n2) and storage O(n) one can find for each point p  
the other points sorted by angle around p.

Theorem 2

Given a set S of n  non-intersecting line segments in the plane, the visibility graph 

† 

GS  can be 

constructed in time O(

† 

n2) and storage O(n).

The Rotation Tree Data Structure needs four (4) pointers:
(1) pointer to parent
(2) pointer to left sibling
(3) pointer to right sibling
(4) pointer to righmost child

Pseudocode for needed functions:

b[] Sort(a[]) - sorts vertices a[] by decreasing x,
 returns as set b[]

void AddRightmost(a,b) - adds a as rightmost son to b
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void Handle(a,b) - process between a and b
void Remove(a) - detaches a from the tree
void AddLeftOf(a,b) - adds a as left brother of b
bool LeftTurn(a,b,c) - returns true if c lies left of 

† 

ab,
   else false

+ basic stack operations

Pseudocode of main routine:

p = Sort(v);
AddRightmost(

† 

p-INF ,

† 

p+INF);
for(i = 0 to n-1) AddRightmost(

† 

pi,

† 

p-INF );
InitStack; Push(

† 

p0);
while !EmptyStack
  p = pop();
  

† 

pr = RightBrother(p);
  q = Father(p);
  if (q != 

† 

p-INF ) Handle(p,q);
  z = LeftBrother(q);
  Remove(p);
  if ( z == null || !LeftTurn(p,z,Father(z)) ) AddLeftOf(p,q);
  else
    while (RightmostSon(z) != null &&
           LeftTurn(p,RightmostSon(z),z) )
      z = RightmostSon(z);
    AddRightmost(p,z);
    if (z == top()) z = pop();
  if (LeftBrother(p) == null && Father(p) != 

† 

p-INF ) push(p);
  if (

† 

pr != null) push(

† 

pr);
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