
The Visibility Graph Among Polygonal Obstacles:
 a Comparison of Algorithms

by John Kitzinger
bejmk@yahoo.com

B. S., Computer Engineering,
University of New Mexico,1993

M. S., Computer Science,
University of New Mexico, 2003

ABSTRACT
This paper examines differences of four approaches
in finding the visibility graph of a polygonal region
with obstacles defined by simple polygons. Each
has been implemented and tuned. Experimental
comparisons via time measurements have been
carried out against a variety of testcases ranging in
graph density from maximal, O(

†

n2), to minimal,

†

W(n). In this manner, expected asymptotic time
bounds have been verified with crossover points
between the algorithms identified.

iv

Table of Contents

List of Figures.. vi
List of Tables... vii
Introduction.. 1
Input/Output Assumptions... 4
Naive Algorithm... 6

Overview.. 6
Implementation Details...6

Lee’s Algorithm... 7
Overview.. 7
Implementation Details...8

Overmars and Welzl’s Algorithm...10
Overview...10
Implementation Details...12

Ghosh and Mount’s Algorithm.. 13
Overview...13
Implementation Details...19

Performance Comparisons..23
Timing Methodology..23
Timing Results... 23

Other Aspects and Comparisons.. 38
Conclusion... 41
Appendices.. 42

Appendix A - Tuning the Naive Method.. 44
Appendix B - Tuning Lee’s Method... 46
Appendix C - Tuning Overmars and Welzl’s Method... 48
Appendix D - Tuning Ghosh and Mount’s Method.. 49
Appendix E - Tables of Measurements Used in the Plots...................................... 51
Appendix F - Rotation Tree Pseudocode... 56

References... 59

v

List of Figures

Figure 1 - Examples of Collinear Points...4
Figure 2 - Example of Lee Scan with Edge-List... 7
Figure 3 - Basic Cases in the Lee Scan...7
Figure 4 - Looping the Rotation Tree (One Iteration Re-Attaching to Grandparent)...........11
Figure 5 - Looping the Rotation Tree (One Iteration Re-Attaching to Chain Above).......... 11
Figure 6 - Chains in the Mehlhorn Triangulation... 13
Figure 7 - Various Cases of the Mehlhorn Triangulation... 14
Figure 8 - A Vertex As Apex of More than one Funnel..15
Figure 9 - An Example of the Lower and Upper Tree for an Edge (x,y)
 and the Induced Funnel Sequence (Lower Parent in Parens)..................................15
Figure 10 - The Relevant Vertices of a Split when Adding a New Vertex........................... 16
Figure 11 - Pseudocode of the Split Procedure... 17-18
Figure 12 - A Split Where r Is A Special Case...21
Figure 13 - Skipping Vertices in the s to r Walk.. 22
Figure 14 - Polygonal Region with O(

†

n2) Visibility Edges, e.g.

†

n=25.............................. 24
Figure 15 - The Entire Visibility Graph of the Example in Figure 14................................. 24
Figure 16 - Plot of Execution Times for the Circle of Obstacles Set.................................. 25
Figure 17 - n-gon with O(

†

n2) Visibility Edges, e.g.

†

n=10... 26
Figure 18 - Plot of Execution Times for the n-gon Set... 27
Figure 19 - Polygonal Region with O(

†

n3/2) Visibility Edges, e.g.

†

n=68............................29
Figure 20 - Plot of Execution Times for Square Grid of Obstacles Set.............................. 30
Figure 21 - Polygonal Region with O(

†

n) Visibility Edges, e.g.

†

n=22............................... 31
Figure 22 - Plot of Execution Times for the Line of Triangles Set..................................... 32
Figure 23 - Spiral with O(

†

n) Visibility Edges, e.g.

†

n=86.. 33
Figure 24 - Plot of Execution Times for the Spirals Set... 34
Figure 25 - Random Region, e.g. n=154.. 35
Figure 26 - Plot of Execution Times for the Random Set... 36

vi

List of Tables

Table 1 - Measurements of the n-gon Testcase with n=5000... 28
Table 2 - Measurements of the Square Grid of Obstacles Testcase with

†

n=7748.............. 29
Table 3 - Measurements of the Line of Triangles Testcase with

†

n=10,000........................ 33
Table 4 - Measurements of the Random Testcase with n=5000... 37
Table A-1 - “linear154” Measurements for Naive Versions (seconds)............................. 44
Table A-2 - “box148” Measurements for Naive Versions (seconds)................................ 45
Table A-3 - “quad58” Measurements for Naive Versions (seconds)................................ 45
Table B-1 - “linear154” Measurements for Lee Versions (seconds)................................ 46
Table B-2 - “box148” Measurements for Lee Versions (seconds)................................... 47
Table B-3 - “quad58” Measurements for Lee Versions (seconds)................................... 47
Table B-4 - Lee Measured Improvements from Version to Version................................... 47
Table C-1 - “linear154” Measurements for Overmars/Welzl Versions (seconds)............ 48
Table C-2 - “box148” Measurements for Overmars/Welzl Versions (seconds)............... 48
Table C-3 - “quad58” Measurements for Overmars/Welzl Versions (seconds)............... 48
Table D-1 - “linear154” Measurements for Ghosh/Mount Versions (seconds)............... 49
Table D-2 - “box148” Measurements for Ghosh/Mount Versions (seconds).................. 50
Table D-3 - “quad58” Measurements for Ghosh/Mount Versions (seconds).................. 50
Table E-1 - Average Measures for the Circle of Obstacles Testcases (milliseconds).......... 51
Table E-2 - Average Measures for the n-gon Testcases (milliseconds).............................. 52
Table E-3 - Average Measures for the Square Grid

of Obstacles Testcases (milliseconds).. 52
Table E-4 - Average Measures for the Line of Triangles Testcases (milliseconds)............. 53
Table E-5 - Average Measures for the Spiral Testcases (milliseconds).............................. 54
Table E-6 - Average Measures for the Random Testcases (milliseconds).......................... 55

vii

Introduction

In computational geometry problems, visibility has been an important property to find. Of
course, computational visibility problems vary in form. Among the two dimensional variety,
sometimes the problem is restricted to visibility in a simple polygon (no obstacles) [Her87]
[GHLST87] [KM00]. More generally, there can be obstacles, sometimes called holes or
islands. The obstacles can be restricted to special shapes, such as rectilinear, circular, line
segments, or convex polygons; or they can be more general, such as simple polygons1. The
problem may be in finding the visibility of just one vertex or finding the visibility of all
vertices. A visibility graph,

†

Gs =(V,E), may be the structure that contains the visibility
information. The edges of the visibility graph are represented between any two vertices if
there are no edges obstructing the visibility between them. Other structures include the
vertex-edge visibility graph [GM91] [OS97a] [OS97b], the visibility polygon (or view from
a point) [EGA81] [EOW83] [AGHI86] [Poc90] [Veg90] [HM91] [PV93] [OS97a]
[Riv97], the visibility diagram [Veg90] [Veg91], the visibility complex [PV93] [PV95]
[Riv95] [Riv97], the parallel view [EOW83] [AGHI86] [GM91], and neon visibility
[Poc90] [Veg91] [PV93]. The vertex-edge visibility graph is touched upon in the “Other
Aspects and Comparisons” section, but none of these other ideas are explored in this paper.

This paper focuses on finding the entire visibility graph among polygonal obstacles. The
obstacles are only restricted to being simple, i.e. no edge can intersect any other edge. The
visibility graph problem itself has long been studied and has been applied to a variety of
areas. A common use for it has been for finding the shortest path2. Exploiting the fact that
the shortest path consists of arcs of the visibility graph, one can find the shortest path by
running Dijkstra’s algorithm [Dij59] on it. The shortest path has been used in robot
motion planning. This was identified in 1979 in Lozano-Perez and Wesley’s work
[LPW79]. The visibility graph can also be used to solve the art gallery problem by finding
the minimum dominating set of the visibility graph (NP-hard). More recently, visibility has
been used in pursuer-evader problems, e.g. in [LSC99]. Finally, the visibility complex,
which contains more information than the visibility graph, has been used in illumination
problems [ODRP96].

D.T. Lee in his 1978 Ph.D. dissertation [Lee78] wrote about the first nontrivial solution to
the visibility problem running in O(

†

n2 log n) time. In the mid-to-late1980’s a series of
1 The term “simple” is a misnomer because it actually permits concavity to any degree - the only restriction
is that the edges form a closed chain with no intersections.
2 Some work has been done for finding the partial visibility graph where only the tangents around obstacles
are included since the shortest path would not need other visibility edges to the obstacle [KM88] [PV95].

1

O(

†

n2) papers appeared. In 1985, E. Welzl described a technique [Wel85] based on an
arrangement of the dual of the vertices [CGL83] [EOS83] followed by a topological sort to
order the vertex pairs in O(

†

n2) time. This technique is used in other computational
geometry problems as well. Welzl’s technique requires O(

†

n2) working space. It works for
a set of line segments and can be adapted for sets of polygons. Edelsbrunner and Guibas
[EG86] later improved the working storage of the topological sweep to O(

†

n). About the
same time, Asano, et. al. offered two other versions with arrangements also requiring O(

†

n2)
space: the first via triangulation and the second via scanlines and segment splitting. These
techniques construct the polar order one vertex at a time as opposed to Welzl’s technique
that produces a good permutation (not strictly sorted, but good enough) among all vertex
pairs at once. Asano’s technique can also handle dynamic updates in O(

†

n) time. In 1988,
a paper by Overmars and Welzl describes yet another O(

†

n2) technique that does not need to
calculate the dual arrangement and uses only O(

†

n) working space. The paper also
describes a second algorithm running in O(|e|

†

log n) time and O(

†

n) space, where |e| is the
number of edges in the visibility graph. It is efficient for sparse graphs, i.e. when |e| = O(

†

n
). Of course, all of the O(

†

n2) algorithms are optimal when the graph is dense, in other
words when |e| = O(

†

n2).

Towards the end of the appearance of the O(

†

n2) papers, two output-sensitive approaches
became known [GM87] [GM91] [KM88] [KM00]. Ghosh and Mount show a planar-scan
technique using triangulation and funnel splits to achieve O(|e| +

†

nlog n) time bounds.
The other work by Kapoor and Maheshwari essentially achieve the same time bounds using
corridors which are based on a triangulation dual. With both of these, the time is basically
bounded by the number of edges in the visibility graph, but it can be dominated by the time
it takes to triangulate (which optimally is O(

†

nlog n) for a polygon with simple polygonal
holes). Thus, both of these approaches are optimal for graphs with density as low as |e| =
O(

†

nlog n) but no lower.

2

What is described here is the performance achievable with several of these algorithms. For
comparison, a naive (i.e. trivial) approach is included which runs in O(

†

n3) time. After this,
Lee’s algorithm is described which runs in O(

†

n2 log n) time, followed by Overmars and
Welzl’s method (being one of the more elegant O(

†

n2) algorithms). Finally, the Ghosh and
Mount approach represents the last algorithm described which has a theoretical running
time of O(|e| +

†

nlog n). Certain parts of the implementations required some adaptation.
First, in the Overmars and Welzl method, the algorithm had to be adapted from strictly non-
intersecting line segments to polygons. Second, in the Ghosh and Mount paper, problems
were identified and corrected.

3

Input/Output Assumptions

Input
Across all implementations, the same input file format is used. To specify a polygonal
region, the user specifies the outer polygon plus m polygonal obstacles. The polygons can
be simple where the vertices appear consecutively, counter-clockwise for the outer polygon
and clockwise for the obstacles. The general rule is that the inside of the polygon (free
space) lies to the left of an edge, where direction of the edge is defined going from the
lower-numbered vertex to the higher-numbered vertex. Of course the segments of a
polygon may not intersect itself, as per the definition of simple, and the usual assumption
that the obstacles are disjoint from each other is made.

Two other important input assumptions often found with many computational geometry
problems are general position and non-collinearity. These assumptions might be made in
order to make a proof easy to follow. However, the implementations described in this paper
were coded for practical use, so alleviating these assumptions allows more realistic input.3

General position General position means the restriction of making all vertices have unique
x-coordinates, i.e. not allowing the vertices to lie along the same vertical line. This
assumption is not made in any of the implementations.

Non-collinearity By definition, non-collinearity disallows any three points from lying on
the same line. This restriction has been partially alleviated (see Figure 1). As long as the
points are not adjacent along the polygonal boundary, then collinear points are allowed.
Only points along adjacent edges may not be collinear. However, even in this case, the
restriction is not too severe because the input could be preconditioned in O(

†

n) time to
remove instances of this kind of collinearity.

A B
C

(a) (b)

Figure 1 - Examples of Collinear Points
(a) allowed (b) disallowed

3 Of course, when this kind of assumption is relaxed, it should have no impact on overall time or space
bounds. The tradeoff to this is that it may increase code complexity and constant factors of time.

4

In all the implementations, collinearity does not imply visibility, i.e. collinear points are not
transitive with respect to visibility. For example, in Figure 1(a), vertices A, B, and C are
collinear to each other, with A being visible to B, and B being visible to C, but A is not
considered visible to C. This interpretation actually will produce less edges in the visibility
graph as compared to the interpretation of transitivity (making A visible to C). On the
downside, this affects shortest path calculations by adding hops; for example, the shortest
path from A to C is {A,B,C}, not {A,C}. However, the overall distance will turn out to be
the same as compared to visibility among collinear points having a transitive meaning.

Another issue about collinearity is that sometimes it is difficult to exactly specify the
coordinates of points that are supposed to be collinear to each other. To help with this, all
of the implementations described in this paper allow the user to specify a tolerance (given
by some small epsilon) in which the angles or slopes may deviate to still be considered
collinear. This also allows slope and angle calculations within the implementations to lose
some precision (which is inevitable with IEEE floating point representation).

Output
All of the implementations calculate the inner visibility graph. The inner visibility graph
only includes those visibility segments that are inside the polygon (and outside the
obstacles). The segments that would occur on the outside (and on the inside of obstacles)
are not included. In the section called “Other Aspects and Comparisons” section, there is
more discussion of the outer visibility graph.

The expected output of the visibility graph can be in standard output text. For example,
visible segment from 0 to 1
visible segment from 1 to 0

shows that visibility exists between vertex #0 and #1.

5

Naive Algorithm

Overview
A simple solution to the problem would be to just look at every edge to see if it
blocks/interferes with a given pair of vertices. If none interfere, then the two vertices are
visible to each other (otherwise not). Of course, to produce the entire visibility graph, the
procedure loops through every pair of vertices. The time analysis is simple also: there are
(n choose 2) pairs of vertices which is O(

†

n2) and there are O(

†

n) edges (one for every
vertex) so this means the total time is O(

†

n3). As for storage, the algorithm requires O(

†

n)
working space (at least to store the input), and if the visibility graph is stored - not just
reported - then it requires O(|e|) memory.

Implementation Details
The implementation is straight forward. Some tricks are obvious and are detailed in
Appendix A along with what timing difference they make. Two methods were identified for
distance calculation: law-of-sine method and intersection method. It was found that the
intersection method is slightly faster. Also, this method can be modified (as was done for
the timed version) to calculate squared distances which saves on a square root operation.
However, the intersection method deals with slopes, so verticals have to be handled with care
since slopes can be +Inf and -Inf. Collinear points (three or more points on a line) gave
some difficulty also.

As with all the algorithms, during development an openGL version was used for
visualization and debugging. Of course, the graphics part was removed to make a text-only
version for performance measurements (timings).

6

Lee’s Algorithm

Overview
The algorithm attributed to D. T. Lee [Lee78] represents the first nontrivial solution running
in O(

†

n2 log n) time. The basic idea is simple: for each vertex, sort the other points in
angular order around it, then visit each one keeping track of the order of intersected edges
made by the scan-line. If the visited point is associated with the first edge in this ordered
list, then it can be reported. Otherwise, it must be obscured by some other edge appearing
before it (with respect to the center) and so would not be reported. Of course, the edge list
must handle inserts and deletes in O(

†

log n) time which means using optimal sorting (of
which many are available).

direction of
angular scan

scan line

center

edge list: {5, 2, 1, 4, 3}

5
2

1
4 3

Figure 2 - Example of Lee Scan with Edge-List

Figure 2 shows the intuitive idea. The edge-list here would be {5, 2, 1, 4, 3} - the order of
intersecting edges from the center along the scan-line. Of course, in reality, the scanline
only stops at vertices (not in the middle of edges).

a
b

c
d

center

5

9 10
3

8 7

6
2

1

Figure 3 - Basic Cases in the Lee Scan

What happens at each vertex visit depends on the polygonal edges associated with that
vertex. There may be two inserts, two deletes, or an insert and a delete. Figure 3 shows
these situations with vertices marked a, b, and c with edges marked 1-10. Collinear points
are handled as follows: if several points lie along the same scan-line, the order is

7

determined by the distance from the center. In Figure 3, vertex a would be visited, followed
by vertex b, followed by vertex c. Before a is visited, the edge-list would be {5, 9, 10, 3, 6,
2}. When a is handled, both its edges are deleted, so the edge-list afterwards would be {5,
3, 6, 2}. When b is handled, both its edges are inserted, so the edge-list becomes {5, 3, 8, 7,
6, 2}. When c is handled, one edge is deleted and the other is inserted. The edge-list at the
end would be {5, 3, 8, 7, 6, 1}.

Time analysis: there are (n-1) vertices to be visited for each of

†

n2 centers. At each of the
(n-1), it takes O(

†

log n) for the search/insert/delete, thus making the time for one scan
(n-1)*O(

†

log n) = O(

†

nlog n). The time for all

†

n scans would then be

†

n*O(

†

nlog n) =
O(

†

n2 log n).

Space analysis: in the worst case, there may be O(

†

n) edges in the edge-list at any one given
time, but no more. The angularly sorted list also requires O(

†

n) storage during one scan, but
can be freed after the particular center has completed. Of course, in order to store the
visibility graph, it takes O(|e|) space.

Implementation Details
This implementation uses an AVL tree for both the angular-sorted list and the edge-list.
Many optimizations can be found which are detailed in Appendix B with the corresponding
timings of the performance increases observed. One trick was identified for vertices which
require one edge insertion and one edge deletion. Instead of doing these two operations, a
single replace can be used keeping the order of the edge-list intact. Also, the scan itself
works when going only halfway around since visibility between a pair is mutual. Lastly,
distance calculations can be optimized as in the Naive method.

One hard part of implementing the Lee method is initialization of the edge-list. If the scan
starts at -

†

p /2, all

†

n2 edges of the input have to be checked for inclusion into it. When one
or both of the endpoints are collinear to -

†

p /2, it may or may not appear in the initial edge
list depending on the direction of the edge. Some other the difficulties arose with collinear
points. For instance, collinear edges never appear in the edge-list (at any angle) and this
kind of edge’s furthest endpoint (and maybe its closest endpoint also) does not get reported
as visible (because of the chosen semantics of collinear points).

Another difficulty was handling two adjacent edges that both have to be inserted at the same

8

time. The basic distance calculation would return values that are almost equal (but not quite
equal due to precision). In this case, the angle made by the edge to the scan line must be
used to determine the order of the two edges with respect to each other.

9

Overmars and Welzl’s Algorithm

Overview
Welzl originally published a paper [Wel85] describing a technique based on a topological
sort of the dual arrangement of segments in a plane. Because it effectively sorts all (n
choose 2) pairs of vertices, it runs in O(

†

n2) time (as opposed to Lee’s O(

†

n2 log n)
algorithm which scans one vertex at a time with a sort of all other points at each step). The
space required is O(

†

n2). This was later improved by Edelsbrunner and Guibas [EG86] to
O(n) space. Asano, et. al. [AGHI86] has one version of this based on triangulation and set-
union and another based on scanlines and splitting. The Overmars and Welzl paper
[OW88] represents a practical version without using dualization. Instead, it is based on the
concept of rotation trees.

The idea is simple: for each vertex, a scanline is kept which runs from -

†

p /2 to

†

p /2 hopping
from vertex to vertex in its path. During the main loop, it appears that all of the scanlines
are proceeding simultaneously. In fact, there are exact rules about determining the next
vertex to process, and some vertices may finish their scan before others.

To understand the rules about finding the next vertex, the rotation tree must be understood.
A rotation tree is a rooted planar tree where each vertex is a node and points to its parent.
There are two special nodes: +Inf and -Inf, where -Inf is infinitely below and just to
the right of all regular points, and +Inf is infinitely above and just to the right of all regular
points. Initially, all vertices point to -Inf as their parent and -Inf points to +Inf. Also
stored is the rightmost child (if a node is a parent), and its right and left siblings (if they
exist). The ordering of children is by slope: the one with the smallest slope is the leftmost.

The loop that examines all pairs simply takes the rightmost leftmost leaf as the next segment
to process and then reattaches it to the tree (while maintaining the property of being a
rotation tree). It can reattach to the left of its parent or to the tangent of the chain above it.
Figure 4 and 5 show examples of the next segment processed and where it reattaches (the
thick line). When a vertex attaches to +Inf, it is finished. The loop continues when all
points have attached to +Inf.

10

Figure 4 - Looping the Rotation Tree (One Iteration Re-Attaching to Grandparent)

Figure 5 - Looping the Rotation Tree (One Iteration Re-Attaching to Chain Above)

The details of the rotation tree can be found in Appendix F. It has been used for other
problems as well, but first appeared for the purposes of determining the visibility graph.
Some extra information and processing of course is needed for this. For each vertex, the
nearest visible segment is kept. If a point is associated with the nearest visible segment, then
visibility between the two points is known. When the point is not associated with this
nearest segment, there is no visibility. The nearest visible segment changes only when the
scan passes it. In this case, the new nearest visible segment becomes that of the endpoint of
the segment just passed. In this way, no edge-list must be maintained as in Lee’s algorithm.

11

Implementation Details
Implementation was straightforward with the pseudocode telling almost every detail. First,
all the regular vertices point to -Inf in the right order, i.e. the leftmost child is the vertex
with the greatest x-coordinate. This requires a reverse-x-sort and was implemented with an
AVL tree.

Another implementation decision concerns keeping track of the leftmost leaves. Actually,
the paper suggests a stack and it was implemented as an array. So, all leftmost leaves are
kept in this stack where the rightmost is kept at the top. This eliminates the need for a
priority queue and thus keeps the running time at O(

†

n2).

A significant part of implementation lies in the fact that the algorithm was designed for
visibility among nonintersecting line segments, not polygons. So some adaptation was
required. With polygons, it gets a little more complicated because there are two edges
associated with each vertex. For instance, the nearest visibility edge can switch at a point to
the adjacent edge (instead of inheriting the point’s nearest visible edge).

Finally, handling collinear vertices proved to be somewhat troublesome. Here, because of a
user-specified epsilon which defines the angular range of collinear vertices, the scanline for
a particular vertex may reach any of the vertices among a set of collinears in any order. The
solution is to look ahead and delay processing until the scanline has finally gone beyond the
set of collinears, keeping track of the nearest one. Only the nearest one has a chance of
being visible and only it can be used for the inherited nearest visible edge.

12

Ghosh and Mount’s Algorithm

Overview
The approach detailed by Ghosh and Mount [GM87] [GM91] is basically a planar
scan left to right proceeding by a variant of the Mehlhorn triangulation [Meh84c]. It
runs in O(|e| +

†

nlog n) time. The

†

nlog n factor represents the time for the
triangulation (both at the start for sorting the vertices according the their x-
coordinate and a constant number of AVL insert/delete/finds at each point in the
scan). The |e| factor is the size of the visibility graph.

The convex chains of triangulation edges form a scan boundary by which new
vertices being incorporated into the partial visibility graph can attach - see Figures 6
and 7. This then alters the shape of the scan boundary. The algorithm also
maintains a funnel data structure for each such edge and another data structure to
hold the visible segments (as the algorithm proceeds in the scan) for each vertex.

1
5

14 13
12

1110

9

87

6
5
4

3

2

1 0

in

in

in

out

out

out

out

chain: [edge(0,1), 1, 3, edge(3,4)]
rightmost = 1

chain: [edge(5,6), 6, 8, 9, 10,
 edge(10,11)]
rightmost = 9

chain: [edge(12,13), 13, 14, 15,
 edge(15,16)]
rightmost = 13

16

Figure 6 - Chains in the Mehlhorn Triangulation

13

Figure 7 - Various Cases of the Mehlhorn Triangulation

Some description of the funnel data structure follows here. For each triangulation
edge on the scan boundary, there are vertices to the left which can see it. Each
visible vertex is an apex of something called a funnel (also used in other
computational geometry problems), where a funnel is defined uniquely by its apex
and its lower parent. An apex has two parents, lower and upper, where a parent is
simply the first vertex in the convex chain toward one of the vertices of the
triangulation edge. One property of funnels is that they are empty. Another
property of funnels is that the apex sees the edge in the range of the intersection of
the tangents between the apex and its parents. A vertex visible to the edge can be
part of more than one funnel since there can be more than one path to the edge
vertices. See Figures 8 and 9.

14

Figure 8 - A Vertex As Apex of More than one Funnel

10
9

8

7

6

5

4

3

21

0

y

x

z(high)

z(low)

x

10 3 2 0 y

9 8 4 1

7 6

y

x 10 9 8 0

2 1

3

7 4

6
sequence order:
 [x(), 10(x), 9(10),
 8(10), 7(8), 6(8),
 4(10), 3(x), 2(x),
 1(2), 0(x), y(x)]

Figure 9 - An Example of the Lower and Upper Tree for an Edge (x,y) and the
Induced Funnel Sequence (Lower Parent in Parens)

A hierarchical clockwise ordering of the funnels form a funnel sequence which can
be maintained by a doubly-linked list of funnels (id of apex + id of lower parent).
The ordering can be found by means of a clockwise preorder traversal of the lower
tree or a clockwise postorder traversal of the upper tree (Figure 9). It turns out these
are equivalent. However, in implementation, no tree is stored. Instead, a doubly-
linked-list maintains this funnel sequence order.

At each new vertex, two new triangulation edges are formed from one already on the

15

scan boundary. With a procedure called split, the funnel sequences of the new
edges can be determined from the funnel sequence of the one being split. All of the
funnels of the old edge will be visible to one new edge or both (in the case of both it
is necessarily visible to the new vertex).

In order to meet the time bounds (|e|), the algorithm only visits apexes that are
visible (to the new vertex). But it also has to keep track of vertices that are hidden to
the new vertex but which can see one of the edges because subsequent splits for
vertices after this vertex (to the right) might have visibility. So, from one visible
vertex the algorithm must jump to the next one in constant time also appending these
hidden pockets. It does this using clever convex chain walks which exploit the
emptiness of funnels, e.g. finding the upper and lower parents quickly. For this, the
following constant time operations have to be defined: clockwise segment (CW),
counter-clockwise segment (CCW), clockwise extension (CX), counter-clockwise
extension (CCX), and reverse (REV). CW and CCW are simply the next and
previous visible segments. CX(a, b) is the very next vertex visible to b around the
corner (turning right) from a to b. CCX(a, b) is the same thing but turning left4.
The reverse is simply the same visibility segment but going the opposite way, e.g.
REV(a, b) = (b, a).

u
u’

t

r

q

s

w

v

x

y

u
u’

t

r

q

s
w

v

x

y

Figure 10 - The Relevant Vertices of a Split when Adding a New Vertex
(a) The Emptiness from a Visible Vertex u to the Next One t

(b) The Upper Chains

Figure 10 depicts a simple situation during a split. Figure 11 shows pseudocode of
the split. The edge split starts with vertices x and y which define the old
triangulation edge. Unless it is a trivial edge, there will be points in between x and y
4 The extensions may not be defined if the polygon edges get in the way.

16

which are visible. This is where the split procedure becomes recursive. If some
visible vertex u is found, split will be called between it and its upper parent (parent
along the convex chain to y). Since this can repeat, the recursion can have arbitrary
depth. The work in the split procedure between a visible vertex, u, and its upper
parent, w, has several steps. The object is to find t, the next visible vertex in
clockwise order. Also, between u and t in the funnel sequence lie the hidden
vertices (there may be none). However, the hidden vertices are visible to either the
upper edge or the lower edge. Suppose the funnel sequence (not showing lower
parents) has the following form: [..., u, ..., q, r, ..., t, ...]. Again, everything between
u and t (non-inclusive) is hidden. The vertices after u up to a certain point define
the hidden pocket that is only visible to the upper edge. The vertices before t up to
a certain point define the hidden pocket that is only visible to the lower edge. The
algorithm defines vertices q and r to be the limits of the pockets. Finding r
actually requires a backward walk from another vertex, called u’, which is the CCX
of the new vertex and u. It is also the child of u with respect to the upper edge. In
the walk, when the child is no longer the extreme clockwise child, this other
clockwise child will be r. q is just the funnel previous to r5.

After finding q and r, the algorithm needs t. However, in order to do this, it must
walk the upper chain from w back to r6. In the walk, there can be many visible
vertices, all of which have not been visited. But in order to meet the time bounds, the
walks must only occur once (or a constant number of times). This means all the
visible vertices found from w to r must be stored and subsequently split
(recursively) because otherwise the walk might occur O(n) times. The newly found
visible vertices are stored in a stack/queue. Another point here is that the walk
cannot go from r to w because there could be O(n) hidden points between r and t.

1. find u’ - the CCX of (v, u).
2. find r and q by walk from u’ along convex chain to x

u’’ = u
while (u’ is extreme CW child of u’’ && u’’ is not x)

grandparent = CX of (u’, u’’)
u’ = u’’
u’’ = grandparent

r = CCW(u’’, u’)
5 Note that the walk cannot go from u to q because there may be O(n) vertices in this hidden pocket and
this would break the time bounds. Walking from u back along the lower convex chain towards x only
visits visible vertices and is only be carried out a constant number of times, thus preserving the time
bounds.

6 r can be t, t can be s, s can be w, w can be y.

17

q = r->prev
(special case if u’ does not exist - q=u, r=q->next)

3. find s - the upper parent of q
s = CCW(q, lower parent(q))

4. find next visible vertices
k = 0
for next = walk s to w - found by CCW

k++
enqueue(next)

for next = walk s to r - found by CCX(q,s) then CX
(can stop when vertex is not visible to newv)

k++
push(next)

let t be the last visible vertex (top of stack/queue)
note w is the on the bottom of the stack/queue

6. recurse on newly found visible vertices
for i = 1 to k - the visible vertices from t to w

split(pop(), pop())

Figure 11 - Pseudocode of the Split Procedure

To explain how CW, CCW, CX, CCX, and REV are implemented also explains how
the visibility segments are stored. The visibility segments are actually stored in two
phases - A and B. After incorporating a new vertex, the only known visibility
segments lie to the left - this is known as phase A. These are found in clockwise
order and can be stored in an array after the new vertex has finished its splitting(s).
Vertices visible on the right-side are in the vertex’s phase B. When phase B
segments are found, they come in any order, so they have to be stored in a linked
list. The two phases relate to each other in the CW, CCW, CX, CCX, and REV
operations. For REV, if (a, b) is in a’s phase A, REV(a, b) will be in b’s phase B.
As for CW and CCW, they usually stay in the same phase, but CW could go from
phase A to phase B or from phase B to phase A, and similarly for CCW.

For the extensions (CX and CCX), the paper requires the use of phase A intervals
(or groups) and the split-find data structure7 [HU73] [GT85] [LaP90]. When no
phase B segments have been found, only one phase A interval exists which holds all
the phase A segments. When a phase B segment is found, its extension may split
up an interval into two. The intervals are kept in a linked list. Each phase B
segment points to an associated phase A interval and each interval has an associated
phase B segment. Initially, there is an imaginary vertical representing the associated
phase B segment for the one and only phase A interval.

7 An interval split should not be confused with an edge split.

18

To find the CX of a phase A segment, it is first necessary to locate its interval. Then
CX is found by taking the next interval’s associated phase B segment. To find the
CCX of a phase A segment, it is simply the interval’s phase B segment. To find the
CX of a phase B segment, one takes the first phase A segment of the associated
interval. To find the CCX of a phase B segment, one takes the last phase A segment
of the interval previous to the associated interval.8

When a phase B segment is added, it may split the next higher phase B segment’s
phase A interval. The first challenge is finding out where to make the interval split.
The algorithm makes use of a dovetailed doubling search9 which is a binary search
preceded by finding the exponential bounds on the right side of the array. This is
necessary to meet the time bounds. Specifically, if

†

ma is the number of phase A
segments, the following recurrence holds:

†

T(ma) = max
0£k< ma

T (k) + T(ma - k) + min(log(k), log(ma - k))[]

It solves to O(

†

ma). This means that the amortized time for interval splits is linear in
the number of phase A segments. The second challenge is to make finds run in
amortized O(

†

mb) time, where

†

mb is the number of phase B segments. Together the
split-finds associated with one vertex would run in O(

†

ma +

†

mb) time which is
O(|e|) over all vertices. It is assumed that the linear time union-find algorithm by
Tarjan-Gabow [GT85] can be reversed for the rest of the split-find, i.e. regrouping.

Implementation Details
An AVL tree holds the scan order (left to right, followed by bottom to top when x-
coordinates are equal), and another AVL tree holds the chains (y-structure) of the
triangulation. Doubly-linked lists represent the chains of the scan boundary, the
funnel sequences, the phase A intervals, and the phase B segments. The phase A
segments for each vertex exist as an array.

It was difficult to generalize the split procedure to all geometric situations. Part of
the difficulty of implementing the algorithm is that the loops (or walks) are
deceptively simple as described in the paper. This is so because the walk can go
from one phase to the other. For instance, in the walk from u’’ to x along this

8 CX and CCX may wind up in the same phase if there is no previous or next interval or if the phase B
segment is the imaginary vertical.

9 This is equivalent to the finger tree method described in Ghosh and Mount’s earlier paper [GM87].

19

convex chain, the (u’’, u’) segment starts out in phase A of u’’, but after one
iteration, this may turn over to phase B. Also, the backward walk might end at x
which is similar but requires extra code than if not.

Other difficulties are the special cases. For instance, u’ may not be valid if not
visible to (v, y). A check must be in place for this. It will be invalid if it is in phase
B because it would not be in the funnel sequence if it is to the right of u. Of course,
handling collinear vertices requires extra coding and checks.

A major difficulty when coding was relating the funnel sequence to the visibility
segments. There was more than one occasion when it was necessary to have the
position in the funnel sequence, but only the identity of the vertex was known. For
this, re-coding added funnel position into the segment structure. Some of these
positions then have to be maintained when splitting.

An instance of this is when finding r via the clockwise operation (CW). In fact, one
particular situation was overlooked in the paper and had to be corrected. If the CW
flips over into phase B, using the first phase B segment may not be the right one.
This is so because this phase B segment might not have been added to the funnel
sequence (even though visible to the (x,y) edge). The case happens when a vertex is
found to the right of the edge, as in vertex 8 for edge (6,7) of Figure 32. When such
a vertex is in phase B of a vertex that needs it as r, it will not be found in the funnel
sequence. One solution is to skip phase B segments until one is found that is in the
funnel sequence. However, the requirement of constant time makes finding a better
solution necessary. For this, storing the first phase B segment added (not
necessarily the one with the highest slope) will yield the right r in this situation. It
can be shown that it will exist in the funnel sequence, and the vertices that got
skipped will not be in the funnel sequence and so will not be visible to the new
vertex anyway (at least in this path to the edge being split).

20

uu’

x

y

v

r(skipped)

r(skipped)

r(good)

1

2

0

65
4

3

7

8

9

Figure 12 - A Split Where r Is A Special Case

Going through the example of this in Figure 12, at vertex 7, the algorithm produces
triangulation edges (5,7) and (6,7). At vertex 8, because it lies to the right of the
(6,7) edge, it will not be added to the (6,7) funnel sequence (even though it is clearly
visible to the edge). Because (0,9) and (0,2) are derivatives of (6,7), vertex 8 will not
be in their funnel sequences either. So when vertex 1 is processed (and splits (0,2)),
vertex 8 cannot be the r when u is 6. The same is true for vertex 3. The r that
works here is vertex 7 - and this is the first phase B segment seen by vertex 6.

A case similar to the preceding arises in the traversal from s to r. If in phase B, the
CCX walk may visit a vertex that is not in the funnel sequence (because it is to the
right of q). It was solved with an extra check to skip one or more vertices. If the
vertex is to the right of q, then it must be skipped. But, in order to meet the
theoretical time bounds (because this may happen many times) the result of this
skipping is cached.

21

0

1
2

3

4

5

6

7

w, s

r

b

u’,q

u
v

Figure 13 - Skipping Vertices in the s to r Walk

An example of this is shown in Figure 13. Here, vertex 3 will not be in the funnel
sequence of edge (0,5) even though it is visible to it. When vertex 6 splits (0,5), it
will have u=5 first. In this case, u’=4 and since vertex 5 has no other children, r=2
and q=4 since it is the predecessor of vertex 5 in the linked list. Then, q’s upper
parent (s) is vertex 0. In the walk from s to r, it should visit vertices 1 then 2.
However, after vertex 1, the CX(0,1) is found to be vertex 3(b) instead of vertex 2(r).
Because vertex 3 is to the right of q, it should be skipped. The skipping goes to
vertex 2 - the correct one. After vertex 6 is complete, vertex 7 is processed. A same
situation will occur, but because the result of the skip should have been cached
(when handling vertex 6), the walk can go directly to the right vertex (2 in this case).

Finally, the split-find data structure was not fully implemented. The split part was
implemented (dovetailed doubling search), but the interval finds were coded as a
linear search starting at the list head. In the regular regression testcases, this search
iterated no more than four times (effectively a constant). Only in the random
testcases did this count go up (to 16). However, even with these testcases, the
average number of iterations stays less than 4.0. Given the theoretical nature of the
full split-find, one would might even see a slow down if fully implemented.

22

Performance Comparisons

Timing Methodology
At a high level, some rules about the implementation were enforced to get more meaningful
comparisons. For example, all implementations must handle collinearities and must use the
same non-visibility interpretation (see Input/Output Assumptions). Also, all codes must
actually store the visibility graph - not just report the edges. Finally, if the code uses a
balanced binary search tree, it must use the same basic AVL implementation (only key
comparisons can be altered). As mentioned above, every algorithm should be a reasonable
implementation, with performance enhancements added when found. A reasonable attempt
was made to find as many improvements as possible (none of which change the asymptotic
bounds, only the effective constants). These improvements are detailed in the appendices.
Of course, the fastest running version of each algorithm was used for the timings.

Actual timings were carried out by instrumenting the codes with gettimeofday() calls.
The start time is read after the input is read (in order to eliminate I/O variations in the
operating system). The end time is read when the algorithm has finished (and just before
exit()). For correctness, all implementations were first verified against a set of about 200
regression tests. Of course, during timings, all output is turned off (again to eliminate I/O
delays in the timings).

The usual steps have to be taken to ensure equal comparisons. All binaries were compiled
with the same compiler and with the same optimization flags10. All tests were done on the
same hardware11 , same operating system12 , etc. All timings were taken on a non-networked
machine with no other user-level task running (and identical system-level processes).

Finally, when timings were taken, five consecutive runs were carried out on each testcase.
The high time and the low time were discarded. The middle three were then averaged.

Timing Results
Five basic sets of testcases were run and the results of these were plotted to verify the
implementation’s asymptotic running time and to show the divergence of the algorithms’
running time for larger

†

n . Also, it is instructive to know the crossover points, i.e. when one
10 Gnu gcc 2.95.2 compiler with -O3 optimization
11 iMac G3 PowerPC 750 400Mhz CPU, 32K L1 cache, 512K L2 cache, 320MB memory
12 Mac OS X 10.1.5 (based on FreeBSD)

23

algorithm becomes better than another due to constant factors. These sets will be
subsequently referred to as A) Circle of Obstacles, B) n-gon, C) Square Grid of Obstacles,
D) Line of Triangles, E) Spirals, and F) Random. Each (except for Random) has a known
bound of the number of visibility edges.

Circle of Obstacles - The first set described here has O(

†

n2) visibility edges. It consists of a
number of triangles spread equally apart around a center - see Figure 14. In this manner the
outer two vertices can see those of every other obstacle, so the bound is O(

†

n2). The number
of obstacles range from three (13 vertices) to 24 (76 vertices).

(a) (b)

Figure 14 - Polygonal Region with O(

†

n2) Visibility Edges, e.g.

†

n=25
(a) region with no visibility edges shown (b) one point’s visibility

Figure 15 - The Entire Visibility Graph of the Example in Figure 14

24

Figure 16 - Plot of Execution Times for the Circle of Obstacles Set

25

Figure 16 shows the results of the timings on this set of testcases. The actual numbers are
tabled in Appendix E. Obviously, the Overmars/Welzl algorithm does best for large

†

n .
The reason it runs faster than Ghosh/Mount (even though both have the same complexity
with |e| = O(

†

n2)), is that it has a low constant. For example, it has no dynamic allocation
(except to store the visibility graph itself). Further analysis shows certain crossover points.
The Naive algorithm does better than any other for

†

n

†

£13, after this Overmars/Welzl
method still performs the best. Also, Lee’s method does better than Ghosh/Mount for

†

n

†

£
19, but not beyond this.

n-gon - While similar to the Circle of Obstacle set, the n-gon set has no obstacles (holes).
It also has O(

†

n2) visibility edges. Figure 17 shows an example. The set has a range of
vertices from ten to 90 vertices. (Note: obviously a specialized program could be written for
just convex polygons and would run incredibly fast in comparison, but it was thought that it
might be interesting to see how these generalized algorithms will perform on a trivial
problem.)

(a) (b)

Figure 17 - n-gon with O(

†

n2) Visibility Edges, e.g.

†

n=10
(a) without visibility shown (b) one point’s visibility

26

Figure 18 - Plot of Execution Times for the n-gon Set

27

Figure 18 contains the plots of the results (see Appendix E for the exact numbers). The
main performance difference between this set and the Circle of Obstacles: Lee outperforms
Ghosh/Mount at large n. (But the gap between Lee and Ghosh/Mount becomes smaller for
large

†

n . At

†

n=90, Lee runs in about 65% the time of Ghosh/Mount and at

†

n=5000, Lee
runs about 76% of Ghosh/Mount.) This somewhat surprising result can be explained by
looking closer at what the Ghosh/Mount code is doing. At each new vertex, only one
Mehlhorn triangle gets added - thus at the top there is only one split operation. All the other
vertices must be reached by recursive calls to the split operation. The Ghosh/Mount
algorithm does well when it can eliminate pockets of visibility because these can be
concatenated onto the end of the funnel sequence in constant time. But, since there are no
hidden pockets in this set of testcases, the constant is high for all pairs of vertices. Table 1
shows the running times for large n (n=5000).

224 seconds
= 3.73 minutes

90.7 seconds
= 1.51 minutes

171 seconds
= 2.84 minutes

>4 hours

Ghosh/MountOvermars/WelzlLeeNaive

Table 1 - Measurements for the n-gon Testcase with n=5,00013

For very large visibility graphs, the Ghosh/Mount algorithm actually runs out of memory.
With vertices of an n-gon at n=10,000, it ran out of memory (even with unlimit set in the
shell). The reasons are various. First, the actual split function as coded has many local
variables and because it is recursive, all the frames put together eat up stack space. Also, the
t-to-s chain of subsequent splits are placed on a linked list which is dynamically allocated.
But more basically is the fact that each visibility pair (both from/to and to/from) requires15
words of storage in the data structure. When there are O(

†

n2) edges in the graph, this really
eats up memory. This is in contrast to the other algorithms that require only two or three
words per pair. The reason the Lee algorithm does not hit this limit in the n-gon set is that
at any stage in any of the scans, edge tree only has one node in it.

13 for these big testcases, the Naive method did not finish after 4 hours user time; also, the other
measurements here are based on one sample with the BSD time utility (user time)

28

Square Grid of Obstacles - The next set of testcases test the algorithms with a |e|
somewhere between quadratic and linear. In fact, these have O(

†

n3/2) vertices. This set
ranges

†

n2 from eight to 148, with

†

n=68 shown in Figure 19.

Figure 20 shows the plots of the timings (see Appendix E for the exact values). Here, the
timings for large

†

n reflect exactly what one might expect, i.e. Ghosh/Mount does best,
followed by Overmars/Welzl, followed by Lee, followed by Naive. The crossover points
show that Naive does best with

†

n

†

£8, Lee never does better than Overmars/Welzl, and
Ghosh/Mount does better than Overmars/Welzl only when

†

n exceeds 68. Also, to give an
idea of running times with many vertices, this testcase was run on

†

n=7748 (a grid of 44x44

squares). Table 2 shows the results.

(a) (b)

Figure 19 - Polygonal Region with O(

†

n3/2) Visibility Edges, e.g.

†

n=68
(a) region with no visibility edges shown (b) one point’s visibility

9.37 seconds128 seconds
= 2.13 minutes

540 seconds
= 9.00 minutes

>4 hours

Ghosh/MountOvermars/WelzlLeeNaive

Table 2 - Measurements of the Square Grid of Obstacles Testcase with

†

n=774814

14 for these big testcases, the Naive method did not finish after 4 hours user time; also, the other measurements here
are based on one sample with the BSD time utility (user time)

29

Figure 20 - Plot of Execution Times for Square Grid of Obstacles Set

30

Line of Triangles - This set has a linear number of visibility edges, i.e. O(

†

n) with most
vertices being able to see just a few others (essentially a constant). The timings were
carried out in the range 22

†

£

†

n

†

£154. Figure 21 shows an example.

The timings across n are plotted in Figure 22 (see Appendix E for the exact values). The
results are as expected for large

†

n with Ghosh/Mount being quicker than Overmars/Welzl,
followed by Lee, and lastly Naive. The crossover points in this set: Naive faster than Lee
until

†

n=46, Lee never beating Overmars/Welzl, and Ghosh/Mount outdoing
Overmars/Welzl at

†

n

†

≥28. To give an idea about how much faster Ghosh/Mount is for
large

†

n , some additional measurements were taken for

†

n=10,000. Table 3 shows the
results.

(a)

(b)

Figure 21 - Polygonal Region with O(

†

n) Visibility Edges, e.g.

†

n=22
(a) region with no visibility edges shown (b) one point’s visibility

31

Figure 22 - Plot of Execution Times for the Line of Triangles Set

32

0.730 seconds234 seconds
= 3.90 minutes

1410 seconds
= 23.6 minutes

>3 hours

Ghosh/MountOvermars/WelzlLeeNaive

Table 3 - Measurements of the Line of Triangles Testcase with

†

n=10,00015

Spirals - The spirals represent another linear set of testcases, except this set is a single
polygon (no obstacles/holes). O(

†

n) is the upper bound on visible edges since each vertex
has a small constant of other vertices which it can see. Here

†

n ranges from six to 196.
Figure 23 shows an example with

†

n=86.

Figure 24 shows the timings plot. For large

†

n , the algorithms diverge as the Line of
Triangles set. One difference earns mention. Here, Lee does considerably worse than with
the Line of Triangles set. One explanation is that with Lee and this sort of polygon, many
vertices have deep edge trees as the scan sweeps around them.

(a) (b)

Figure 23 - Spirals with O(

†

n) Visibility Edges, e.g.

†

n=86
(a) without visibility shown (b) one point’s visibility

15 for these big testcases, the Naive method did not finish after 4 hours user time; also, the other
measurements here are based on one sample with the BSD time utility (user time)

33

Figure 24 - Plot of Execution Times for the Spirals Set

34

As for crossovers, these are similar to the other linear set (see Appendix E for exact values).
Naive does better than Lee until

†

n

†

≥26. Lee has better times than Overmars/Welzl at

†

n=6
but not after. Finally, Overmars/Welzl is better than Ghosh/Mount but only for

†

n

†

£26.

random - This set was randomly generated where the number of triangles can be specified.
Their size, orientation, and placement are random within ranges. Also, no overlaps are
allowed. Figure 25 shows an example with 50 triangles (n=154).

(a) (b)

Figure 25 - Random Region, e.g. n=154
(a) without visibility shown (b) with one point’s visibility

35

Figure 26 - Plot of Execution Times for the Random Set

36

Figure 26 shows the timing results (with the exact figures in Appendix E). Towards larger
n one sees the results resembling some of the other sets, i.e. Lee does worse than
Overmars/Welzl and Ghosh/Mount does slightly better than Overmars/Welzl. However, the
visibility graph becomes more and more sparse as n becomes bigger. So one sees a
relatively high crossover point between Overmars/Welzl and Ghosh/Mount. Here, the
crossover happens at about n=150. Another phenomena seen is that there is a point at
which Ghosh/Mount actually performs better at larger n than it did for smaller n due to the
fact that the triangular obstacles become more dense in the same area. This is only seen
between the last two data points of the graph, but it has been observed nonetheless.

As for very big n, one would expect an even greater separation and this can be shown in
Table 4, when n=5000.

1.08 seconds63.9 seconds
= 1.06 minutes

253 seconds
= 4.22 minutes

>4 hours

Ghosh/MountOvermars/WelzlLeeNaive

Table 4 - Measurements of the Random Testcase with

†

n=5,00016

16 for these big testcases, the Naive method did not finish after 4 hours user time; also, the other
measurements here are based on one sample with the BSD time utility (user time)

37

Other Aspects and Comparisons

This section merely discusses some other issues involved with the visibility graph and how
they relate to the algorithms implemented here.

Space Complexity
The Naive implementation uses O(n) working storage and stores the graph in O(|e|). The
working arrays are allocated at the beginning after n has been read from the input. The Lee
implementation has the same space complexity, but requires dynamic allocation/deallocation
in the AVL trees as each vertex is processed. The Overmars/Welzl implementation has the
same working storage and graph storage complexities and uses dynamic allocation in its
only AVL tree, but it only needs to do this once to fill the tree at the beginning. The
Ghosh/Mount implementation inherently requires O(|e|) working storage and this can not
be avoided since the walking operations (CX, etc.) need what has been discovered
previously in order to work correctly. This is in contrast to the other algorithms where it is
an option whether or not to actually store the graph (however, in these tests, storing the
graph was chosen in order to obtain a fair comparison). One solution that can be applied to
the Ghosh/Mount implementation is to free up the heavy representation (15 words) after the
algorithm has finished and copy the relevant information into a lighter structure (two or
three words) as the others have.

As for running out of memory, only the Ghosh/Mount algorithm ran into this problem (in
some very large n-gon testcases as mentioned previously). However, unrestricting memory
usage in the shell alleviated the problem in all but the very biggest testcase. In the paper by
Agarwal, et. al. [AAAS93], it is shown that the visibility graph can be more compactly stored
using clique covers, however, there is not much savings. The paper shows that the space
required for a visibility graph with quadratic number of edges has a lower bound of

†

W(n2 / log2 n) and an upper bound of O(

†

n2 / logn), where the sum of the clique sizes is of
course n. So, this would be some help for all the implementations, especially the Ghosh and
Mount code since it needs so many memory words per visible pair.

Code Complexity
Naturally, the Naive method is the simplest, with Lee and Overmars/Welzl being about equal
with medium complexity. The Ghosh/Mount method is clearly the most complex requiring
a triangulation, funnel sequences, the complicated split procedure, and structures needed for

38

the graph traversal operations. Overmars/Welzl state something about Ghosh/Mount in
their paper [OW88]. “Although the latest method is optimal in time, the authors themselves
state that the method will be very hard to implement and implementations might be slow due
to high constants”. It goes without saying that code complexity is a factor for development
time and maintenance.

Efficiency of Queries
The shortest path between two vertices (or even all-pairs shortest path) can be calculated
using Dijkstra’s algorithm as mentioned previously. However, often enough the shortest
path between two arbitrary points within the free space of the polygonal region is desired.
Without rerunning the program, it would be nice to keep the basic visibility graph stored,
then run something quick on just the query points, and finally apply shortest path to the
resultant graph. This process could then be repeated as often as desired given that the
polygonal region does not change - only the query points.

Perhaps the easiest way to do this in Lee’s algorithm is to run one iteration of the algorithm
on the start and end points and include those visibility segments in the graph before running
Dijkstra’s. Here the running time of the queries would be O(

†

nlog n) which beats any
algorithm run completely from scratch. However, there does not seem to be a simple way to
run just part of Overmars/Welzl or part of Ghosh/Mount. For these algorithms, Lee’s
algorithm could be imported for the queries.

Dynamic Changes to the Region
None of the algorithms compared in this paper were designed with dynamic changes to the
region in mind. As implemented, each would have to be rerun. However, it is interesting to
note that the Asano algorithm [AGHI86] can handle dynamic changes (inserts and deletes)
each in O(n) time to maintain the visibility graph. Also, one Vegter paper [Veg91] shows
some results for dynamic changes via the visibility diagram. The time here is
O(

†

log2 n + k log n) where k is the number of visibility edges created or destroyed at the
change.

Some other papers allow dynamic changes for maintaining the parallel view [EOW83] or
the view from a point [EOW83] [Poc90] [Riv97].

39

The Outer Visibility Graph
As the “Input/Output Assumptions” states, only the inner visibility graph is calculated.
The outer visibility graph is not. Comparing what it would take to allow this, in the Naive,
Lee, and Overmars/Welzl methods, it is as easy as eliminating one line of code (one check).
However, the Ghosh/Mount implementation would need some work. The part that would
require change is the Mehlhorn triangulation. Instead of doing only the inner triangulation,
it would have to calculate the convex hull followed by the complete triangulation. As such, it
would have to keep track of chains in the out-intervals as well (not just the in-intervals).

The Vertex-Edge Visibility Graph
Each algorithm can also be relatively easily modified to compute the vertex-edge visibility
graph. The vertex-edge visibility graph is a bipartite graph where the vertices are on one
side and the edges are on the other. It is considered a weak visibility graph since a vertex
may be able to see only part of an edge. From it, other structures including the visibility
polygon, the visibility graph, and the visibility complex can be found [OS97a] (with some
restrictions on collinearities).

40

Conclusion

Four classical approaches to the visibility graph problem with general polygonal holes have
been coded. Each was tuned to get a reasonable implementation before overall
measurements were taken. The results follow the time complexity of each: O(

†

n3) for
Naive, O(

†

n2 log n) for Lee, O(

†

n2) for Overmars/Welzl, and O(|e| +

†

nlog n) for
Ghosh/Mount. Crossover points have been identified so as to give an idea of which
algorithms do best at different testcase sizes.

This paper’s main result is in the implementation of the Ghosh and Mount algorithm with
complications identified and solutions found. As a bit of a surprise, the algorithm does not
have outrageous running-time constants and often betters other approaches for even
medium-sized testcases.

Future work
A second algorithm for sparse graphs was detailed in Overmars/Welzl’s paper [OW88],
and this could be compared against the implementations described here, especially against
Ghosh/Mount. If this O(|e|

†

log n) approach is as simple to implement as the O(

†

n2)
approach (first algorithm in the paper), it may end up being fastest on testcases yielding
sparse graphs. If it holds true, then for any conceivable testcase, exactly one of the two
Overmars/Welzl approaches would run faster than any other approach. However, choosing
which one to run might be difficult to decide beforehand. For completeness, Asano’s O(

†

n2

) approaches [AGHI86] may do well also; but without an implementation, it is difficult to
say.

Other output-sensitive algorithms exist. First, Kapoor and Maheshwari’s approach
[KM00] via triangulation corridors could be implemented to see how it does against
Ghosh/Mount. Also, Riviere’s work [Riv97] and Pocchiola and Vegter’s work [PV95]
(appearing simultaneously) find the visibility graph of convex objects by effectively
carrying out a topological sweep of the visibility complex [PV93]. This approach should be
convertible to line segments (convex polygons with two vertices) and then adapted to simple
polygons in the same way that the Overmars/Welzl implementation was adapted here.
Doing this would add another O(|e| +

†

nlog n) algorithm to the offerings.

41

Appendices

__

Appendix A - Naive Method
Appendix B - Lee’s Method
Appendix C - Overmars and Welzl’s Method
Appendix D - Ghosh and Mount’s Method
Appendix E - Tables of Measurements Used in the Plots
Appendix F - Rotation Tree Details

__

42

Appendices A-D list local optimizations for the methods under study. This basically simply
means “tricks” that were found in order to make the implementation more of a “reasonable
implementation”. These range from minor things like removing checks (after verification,
of course) to more significant improvements, such as only scanning half the plane (-

†

p /2 to

†

p /2) versus (-

†

p /2 to 3

†

p /2). However, everything reasonable found to speed it up was put
in (or taken out as the case may be), so as to make for comparisons that are as unbiased as
possible when the algorithms are run against each other. Code profiling17 served as a good
tool in order to see where the most time was being spent. The heavy functions would then
yield the most gain if improvements could be found there.

During this stage, the algorithms were run against themselves as the optimizations were put
in place one after another. This shows incremental improvement. The same test cases were
used as each algorithm was improved in this local manner. These testcases are the
following:

“linear154” - a testcase with a linear number of visible edges. It has 154 vertices.

“box148” - a testcase with a grid of boxes as obstacles. It has O(

†

n3/2) number of
edges and 148 vertices.

“quad58” - a testcase with O(

†

n2), or quadratic, number of edges. It has 58
vertices.

These testcases are some of the same as those used in the algorithm-to-algorithm
comparisons seen in the main body of this paper. The point was simply to get a rough idea
of how the algorithm was running and then to show how well the optimizations were
helping. Of course, the tests were run under similar conditions, i.e. the same compiling
(level 1 optimization), same operating system under similar loads, same hardware, etc.
Times were taken for three consecutive runs and these averaged. (See also “Test
Methodology” under Performance Comparisons.)

17 profiling via the gcc -pg compile option and gprof

43

Appendix A - Tuning the Naive Method

The vanilla version of the Naive algorithm has none of the tricks to increase performance.
About the only optimization it does do is to break out of the third level loop if a blocking
(interfering) edge is found. This is natural since there would be no sense in continuing with
the loop if an interfering edge was already known to exist.

The second version has certain basic tricks to increase performance. First, the second-level
loop does not have to iterate between 0 and (

†

n-1). It can start at (center+1). Thus, instead
of

†

n2 third- level loop executions, it is (

†

n2-

†

n)/2 such loop executions. Second, the third-
level loop does not have to be run at all if the visibility segment would be outside the
polygon (the check for this runs in constant time). Third, visibility segments to adjacent
edges can automatically be reported. This case, of which there are O(

†

n) instances, allows
the third-level loop to be skipped entirely.

The third version uses squared distances for all the distance calculations. This saves on a
square-root calculation for every such distance calculation. There were also some checks
removed and other minor cleanup in this final version.

Tables A-1 through A-3 shows the timings.

0.3812270.3991651.092338average

0.381415

0.381034

0.381233

0.397977

0.398765

0.400753

1.092338

1.089229

1.089229

run 3

run 2

run 1

version Cversion Bversion A

Table A-1 - “linear154” Measurements for Naive Versions (seconds)

44

0.469210

0.467120

0.469526

0.470984

0.481655

0.485430

0.487799

0.471737

1.135274

1.135616

1.131248

1.138958

average

run 3

run 2

run 1

version Cversion Bversion A

Table A-2 - “box148” Measurements for Naive Versions (seconds)

0.088680

0.089207

0.089992

0.086841

0.092276

0.093823

0.091391

0.091614

0.160920

0.162831

0.160112

0.159817

average

run 3

run 2

run 1

version Cversion Bversion A

Table A-3 - “quad58” Measurements for Naive Versions (seconds)

An analysis on the data shows that the optimizations in the second version (version B) have
the most effect. Here the three tests show 63.5%, 57.6%, and 42.7% decreases in running
time. The third version improvements (from version B) are 4.49%, 2.58%, and 3.90%. The
net improvements (A to C) are 65.1%, 58.7%, and 44.9%.

45

Appendix B - Tuning Lee’s Method

The initial version has no special optimizations.

The second version adds an AVL replace optimization. This occurs when the scan line
encounters a vertex where an edge has to be removed from the edge tree but at the same time
the adjacent edge has to be added. The initial version explicitly does an AVL remove
followed by an AVL insert. This version makes use of AVL replace because the structure
of an AVL tree will be the same in this situation.

The third version cuts the scan to half the plane. The technique was actually seen in
Welzl’s paper [Wel85]: the scan only goes from -

†

p /2 to

†

p /2 instead of -

†

p /2 to 3

†

p /2. In
other words, points to the left can be ignored since visibility between left points and the
center are checked when those left points become center. This works because vertex #1
being visible to vertex #2 implies vertex #2 being visible to vertex #1. The expected
improvement would be from

†

n2 to (

†

n choose 2) which is

†

n2 -

†

n .

The fourth version uses a different distance calculation. The previous versions used a
calculation based on law of sines. This version uses an intersection method.

The fifth version further improves the distance calculation by using squared distances,
saving a square root calculation each time.

Tables B-1 through B-3 show the timing results.

0.236261

0.236261

0.235235

0.235857

0.231642

0.230854

0.231688

0.2323840.403958

version Dversion C

0.2057740.4026130.466674average

0.207602

0.204244

0.205477

0.400092

0.403789

0.468591

0.465280

0.466150

run 3

run 2

run 1

version Eversion Bversion A

Table B-1 - “linear154” Measurements for Lee Versions (seconds)

46

0.161612

0.160793

0.160045

0.163999

0.158229

0.156148

0.157366

0.161173

version Dversion C

0.1474780.2527730.306236average

0.146863

0.146518

0.149053

0.252590

0.252035

0.253694

0.306121

0.305961

0.306626

run 3

run 2

run 1

version Eversion Bversion A

Table B-2 - “box148” Measurements for Lee Versions (seconds)

0.019135

0.018905

0.019601

0.018899

0.018359

0.018289

0.018289

0.018498

version Dversion C

0.0175080.0635310.068018average

0.017181

0.018023

0.017319

0.063352

0.062913

0.064328

0.067858

0.068015

0.068181

run 3

run 2

run 1

version Eversion Bversion A

Table B-3 - “quad58” Measurements for Lee Versions (seconds)

The improvements are summarized in Table B-4. As one can see, version D actually makes
the performance decrease slightly. However, with squared distances in version E (not
possible in versions A, B, or C since they use the law-of-sine method for distances), the gain
in going to intersection method for distances is realized in version E.

11.2%

6.79%

4.64%

C to E

8.50%

8.75%

11.2%

-4.23%

-2.14%

-1.99%

D to EC to D

74.3%

51.8%

55.9%

71.1%

37.4%

42.5%

6.6%

17.3%

13.7%

quad58

box148

linear154

net (A to E)B to CA to B

Table B-4 - Lee Measured Improvements from Version to Version

47

Appendix C - Tuning Overmars and Welzl’s Method

The primary version of this method has most optimizations already in place. A priori, the
paper [OW88] specifies a fast loop and gives detailed pseudocode, so it is easy to code well
the first time. Also, the half-plane optimization for the scan, i.e. scanning in the range (-

†

p /2
to

†

p /2) versus (-

†

p /2 to 3

†

p /2) is inherent. Next, initially choosing an array (of size n) to
define the stack will automatically beat a slower dynamic memory implementation.

The secondary version basically just has slightly tighter integration and adds some “inline”
keywords to key functions.

Tables C-1 through C-3 list the measurements taken for the three testcases.

0.080586
0.082210
0.079690
0.079857

0.082027
0.087848
0.087995
0.089400

average
run 3
run 2
run 1

version Bversion A

Table C-1 - “linear154” Measurements for Overmars/Welzl Versions (seconds)

0.076733
0.076842
0.081570
0.078487

0.077781
0.077023
0.076375
0.079429

average
run 3
run 2
run 1

version Bversion A

Table C-2 - “box148” Measurements for Overmars/Welzl Versions (seconds)

0.010862
0.010854
0.010867
0.010864

0.011215
0.011216
0.011243
0.011185

average
run 3
run 2
run 1

version Bversion A

Table C-3 - “quad58” Measurements for Overmars/Welzl Versions (seconds)

Some improvement can be seen here: 1.76%, 1.35%, and 3.15% for the three testcases run.

48

Appendix D - Tuning Ghosh and Mount’s Method

The first version represents a good basic working version of the algorithm. Some attempts
at the start were made to make it efficient. Some of these are listed here:

Inlining all the graph traversal primitives, such as CW, CCW, CCX, and CX instead
of making them separate routines as the paper suggests. This allows some
invocations to be more optimal. For example, sometimes CCX (counter-clockwise
extension) does not need a check to see it exists before retrieving it.

Pre-calculating slopes between adjacent vertices since they are referenced so often.

Saving slope calculations between nonadjacent visible vertices.

The second version makes one optimization: it replaces dynamically allocated phase-A
segments in favor of an array. This is possible because although during integration of a
new vertex there is no way to know a-priori how many segments in phase-A there might be
(making a linked-list the obvious choice), an array can be used because the count will never
exceed n.

The third version removes over 20 checks, inlines some functions, and does some other
minor cleanup.

0.009245

0.009240

0.009276

0.009218

0.009346

0.009290

0.009318

0.009430

0.009944

0.009941

0.009927

0.009963

average

run 3

run 2

run 1

version Cversion Bversion A

Table D-1 - “linear154” Measurements for Ghosh/Mount Versions (seconds)

49

0.024304

0.024218

0.024438

0.024255

0.024362

0.024338

0.024217

0.024531

0.026836

0.026652

0.026874

0.026982

average

run 3

run 2

run 1

version Cversion Bversion A

Table D-2 - “box148” Measurements for Ghosh/Mount Versions (seconds)

0.015957

0.016026

0.015882

0.015962

0.015715

0.015854

0.015633

0.015657

0.017522

0.017602

0.017674

0.017291

average

run 3

run 2

run 1

version Cversion Bversion A

Table D-3 - “quad58” Measurements for Ghosh/Mount Versions (seconds)

The improvement from version A to B shows better times with 6.01%, 9.22%, 10.3%
decreases in execution time. The improvements between B and C show 1.08%, 0.238%,
and -1.54% decreases.

50

Appendix E - Tables of Measurements Used in the Plots

Ghosh/MountOverMars/WelzlLeeNaiven

25.345318.240329.6913122.89176
23.181316.972327.3473109.25173
21.079315.563325.01395.25670
19.577714.349722.906383.614767
18.135713.0120.713772.578364
15.942711.791719.131762.376361
14.003710.549316.909752.24158
13.39279.7286715.18146.20755
11.90678.6963313.529338.859752
10.28737.5503311.980331.651749
9.357336.7346710.46126.526346
7.941675.9239.1626721.301343
6.737675.018.1516716.517740
5.9284.330336.8083313.25237
4.894333.5985.69910.088334
4.260673.076334.7857.6276731
3.542.499333.7635.6643328
2.7391.971673.028673.9493325
2.2321.557672.3812.7053322
1.846671.2011.777331.8096719
1.4130.9221.276331.1086716
1.086330.6553330.8760.62733313

Table E-1 - Average Measures for the Circle of Obstacles Testcases (milliseconds)

51

Ghosh/MountOvermars/WelzlLeeNaiven

50.156727.42132.6047267.31890
45.795324.92829.7587233.05586
41.65222.745327.101201.85182
37.573720.431724.3713173.6578
33.798318.409722.0687147.96874
30.180316.514319.52125.07570
26.906714.75317.3873104.98766
23.716313.23115.26586.75962
20.75511.39613.389371.036758
17.8349.90711.53257.071754
15.50738.5439.8633345.402750
13.08937.2618.33135.243346
10.90476.0986.96326.647742
8.969674.989675.6453319.724338
7.2323.991674.5583314.14334
5.657673.153673.4949.6436730
4.382.356672.613676.2706726
3.206671.766671.909333.73822
2.239671.219671.307332.0546718
1.508330.7756670.8113330.97614
0.8880.4890.4510.38610

Table E-2 - Average Measures for the n-gon Testcases (milliseconds)

Ghosh/MountOvermars/WelzlLeeNaiven

24.099346.1103115.255436.143148
14.42723.22555.0297159.865104
7.9013310.322.325348.260768
3.806673.767.4156711.033340
1.627671.126331.798671.71420
0.6473330.3446670.3626670.2178

Table E-3 - Average Measures for the Square Grid of Obstacles Testcases (milliseconds)

52

Ghosh/MountOvermars/WelzlLeeNaiven

9.4833348.3293172.73348.924154
9.0236744.9147158.051310.975148
8.7433341.1747144.505275.976142
8.3903337.8487131.251244.684136
7.9666734.8673119.017215.851130
7.60931.682107.041189.036124
7.17328.804796.1663164.607118
6.9016725.970385.741142.427112
6.36923.314376.0343122.203106
6.0646720.812366.8503103.873100
5.6606718.592358.685787.914794
5.42916.4450.73973.231388
5.0686714.268743.717760.67782
4.7183312.371737.041349.121776
4.2783310.61930.798339.36270
3.988.9076725.23331.15664
3.591677.3706720.345323.844758
3.2616.03616.112717.850352
2.921674.81612.399312.97146
2.523.719339.113339.0516740
2.183672.775336.322335.9183334
1.8321.948334.192673.6766728
1.534331.291332.536671.9803322

Table E-4 - Average Measures for the Line of Triangles Testcases (milliseconds)

53

Ghosh/MountOvermars/WelzlLeeNaiven

10.41189.2953205.62317.619196
9.95880.9153185.11276.804186
9.4496772.139162.067242.648176
8.95364.0077143.226212.922166
8.5533356.762124.506182.56156
8.0206749.878107.57155.649146
7.54543.577793.226131.42136
7.1486737.644377.739109.587126
6.8726732.07665.659391.11116
6.4563326.781753.226374.2973106
5.89422.104343.234359.215396
5.3706717.992734.365746.321786
4.6936714.206725.868735.617376
4.17710.9719.34925.77466
3.6768.08113.344718.173756
3.2845.652339.0973312.038746
2.771333.6145.2357.05536
2.038332.000332.714673.4786726
1.297670.9363331.177331.1153316
0.519330.2853330.2433330.1346676

Table E-5 - Average Measures for the Spiral Testcases (milliseconds)

54

142.9215.486510.0734360.9286
153.243200.732455.5834004.03274
144.365185.35418.1653585.12262
141.015170.146375.1693123.42250
129.29154.054340.7342762.12238
121.109140.215304.5452403.76226
109.288125.927269.5492026.58214
103.5112.437240.2791717.15202
95.6897101.147209.7341441.2190
84.13688.7133183.4631237.04178
86.047379.8877156.4791088.76166
65.470767.03134.946812.984154
65.553359.0237113.798706.105142
56.971749.670394.045530.488130
48.56341.288377.1103417.984118
38.878333.218361.814302.939106
30.368326.31547.8077206.71194
26.282320.59136.048148.12682
19.323315.018726.29388.992770
14.320710.653317.555354.243758
10.0726.8996710.902728.288346
5.389673.8465.9373311.61434
3.106331.773332.458673.5203322
gmrotleeNaiven

Table E-6 - Average Measures for the Random Testcases (milliseconds)

55

Appendix F - Rotation Tree Details

Listed here are properties, lemmas, theorems, and pseudocode of the rotation tree [OW88].

Property 1

1.

†

p+ INF is the root of the tree

2. The incoming edges of a node are ordered by slope where the edge with the smallest slope is the
leftmost

3. For each edge

†

pq , -

†

p
2

†

£

†

pq

†

£

†

p
2

.

4. If

†

pq and

†

qr are edges then slope(

†

pq)

†

£slope(

†

qr)

Property 2 (order)

Let p, q, and r be nodes in the tree where

†

pq is an edge.

If slope(

†

pq) < slope(

†

pr)

†

£

†

p
2

, then r precedes p in the preorder of the tree, or, in other

words, either r lies on the path from p to the root or it is in a left subtree of this path. If -

†

p
2

†

£

slope(

†

pr) < slope(

†

pq) then r succeeds p in the preorder of the tree.

Property 3 (cone)

Let

†

pq and

†

rs be edges in the tree where slope(

†

pq)

†

£ slope(

†

pr) < slope(

†

rs). Then no

point in V lies in the cone which is the intersection of the open halfplane to the right of

†

rs and the

closed halfplane to the left of

†

pr .

Lemma 1

56

Let G be a rotation tree on V and let

†

pq be the rightmost leftmost leaf-edge in G. If

†

pq is

replaced by

†

pz where z is the next point (after q) in order around p then the resulting graph is
also a rotation tree.

Lemma 2

Let G be a rotation tree on V and let

†

pq be the leftmost edge of q

(q !=

†

p+ INF). Let r be the father of q and let z’ be the left brother of q, if it exists. Then the next

point z around p (after q) is the tangent (from the right) from p to the chain ending in

†

z' r , or, if
z’ does not exist, z=r.

Theorem 1
Given a set of n points in the plane, in time O(

†

n2) and storage O(n) one can find for each point p
the other points sorted by angle around p.

Theorem 2

Given a set S of n non-intersecting line segments in the plane, the visibility graph

†

GS can be

constructed in time O(

†

n2) and storage O(n).

The Rotation Tree Data Structure needs four (4) pointers:
(1) pointer to parent
(2) pointer to left sibling
(3) pointer to right sibling
(4) pointer to righmost child

Pseudocode for needed functions:

b[] Sort(a[]) - sorts vertices a[] by decreasing x,
 returns as set b[]

void AddRightmost(a,b) - adds a as rightmost son to b

57

void Handle(a,b) - process between a and b
void Remove(a) - detaches a from the tree
void AddLeftOf(a,b) - adds a as left brother of b
bool LeftTurn(a,b,c) - returns true if c lies left of

†

ab,
 else false

+ basic stack operations

Pseudocode of main routine:

p = Sort(v);
AddRightmost(

†

p-INF ,

†

p+INF);
for(i = 0 to n-1) AddRightmost(

†

pi,

†

p-INF);
InitStack; Push(

†

p0);
while !EmptyStack
 p = pop();

†

pr = RightBrother(p);
 q = Father(p);
 if (q !=

†

p-INF) Handle(p,q);
 z = LeftBrother(q);
 Remove(p);
 if (z == null || !LeftTurn(p,z,Father(z))) AddLeftOf(p,q);
 else
 while (RightmostSon(z) != null &&
 LeftTurn(p,RightmostSon(z),z))
 z = RightmostSon(z);
 AddRightmost(p,z);
 if (z == top()) z = pop();
 if (LeftBrother(p) == null && Father(p) !=

†

p-INF) push(p);
 if (

†

pr != null) push(

†

pr);

58

References

[AVL62] Adelson-Velskii, G. M. and E. M. Landis, An algorithm for the organization of
information, Soviet Mathematics Doklady, 3 (1962), 1259-1263.

[AAAS93] Agarwal, P. K., N. Alon, B. Aronov and S. Suri, Can visibility graphs be
represented compactly?, in Proceedings of the 9th Annual ACM Symposium on
Computation Geometry, San Diego, CA (1993), pp. 338-347.

[Ang00] Angel, E., Interactive Computer Graphics a Top-Down Approach with OpenGL,
2nd ed., Addison Wesley Longman, Inc., Reading, MA (2000).

[Ang02] Angel, E., OpenGL: A Primer, Addison-Wesley Longman, Inc., Boston, MA
(2002).

[AGHI86] Asano, T., T. Asano, L. Guibas, J. Hershberger, H. Imai, Visibility of disjoint
polygons, Algorithmica, 1 (1986), pp. 49-63.

[CGL83] Chazelle, B., L. J. Guibas and D. T. Lee, The power of geometric duality, in
Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science,
Tucson, AZ (1983), pp. 217-225.

[BKOS00] de Berg, M., M. van Kreveld, M. Overmars and O. Schwarzkopf,
Computational Geometry Algorithms and Applications, 2nd ed., Springer-Verlag, Berlin
(2000).

[Dij59] Dijkstra, E. W., A note on two problems in connexion with graphs, Numerische
Mathematik, 1 (1959), pp. 269-271.

[EG86] Edelsbrunner, H. and L. Guibas, Topologically sweeping in an arrangement, in
Proceedings of the 18th Annual Symposium on Theory of Computing (1986), pp. 389-403.

[EOS83] Edelsbrunner, H., J. O’Rourke and R. Seidel, Constructing arrangements of
lines and hyperplanes with applications, in Proceedings of the 24th Annual IEEE
Symposium on Foundations of Computer Science, Tucson, AZ (1983), pp. 83-91.

[EOW83] Edelsbrunner, H., M. H. Overmars and D. Wood, Graphics in flatland: a case
study, Advanced in Computing Research, 1 (1983), JAI Press, Inc., pp. 35-59.

[EGA81] El-Gindy, H. and D. Avis, A linear algorithm for computing the visibility
polygon from a point, Journal of Algorithms, Vol. 2 (1981), pp. 186-197.

[GT85] Gabow, H. N. and R. E. Tarjan, A linear-time algorithm for a special case of
disjoint set union, Journal of Computer and System Sciences, 30 (1985), pp. 209-221.

[GM87] Ghosh, S. K. and D. M. Mount, An output sensitive algorithm for computing
visibility graphs, in Proceedings of the 28th Annual IEEE Symposium on Foundations of
Computer Science, Los Angeles, CA (1987), pp. 11-19.

59

[GM91] Ghosh, S. K. and D. M. Mount, An output-sensitive algorithm for computing
visibility graphs, SIAM Journal on Computing, Vol. 20, No. 5 (1991), pp. 888-910.

[Gho88] Ghosh, S. K., On recognizing and characterizing visibility graphs of simple
polygons, in Proceedings of the 1st Scandinavian Workshop on Algorithm Theory,
Springer-Verlag Lecture Notes in Computer Science, vol. 318, (1988), pp. 96-104.

[GHLST87] Guibas, L., J. Herschberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear
time algorithms for visibility and shortest path problems inside triangulated simple
polygons, Algorithmica, 2 (1987), pp. 209-233.

[HM91] Hefferman, P. J. and J. S. B. Mitchell, An optimal algorithm for computing
visibility in the plane, in Proceedings of the 2nd Workshop WADS’91, Ottawa, pp. 437-
448.

[Her87] Herschberger, J., Finding the visibility graph of a simple polygon in time
proportional to its size, in Proceedings of the 3rd Annual Symposium on Computational
Geometry, Ontario, (1987), pp. 11-20.

[HU73] Hopcroft, J. E. and J. D. Ullman, Set merging algorithms, SIAM Journal on
Computing, 2 (1973), pp. 294-303.

[KM88] Kapoor, S. and S. N. Maheshwari, Efficient algorithms for Euclidean shortest
path and visibility problems with polygonal obstacles, in Proceedings of the 4th Annual
ACM Symposium on Computational Geometry, Urbana, IL, (1988), pp. 172-182.

[KM00] Kapoor, S. and S. N. Maheshwari, Efficiently constructing the visibility graph of a
simple polygon with obstacles, SIAM Journal on Computing, Vol. 30, No. 3 (2000), pp.
847-871.

[LaP90] LaPoutre, J.A., Lower bounds for the union-find and the split-find problem on
pointer machines, in Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing (1990), 34-44.

[Lee78] Lee, D. T., Proximity and reachability in the plane, Ph. D. thesis and Tech. Report
ACT-12, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
Urbana, IL (1978).

[LSC99] Lee, J., S. Y. Shin and K. Chwa, Visibility-based pursuit-evasion in a polygonal
room with a door, in Proceedings of the 15th Annual ACM Symposium on Computational
Geometry, Miami Beach, FL, (1999), pp. 119-128.

[LPW79] Lozano-Perez, T. and M. A. Wesley, An algorithm for planning collision-free
paths among polyhedral obstacles, Communications of the ACM, 22 (1979), pp. 560-570.

[Meh84a] Mehlhorn, K., Data Structures and Algorithms, Volume 1: Sorting and
Searching, Springer-Verlag, Berlin (1984).

[Meh84b] Mehlhorn, K., Data Structures and Algorithms, Volume 2: Graph Algorithms
and NP-Completeness, Springer-Verlag, Berlin (1984).

60

[Meh84c] Mehlhorn, K., Data Structures and Algorithms, Volume 3: Multi-Dimensional
Searching and Computational Geometry, Springer-Verlag, Berlin (1984).

[MS91] Moret, B. M. E. and H. D. Shapiro, Volume I Design and Efficiency, The
Benjamin-Cummings Publishing Company, Inc., Redwood City, CA, (1991).

[OS97a] O’Rourke, J. and I. Streinu, The vertex-edge visibility graph of a polygon, Smith
Technical Report 047, (1996).

[OS97b] O’Rourke, J. and I. Streinu, Vertex-edge pseudo-visibility graphs:
characterization and recognition, in Proceedings of the 13th Annual ACM Symposium on
Computational Geometry, Nice, France, (1997), pp. 119-128.

[ODRP96] Orti, R., F. Durand, S. Riviere and C. Peuch, Using the visibility complex for
radiosity computation, in 1st ACM Workshop on Applied Computational Geometry,
WAGC’96, Philadelphia, PA, Springer-Verlag Lecture Notes in Computer Science, vol.
1148, (1996), pp. 177-190.

[OW87] Overmars, M. H., and E. Welzl, Construction of sparse visibility graphs,
Technical Report RUU-CS-87-9, Department of Computer Science, University of Utrecht,
(1987).

[OW88] Overmars, M. H., and E. Welzl, New methods for constructing visibility graphs,
in Proceedings of the 4th Annual ACM Symposium on Computational Geometry, Urbana,
IL (1988), pp. 164-171.

[Poc90] Pocchiola, M., Graphics in flatland revisited, in Proceedings of the 2nd
Scandinavian Workshop on Algorithm Theory, Bergen, Springer-Verlag Lecture Notes in
Computer Science, vol. 447, (1990), pp. 85-96.

[PV93] Pocchiola, M. and G. Vegter, The visibility complex, in Proceedings of the 9th
Annual ACM Symposium on Computational Geometry, San Diego, CA (1993), pp. 328-
337.

[PV95] Pocchiola, M. and G. Vegter, Computing the visibility graph via pseudo-
triangulations, in Proceedings of the 11th Annual ACM Symposium on Computation
Geometry, Vancouver, B.C., (1995), pp. 248-257.

[Riv95] Riviere, S., Topologically sweeping the visibility complex of polygonal scenes, in
Proceedings of the 11th Annual ACM Symposium on Computational Geometry,
Vancouver, B.C., (1995), pp. 436-437.

[Riv97] Riviere, S., Dynamic visibility in polygonal scenes with the visibility complex, in
Proceedings of the 13th Annual ACM Symposium on Computational Geometry, Nice,
France, (1997), pp. 421-423.

[TV84] Tarjan, R. E. and J. van Leeuwen, Worst-case analysis of set union algorithms,
Journal of the ACM, Vol. 31, No. 2 (1984), 245-281.

61

[Veg90] Vegter, G., The visibility diagram: a data structure for visibility problems and
motion planning, in Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory,
Bergen, Springer-Verlag Lecture Notes in Computer Science, vol. 447, (1990), pp. 97-110.

[Veg91] Vegter, G., Dynamically maintaining the visibility graph, in Proceedings of the
2nd Workshop WADS’91, Ottawa, pp. 425-436.

[Wei95] Weiss, M. A., Data Structures and Algorithm Analysis, 2nd ed., The Benjamin-
Cummings Publishing Company, Inc., Redwood City, CA, (1995).

[Wel85] Welzl, E., Constructing the visibility graph for n-line segments in O(

†

n2) time, in
Information Processing Letters, 20 (1985), pp. 167-171.

62

