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Abstract

We examine application of relational learning methods to reinforcement
learning in spatial navigation tasks. Specifically, we consider a goal-
seeking agent with noisy control actions embedded in an environment
with strong topological structure. While formally a Markov decision pro-
cess (MDP), this task possesses special structure derived from the under-
lying topology that can be exploited to speed learning. We describe rela-
tional policies for such environments that are relocatable by virtue of be-
ing parameterized solely in terms of the relations (distance and direction)
between the agent’s current state and the goal state. We demonstrate that
this formulation yields significant learning improvements in completely
homogeneous environments for which exact policy relocation is possible.
We also examine the effects of non-homogeneities such as walls or ob-
stacles and show that their effects can be neglected if they fall outside of
a closed-form envelope surrounding the optimal path between the agent
and the goal. To our knowledge, this is the first closed-form result for the
structure of an envelope in an MDP. We demonstrate that relational rein-
forcement learning in an environment that obeys the envelope constraints
also yields substantial learning performance improvements.

1 Introduction

While the field of reinforcement learning (RL) has achieved a number of impressive suc-
cesses, RL methods still suffer from slow convergence in many domains and have not yet
found general, widespread acceptance in many apparently ideal RL domains. Recent years
have seen the advent of relational methods across a wide spectrum of learning tasks includ-
ing data mining [7], web navigation analysis [1], and reinforcement learning [2, 6].

In this paper, we argue that navigational tasks in geographic environments, e.g., the kinds
of tasks encountered by robots moving through the physical world, possess special struc-
ture that renders them particularly well suited to relational methods. In particular, large
subsets of the physical world are characterized bylocality, homogeneity, and transla-
tion/rotation invariances. Furthermore, unlike complex combinatorial planning problems
such as blocksworld [6] or task planning [2], navigational domains are typically not prone
to exponential explosions of trajectories. These properties have been well understood and



exploited for hundreds of years in the context of deterministic motion planning, but it is
much less clear how to interpret such properties in the kinds of stochastic domains that we
typically deal with in RL. The fundamental difficulty is that our understanding of determin-
istic motion planning is rooted in the metric of physical spaces — the important properties
of a space depend only on thedistancebetween points and absolute coordinates are irrel-
evant — while RL methods are typically based on the Markov decision process (MDP)
formalism in which policies are tied to atomic states, i.e., to absolute coordinates.

In this paper we take first steps toward developing a relational theory for RL in navigational
Markov decision processes. We wish to be able to describe navigational tasks in terms of
something like a distance or orientation between states. That is, “for all states locatedX
units south andY units west of the goal state, act as follows. . . ” We exploit recent results
by Ravindran and Barto [15, 16, 14] on the equivalence of options (partial policies) under
homeomorphic transforms to construct goal-seeking policies described only in terms of
the relationship between current state and goal state, independently of absolute coordinate.
The difficulty is that, even when the underlying space is metric and homogeneous, the
behavior of a stochastic agent maynot be exactly relocatable. Obstacles, even off of the
“optimal trajectory” between current and goal state, may distort transition probabilities and,
therefore, typical notions of distance.

In response to this problem, we develop a closed-form bound on the high-probability en-
velope [4] of trajectories that an agent can take in traversing between two states while
executing a fixed policy. This bound is described in terms of the topology of the underly-
ing space, allowing us toa priori describe the states that an agent may reasonably enter en
route to the goal state. To our knowledge, this is the first closed-form description of a policy
envelope for an MDP. Such an envelope allows us to describe when a goal-seeking policy
is “approximately relocatable”. Essentially, when no obstructions fall within the envelope,
the probability that the agent’s trajectories (and, therefore, its value function) will be dis-
torted by obstructions, is low enough to neglect. Unlike methods that have been developed
for MDPs with “rooms” or “corridors” [8, 10], our results are most applicable to open and
largely unobstructed spaces such as free space or open field navigation.

This paper does not aim to be acompleteor generalsolution to navigational problems in
relational navigation domains. Rather, it is a first step toward such a theory. Our primary
concerns here are developing a useful relational representation for navigational MDPs,
describing important topological properties of such MDPs, and demonstrating that those
properties lead to strong constraints on an agent’s behaviors.

2 Background and Definitions

We give here only a very brief review of the notation and key aspects of Markov decision
processes and reinforcement learning in them. For a thorough treatment, we refer the reader
to the texts by Puterman [13] and Sutton and Barto [17], respectively.

An MDPM = 〈S,A, T,R〉 is a stochastic control process specified by four components:
astate space, S = {s1, s2, . . . , sN}, of cardinality|S| = N (taken to be discrete and finite
in this paper); a set of primitive (or atomic)actions, A = {a1, a2, . . . , am} (also finite);
a transition function, T : S × A × S → [0, 1]; and areward function, R : S → R. An
agent acting in an MDP is, at any time step, located at a single states ∈ S. The agent
chooses an actiona ∈ A and is relocated to a new state,s′, determined by the transition
probability distributionT (s, a, s′), whereupon it receives rewardR(s′). In this paper, we
are concerned withgoal-seekingproblems in which there is a distinguished “goal state”,
g ∈ S, that the agent is trying to reach in the minimum number of steps.

The goal of reinforcement learning in an MDP is to locate apolicy, π : S → A, that speci-



fies an action for the agent in every state. The optimal policy,π∗, is one that maximizes the
value function, a long-term aggregate measure of received reward. We will use the common
infinite horizon discountedvalue function,V π(s) = E[

∑∞
t=0 γtR(st)], where0 ≤ γ < 1

is the discount factor. In goal-seeking domains, typically a reward of 1 is assigned tog and
0 to all other states and the value function reduces toV π(s) = γE[# steps to reachg from s|π].

The MDPs in which we are interested are those derived from a system with an innate
topology — specifically, spatial navigational domains. The notion is that, although the
agent itself may have stochastic dynamics, there is an underlying topology that governs the
deterministic relationships between states. We will assume that there is a distance function
on the underlying domain,dtopo : S × S → R+. This distance may be interpreted as “the
minimum time required to transition betweens ands′ if all actions were deterministic”.
We also assume the existence of a coordinate frame in which directions between states
are well defined — for example,s′ is “northwest” of s — given by a functionφtopo :
S ×S → Φ, whereΦ denotes the set of allowable directions such asΦEuclidean = (−π, π]
or Φgridworld = Z × Z.1 Both distance and direction between states are summarized by
the topological relation, Rtopo

d,φ (s, s′), between pairs of states. The agent’s representation

is the set of all possible such equivalence relations,R = {Rtopo
d,φ }, such that(s1, s

′
1) and

(s2, s
′
2) ∈ Rtopo

d,φ ⇔ dtopo(s1, s
′
1) = dtopo(s2, s

′
2) andφtopo(s1, s

′
1) = φtopo(s2, s

′
2).

This framework allows us to describe useful properties of the MDP in terms of the topology
of the underlying domain:

Definition 1 An MDP is said to bek-local iff there is no chance of making a single-step
transition between any pair of states further thank units apart with respect todtopo . That
is, for every pair of states,s1, s2 ∈ S such thatdtopo(s1, s2) > k, it is the case that
T (s1, a, s2) = 0 ∀a ∈ A.

Definition 2 Theneighborhoodof a state,N (s), is the set of states reachable froms in a
single step with non-zero probability under some action. That is,N (s) = {s′ ∈ S : ∃a ∈
A such thatT (s, a, s′) > 0}.
In ak-local MDP, all neighborhoods fall within balls of radiusk in the underlying topology.

Definition 3 Two states,s1 and s2 ∈ S are said to beisomorphiciff there is a mapping
between their neighborhoods that preserves transition probabilities. That is,s1 ands2 are
isomorphic iff∃f : N (s1) ↔ N (s2) such that∀a ∈ A ands′1 ∈ N (s1), T (s1, a, s′1) =
T (s2, a, f(s′1)).

Definition 4 A subset of the states of an MDP,S ⊆ S, is said to behomogeneousiff all
states inS are isomorphic according to the above definition.

Finally, we are specifically interested in systems in which the agent’s actions, while noisy,
are “largely predictable”. That is, there exist actions whose maximum probability outcome
is to move the agent in a fixed direction with respect to the underlying topology.

Definition 5 An actiona ∈ A is predictable inS if, for every states in a homogeneous
subset of the state space,S ⊆ S, a has an outcome states′ with probabilityp > 1/2 having
a fixed topological relation tos. That is,∀s ∈ S ∃s′ ∈ N (s) such thatT (s, a, s′) = p and
(s, s′) ∈ Rtopo

d,φ for somedtopo andφtopo .

We call the high-probability outcome of a predictable action theintendedoutcome and
any other, lower probability outcomes theunintendedor accidentaloutcomes. Accidental

1These are essentially two different agent-centric 2-D polar coordinate systems. Other coordinate
systems are also possible, so long as they uniquely describe the relationship between pairs of states.



outcomes may also include any off-policy exploratory actions that the agent takes, so long
as the intended outcomes of on-policy actions still occur with probability> 1/2.

3 Relational Policies for Navigation Domains

The traditional definition of policy,π : S → A, is tied to the absolute coordinates of the
state space. We would rather employ policies that are described purely in terms of the
topological relationships of the underlying world:π : Rtopo

d,φ → A. Essentially, we are
seeking policies of the form “whenever you find yourselfX distance southwest of the cur-
rent goal, act as follows. . . ”. Doing so provides two key benefits. First, this representation
allows goal-seeking policies to be relocatable, as they now depend only on the relation-
ship between the agent’s current location and the goal: when the goal location changes, the
agent’s policy is automatically defined relative to that new location. This is a form of trans-
lation invariance for Markov decision processes. And second, it may allow much faster
learning, as relations are entire equivalence classes, so a unit of experience from any ele-
ment ofRtopo

d,φ applies toall elements of that class. This is, however, profitable only when
there may be multiple goal states whose absolute locations vary over time or when it is
useful to formulate an overall policy in terms of a number of sub-goals. This is a plausible
condition; there are numerous real-world tasks that require seeking a number of different
locations within the same environment, and many previous authors have demonstrated that
sub-goals are useful for planning and learning in MDPs [11, 5, 12, 9].

The utility of reasoning with such relationships has been well established for deterministic
domains. Unfortunately, things are more complicated in stochastic domains. In a determin-
istic environment, we can assume that any desired trajectory can be followed exactly and
that no off-trajectory obstacles can interfere. In a stochastic MDP, however, exact analysis
of the transition between any pair of states involves consideration ofall trajectories be-
tween them, and even obstacles that are not on the “optimal” trajectory can still influence
the expected transition time. Such obstacles can even produce asymmetries in expected
transition times, which prevents us from using the transition time directly as a metric.

In this section, we demonstrate the utility of reinforcement learning with relational poli-
cies in a trivial environment in which exact relocatability is achievable. We then consider
environments containing obstacles and demonstrate that, so long as the obstacles are “far”
from an optimal trajectory, that their influence can be safely neglected, allowing relocation
of policies in less trivial environments.

3.1 The Exact Case

We begin with an extremely simple domain topology: a perfectly homogeneous toroidal
gridworld. In this domain, every states has exactly four neighbors, denotedNORTH(s),
SOUTH(s), EAST(s), andWEST(s). The topology has the intuitive interpretation so that,
e.g., NORTH(EAST(s))=EAST(NORTH(s)), etc. The agent has four predictable actions
available to it, corresponding to the four neighbor states. Each action has its intended
outcome with probabilityp = 0.9 while its unintended outcomes place the agent at each
of the other three neighbor states with probability(1 − p)/3 ≈ 0.03. The torus has a
circumference of 50 states in the east/west direction and 20 states in the north/south direc-
tion. All states are isomorphic according to Definition 3, implying that there are no walls,
cliffs, absorbing states, or other obstacles in the environment. We definedtopo(s, s′) to
be the minimum Manhattan distance betweens ands′ andφtopo(s, s′) to be the ordered
pair (dx, dy) representing the ratio of horizontal to vertical change betweens ands′, re-
duced to lowest terms. The agent learns a Q function expressed in terms of this relational
representation,Q : R×A → R, allowing relocation of policies as goal locations change.
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Figure 1: (a) Performance of atomic (upper trace) and relational (lower trace) Q-learning
agents in the homogeneous torus gridworld. Both curves are averages over ten different
sequences of (start,goal) pairs in the torus. (b) The same experiment repeated for non-
toroidal gridworld.

Ravindran and Barto [15, 16, 14], extending model minimization work by Dean and Givan
[3], have studied such policy relocations. Ravindran and Barto have developed a very
general algebraic description of policy relocations in terms of homomorphisms between
MDPs. In the case of the homogeneous torus, all spatial translations of the coordinate
system are isomorphic (a special case of their more general homomorphisms) and their
results imply that policies are exactly relocatable through translations. In our case, this
means that reinforcement learning in terms of our relational Q functions/policies should be
exact and (assuming a convergent learning method) should converge to an optimal policy.

We examined the performance of two learning agents, one employing an atomic state repre-
sentation, the other a relational representation, in this environment. Both agents employed
Q-learning withε-greedy exploration policy [17] with a discount factor ofγ = 0.99, a
learning rate ofα = 0.7, and an exploration factor ofε = 0.01. We ran each agent for 2000
trials in this world, where each trial consisted of selecting a random start state and a ran-
dom goal location and allowing the agent to run until it encountered the goal. We recorded
the number of steps that the agent took to locate the goal on each trial. We repeated the
entire operation 10 times and averaged the results over all 10 runs. While this environment
is stationary for the relational representation, it is non-stationary for the atomic agent and
we do not expect the atomic agent to converge to a stable policy. We also attempted an
agent that used an atomic representation including a variable for the current location of the
goal in addition to the variable giving the agent’s location (total ofO(N2) states). This
representation renders the environment stationary, but it was so large (sim30 Mb) that the
agent was unable to make any measurable progress in the amount of time that we could
dedicate to testing it.

Figure 1 (a) shows the learning performance of the relational and atomic agents. As ex-
pected, the atomic agent is not able to learn a stable policy in this world (in fact, its perfor-
mance diverges). The relational agent, however, does converge to a stable, high-quality
solution fairly quickly. By convergence, the relational agent had located a policy that
achieved a mean time-to-goal of 25.1 steps — close to the expected transition time for
a randomly chosen pair of states of about 22 steps.

3.2 Limited Non-Homogeneity

Homogeneous tori are not terribly useful, however — interesting navigational environ-
ments include non-homogeneous features such as walls, cliffs, or obstacles. These features
render policy relocation problematic because they change the set of trajectories (and the
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Figure 2: (a) Schematic diagram of envelope bound structure. The inner, light gray ellipse
is the set of trajectories of length≤ d̂(s, g); the outer, dark gray ellipse is the envelope of
probability(1−ε). With high probability, no trajectory betweens andg under a reasonably
good policy will leave the outer ellipse. (b) Empirical examination of the envelope in a
homogeneous gridworld. The start and goal states are indicated by dark circles; the dark,
inner filled squares are states encountered by the agent in 10,000 steps of experience (319
trajectories). The outer, paler filled squares (hexagon) are the ellipse of the(1 − 0.1)
envelope under the Manhattan metric.

probability of each) that an agent could experience in attempting to transition froms to g.
Even if a wall, say, does not obstruct the shortest path betweens andg, it may block a
trajectory that an agent would otherwise experience.

In general this problem is difficult to overcome. In ongoing work, we are examining
the possibility of adding additional relational terms to describe the relative position of
walls/obstacles with respect to the agent and goal. In this paper, however, we demonstrate a
weaker, but still useful, approach. Specifically, if an agent is able to find a reasonably good
policy for navigating to a goal in one part of the space, it can relocate that policy to a dif-
ferent part of the space with small expected change in value, so long as any such obstacles
are “far” from the ideal path to the goal. We give an envelope that contains at least1− ε of
the probability mass of all trajectories that the agent might experience in transitioning from
s to g. Assuming that the MDP has rewards bounded byRmax < ∞, the presence of walls
or obstacles outside the envelope can change the agent’s expected value by at mostεRmax.

We obtain a bound on the envelope of probability(1 − ε) as follows. Assume that the
agent is executing in ak-local MDP that is “largely” homogeneous — that is, the majority
of the state space is homogeneous, with the exception of the existence of some walls or
other obstacles. Consider an agent starting at states attempting to reach stateg according
to a fixed policyπ. Let the actualexpectedtransition time betweens andg be d̂(s, g),
which is a function ofs, g, andπ. π need not be an optimal policy to reachg, so long as
d̂(s, g) is within a constant factor ofdtopo(s, g). Note that the set of all states reachable by
a trajectory of lengtĥd(s, g) that starts ats and ends atg forms an ellipse with respect to
dtopo : for anys′ along the trajectory, it must be the case thatdtopo(s, s′) + dtopo(s′, g) ≤
kd̂(s, g) by virtue ofk-locality and the metric of the underlying space. The major axis of
this ellipse lies along the shortest path betweens andg according todtopo .

Without loss of generality, assume that an intentional outcome reducesdtopo(agent , g)
by at least 1 unit at every state. Some lower bound is guaranteed by the assumption of
transition time and we can rescaledtopo as necessary. Byk-locality, we know that any
accidental outcome can increasedtopo(agent , g) by at mostk units. Thus, in expectation,
the agent movesp− k(1− p) = (k + 1)p− k units toward the goal every time step. When
this quantity is positive, the agent will reach the goal ind̂(s, g) = dtopo(s, g)/((k+1)p−k)
steps.



Homogeneity allows us to model the sequence of intentional/unintentional outcomes as
a series of Bernoulli trials. The number of actions necessary for the agent to reach the
goal is given by the negative binomial distribution: the number of accidental outcomes be-
tween any pair of intentional outcomes is geometrically distributed and the total transition
time is given by a sum of geometrically distributed variables. A Chernoff bound assures
us that the probability that this sum deviates far from its mean is exponentially small:
Pr[|trajectory| > (1 + δ)d̂(s, g)] < exp(−d̂(s, g)δ2/4). That is, the chance that the agent
will take significantly longer than̂d(s, g) to reach the goal falls off exponentially withδ.
As we have argued above, because of the strong constraints of the underlying topology, any
trajectory of length(1 + δ)d̂(s, g) must fall within an ellipse surrounding the optimal path
from s to g. To ensure that this elliptical envelope contains at least(1 − ε) of the proba-

bility mass, we takeδ >
√
−4 ln ε
d̂(s,g)

. Figure 2 gives an intuitive view of such an envelope.

This is actually a fairly loose bound, as it assumes that every accidental move is maximally
detrimental to the agent. In practice, many agents make symmetric errors, so accidents can
be somewhat self-compensating. The elliptical form of the envelope also assumes that all
accidental outcomes could occur in a sequence, carrying the agent as far as possible from
g — also a low probability circumstance. We are currently exploring how to tighten this
envelope by exploiting such properties.

The implication of this result is that all homogeneous, elliptical regions of an MDP obey-
ing the above constraint are isomorphic and that goal-seeking policies executed within
those regions are value equivalent up to a factor ofεRmax. So, for example, if an agent
has acquired a reasonably effective policy for transitioning between statess andg, hav-
ing relationshipRtopo

d,φ (s, g), then that policy can be relocated to any other pair of states

(s′, g′) ∈ Rtopo
d,φ (s, g) so long ass′ andg′ belong to a homogeneous elliptical envelope.

While this result doesn’t apply to the entire training lifetime of an RL agent, it does apply
once the agent has located an initial, reasonably good policy. Thereafter, these envelopes
are tolerant of exploratory actions and policy improvements will only tighten the envelope.

We repeated the experiments of Section 3.1 for a similar but non-toroidal gridworld. This
world is also largely homogeneous, except for the presence of outer walls that prevent
moves from wrapping around. In this environment, most (start,goal) pairs do obey the el-
lipse constraints specified above, except for those very near the walls. We constructed a
relational agent using pure Manhattan distance fordtopo (as opposed to the toroidal Man-
hattan distance that we used previously) and tested it against an atomic agent in this en-
vironment. The results, given in Figure 1 (b), display the same learning patterns as those
in (a). The small amount of inhomogeneity introduced by adding walls does not signifi-
cantly degrade the performance of the relational learning agent, though it does increase the
variance. The agentdoeshowever, require built-in knowledge ofdtopo — when we trained
a relational agent using the toroidal Manhattan distance on the non-toroidal gridworld, its
policy quickly diverged and it didn’t even complete the 2000 trials in the allotted107 steps.

4 Conclusion

We have argued that stochastic navigational domains possess important topological struc-
ture that we can exploit to build efficient relational reinforcement learning agents. We de-
scribed a relational policy representation that exploits knowledge of the underlying topol-
ogy and showed that it can be used to substantial advantage in simple, open space naviga-
tion domains. We identified important characteristics of an MDP — locality, homogeneity,
and action predictability — and described them in terms that relate the MDP to the un-
derlying topology. We used these three properties to derive a closed-form bound for an
envelope, given a reasonable goal-seeking policy.



This work is clearly only a first step toward a general theory of topologically constrained
navigational reinforcement learning. We have shown that point-to-point navigation policies
are relocatable when “line of sight” is unobstructed. We are interested in the effects of small
nonhomogeneities within the envelope (e.g., uneven ground) and in handling larger, richer
domains. We think that the former can be treated by bounding their distortion of possible
trajectories, while the latter may be addressable by adding additional relational terms to the
agent’s representation (e.g., distance/angle to nearest wall). So far, our envelope result only
applies during the latter stages of an agent’s learning. We are currently examining how to
extend this to include earlier phases as well. Results on random walks may allow us to
describe the envelope of the set of policies that an agent may generate during learning.
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