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Overview

Phylogenies
Computational Phylogenetics
An Example: Quartet-Based Methods
An Example: Gene-Order Phylogenies

Breakpoint phylogeny
Inversion and other genomic distance measures
GRAPPA: a high-performance software tool for
reconstructing phylogenies from gene-order data
What did we do to make it one billion times faster
than its predecessor?
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Phylogenies

A phylogeny is a reconstruction of the evolutionary
history of a collection of organisms; it usually takes
the form of a tree.

Modern organisms are placed at the leaves and ancestral
organisms occupy internal nodes.

The edges of the tree denote evolutionary relationships.
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12 Species of Campanulaceae
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Herpes Viruses that Affect Humans
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Reconstructing Phylogenies

Reconstructing phylogenies is a major component of
modern research programs in many areas of biology
and medicine:

pharmaceutical research for drug discovery
understanding rapidly mutating viruses (such as
HIV)
designing genetically enhanced organisms (rice,
wheat)
explaining and predicting gene expression
most centrally, understanding genomic evolution
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Computational Phylogenetics

Is extremely computation-intensive.

Sequence data (RNA, DNA, aminoacid, and protein)
has been used for over 20 years and is well
understood, but methods do not scale up and
sequences from different genes yield different trees.
Genomic data (gene order and content of whole
genomes) provides information on deep relationships,
but is much harder to analyze than sequence data.
Using mixed data remains uncharted territory.
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Comput. Phylo.: Theory vs. Applics

Methods developed by algorithm designers are rarely
used by biologists: optimization criteria are chosen
for algorithmic reasons more than biological ones.

Methods used by biologists are typically ad hoc and
offer no guarantees: parameters are set with little
understanding of their effects on efficiency or quality.

Getting the two groups to work together requires an
atmosphere of mutual respect for each group’s
research goals and methodologies.
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Comput. Phylo.: Theory vs. Applics

Computer scientists and biologists agree that
statistical consistency (guarantee of convergence to
“true tree” given enough data) is very important.

But: the rate of convergence is crucial, because
consistency is asymptotic, yet data are finite.

On the other hand, bounded data (# genes, #
characters in sequences, # species, etc.) is good news:
we can use tailored algorithms, fixed-parameter
approaches, etc.
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Testing: Quartet-Based Methods

The CS community has devised a variety of
reconstruction methods based on quartets:
quartet : an unrooted binary tree on four taxa

If the taxa are {a, b, c, d}, we can use {ab|cd} to
denote the quartet that pairs a with b and c with d.
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Quartet Methods

A quartet {ab|cd} agrees with a tree T if all
four of its taxa are leaves of T and the
subtree induced in T by the four taxa is the
quartet itself.

If Q(T ) denotes the set of all quartets that
agree with T , then T is uniquely
characterized by Q(T ) and can be
reconstructed from Q(T ) in polynomial time.

Errors occur, so quartet methods reconstruct
an edge when at most some fraction α of the
quartets disagree with that edge.
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Testing Quartet Methods

We need to test for datasets where we know
the true tree in order to measure accuracy,
hence simulations.

But simulations must assume a model for
tree generation and a model for sequence
evolution, all for each fixed tree size and
sequence length. The parameter space is
enormous!
We ran 20,000 separate datasets in our
study (SODA’01, to appear in J. Algs.), using
over 20 CPUs nearly nonstop for 6 months.
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Testing Quartet Methods

And are we satisfied?

Of course not. . . Our models were among the
simplest (technically, most of our events were
i.i.d.), the size of our trees was limited by running
times (we went up to 80 taxa only, because some
quartet methods take Θ(n7) time), etc.

As a point of reference: some biologists routinely
have to deal with up to a thousand taxa, while a
few want to reconstruct the “Tree of Life” with
hundreds of thousands of taxa.
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An Example: the Bluebell Family

Jansen’s group at UT Austin provided full gene
sequences for the chloroplasts of 12 species of
Campanulaceae (Bluebells), plus tobacco.
A chloroplast is a semi-independent organism that lives within
plant cells and allows them to photosynthesize.
Chloroplasts have a single chromosome with about 120 genes.

Optimization target: reconstruct the phylogeny with
the least total number of genomic changes.
An application of Occam’s razor; biologists call this the principle
of parsimony.
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The Bluebell Family (cont’d)

We reimplemented a tool due to D. Sankoff and
M. Blanchette using algorithm engineering.

Results: a speed-up by five to six orders of
magnitude in the serial part of the code and a total
speed-up by nearly one billion when run on the
512-processor Los Lobos supercluster at UNM.

Reasons: cache-awareness, detailed code
optimization, better combinatorial optimization,
better bounding, and parallelization.
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Breakpoint Analysis: An Overview

An iterative improvement procedure over every
tree:

Initially label all internal nodes with gene orders
Repeat

For each internal node v, with neighbors A, B,
and C, do

Solve the MPB on A,B,C to yield label m

If relabelling v with m improves the score of T ,
then do it

until no internal node can be relabelled
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Median Problem for Breakpoints

Given 3 gene orders, represented as 3 signed
permutations π1, π2, and π3, find a 4th
permutation πm that minimizes the sum of the
distances

d(π1, πm) + d(π1, πm) + d(π1, πm)

where each distance is the number of
breakpoints, i.e., the number of adjacencies
present in one permutation but not in the other.
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MPB: an example

Let the (circular) permutations be

1 -2 4 3

1 2 -3 -4

2 -3 -4 -1

A possible median is -1 2 -3 -4, with cost 5

d ( ( 1 -2 4 3 ) , ( -1 2 -3 -4 ) ) = 3

d ( ( 1 2 -3 -4 ) , ( -1 2 -3 -4 ) ) = 2

d ( ( 2 -3 -4 -1 ) , ( -1 2 -3 -4 ) ) = 0
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MPB (cont’d)

Sankoff showed to to convert this problem to the
Travelling Salesperson Problem.

cost = 2

cost = 1

cost = 0

cost = − max

4
+

1

+ −

−
2

+

−
3

+−
edges not shown have cost = 3

+2 −3 −4 −1
+1 +2 −3 −4
+1 −2 +4 +3

corresponding to genome
an optimal solution

+1 +2 −3 −4

The cost of an edge A −B is the number of genomes that do NOT have the adjacency A B

Adjacency A B becomes an edge from A to −B
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Re-Engineering: Coding Aspects

Memory Use
GRAPPA uses static allocation and has a working set
size of 500KB, compared to 12MB for BPAnalysis

Cache Awareness
GRAPPA minimizes pointer dereferencing, has
hand-unrolled loops, and re-uses allocated storage

Profiling
Identifies bottlenecks to balance the computation
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Hand-Unrolling Loops

/* builds adjacency lists for the TSP instance */

for (i = 1; i < num_genes-1 ; i++){

/* First genome */

/* g = g1->genes[i]; already set*/

i1 = -i2; i2 = -g1->genes[i+1];

/* now we have the endpoints of the edge */

handle(i1,i2,adj_list,&slot,num_genes);

/* Second genome: same deal */

j1 = -j2; j2 = -g2->genes[i+1];

handle(j1,j2,adj_list,&slot,num_genes);

/* Third genome: same deal */

k1 = -k2; k2 = -g3->genes[i+1];

handle(k1,k2,adj_list,&slot,num_genes); }
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Hand-Unrolling Loops

/* creates circular lists in each direction */

/* first adjacency */

gen1first = gen1 = ingene1[0]; gen2 = ingene1[1];

succ[gen1] = gen2; pred[gen2] = gen1;

pred[-gen1] = -gen2; succ[-gen2] = -gen1;

/* all middle adjacencies */

for (i=2; i<num_genes; i++) {

gen1 = gen2; gen2 = ingene1[i];

succ[gen1] = gen2; pred[gen2] = gen1;

pred[-gen1] = -gen2; succ[-gen2] = -gen1; }

/* last adjacency */

succ[gen2] = gen1first; pred[gen1first] = gen2;

pred[-gen2] = -gen1first; succ[-gen1first] = -gen2;
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Re-Engineering: Algorithmic Aspects

Taking Advantage of Special Structures
The TSP has only 2 nontrivial edges (cost 1 and 2)

Using all Available Information
TSP bounds can use full local legality test
Lower Bound for Each Tree
Triangle inequality implies that a tour of the leaves is
at most twice the cost of any tree
Find Best Lower Bound
Try all orderings in the circular order—cheap
Use Bounds More Efficiently
Layered search strategy
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TSP Lower Bound Computation

lb_new = 0;

for (i=-num_genes; i<=num_genes; i++) {

if (degree[i] == 1) { /* nothing to do for degree 2 */

node = adj_list[i].next;

while (node != NULL) {

j = node->vertex;

if ((node->status == STAT_AVAIL) && (degree[j]==1)

&& ((otherEnd[i] != j) || (picked==ncount-1))) {

lb_new += node->weight;

goto nexti; }

node = node->next; }

lb_new += 3; /* no usable edge of lower cost */

nexti: ; } }
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Re-Engineering: Tree Lower Bound

The triangle inequality implies that a tour of the
leaves is at most twice the cost of any tree (the
“twice around the tree” heuristic for TSP).
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Re-Engineering: Tree Lower Bound

In biology, distances are often additive or nearly
so:

d(a, c) ≈ d(a, b) + d(b, c)

which makes for very tight bounds.

There are n! possible tours of the n leaves, each
a lower bound on the tree cost; the tour with the
largest total distance can be computed by
heuristics or brute force (all distances are
precomputed).
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Re-Engineering: Algorithmic Aspects

Large distances can still defeat bounding, so we
devised a layered search:

Search through all trees over and over again
with a target score initialized at the lower
bound and increases by 1 after each stage.
Trees that cannot be eliminated are scored,
then stored in a hash table, so next
encounter is a lookup.
Initially most trees need not be scored; we
get a threshold effect close to the optimal
value, where we have a sharp upper bound.
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Re-Engineering: Parallel Aspects

Efficient Tree Generation
Avoid multi-precision arithmetic, allow generation from
any count with variable gap—provides parallel
generation and also sampling of search space

(current) Portable MPI Implementation
Exploits “embarrassing” parallelism (each processor
handles a fraction of the trees)

(future) Hybrid Mode Implementation
Exploits shared-memory parallelism at each node for
combinatorial optimization
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Algorithmic Benefits of Re-Engineering

In re-engineering an algorithm, one comes to
understand it better than anyone else—and
so one often finds algorithmic improvements.

We developed the first true linear-time algorithm for
computing the inversion distance between two signed
permutations (WADS’01, to appear in J. Comput.
Biol..

We developed the first family of fast-converging
phylogeny reconstruction algorithms for sequence
data (SODA’01).
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Impact in Computational Biology

Much faster implementations can alter the
practice of research in biology and medicine.
Reducing the time of an analysis from a year down to an
hour makes an enormous difference in the pace and cost of
drug discovery and development.

Fast and accurate analysis software enables
researchers to pursue more leads, develop
better intuition on small datasets, and form
new conjectures about biological
mechanisms.
Even when the software does not scale up to
“industrial-strength”.
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