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ABSTRACT
Motivation: Phylogenetic reconstruction from gene-order
data has attracted increasing attention from both biologists
and computer scientists over the last few years. Methods
used in reconstruction include distance-based methods
(such as neighbor-joining), parsimony methods using
sequence-based encodings, Bayesian approaches, and
direct optimization. The latter, pioneered by Sankoff and
extended by us with the software suite GRAPPA, is the
most accurate approach, but cannot handle more than
about 15 genomes of limited size (e.g. organelles).
Results: We report here on our successful efforts to scale
up direct optimization through a two-step approach: the
first step decomposes the dataset into smaller pieces
and runs the direct optimization (GRAPPA) on the smaller
pieces, while the second step builds a tree from the results
obtained on the smaller pieces. We used the sophisticated
disk-covering method (DCM) pioneered by Warnow and
her group, suitably modified to take into account the
computational limitations of GRAPPA. We find that DCM-
GRAPPA scales gracefully to at least 1000 genomes of
a few hundred genes each and retains surprisingly high
accuracy throughout the range: in our experiments, the
topological error rate rarely exceeded a few percent. Thus,
reconstruction based on gene-order data can now be
accomplished with high accuracy on datasets of significant
size.
Availability: All of our software is available in source form
under GPL at http://www.compbio.unm.edu
Contact: moret@cs.unm.edu

INTRODUCTION
Biologists can infer the ordering and strandedness of
genes on a chromosome, and thus represent each chro-
mosome by an ordering of signed genes (where the
sign indicates the strand). These gene orders can be
rearranged by evolutionary events such as inversions
and transpositions and, because they evolve slowly, give
biologists an important new source of data for phylogeny
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reconstruction—see, e.g. Downie and Palmer (1992),
Olmstead and Palmer (1994), Palmer (1992), and Raube-
son and Jansen (1992). Appropriate tools for analyzing
such data may help resolve some difficult phylogenetic
reconstruction problems. Developing such tools is thus
an important area of research—indeed, the recent DCAF
symposium organized by Sankoff and Nadeau (2000) was
devoted to this topic.

A natural optimization problem for phylogeny recon-
struction from gene-order data is to reconstruct an evo-
lutionary scenario with a minimum number of the per-
mitted evolutionary events on the tree. This problem is
NP-hard for most criteria—even the very simple problem
of computing the median of just three genomes (the me-
dian of k genomes is a genome that minimizes the sum
of the pairwise distances between itself and each of the k
given genomes) under such models was proved NP-hard
by Pe’er and Shamir (1998) and Caprara (1999).

For some datasets (e.g. chloroplast genomes of land
plants), biologists conjecture that rearrangement events
are predominantly inversions (also called reversals). In
other datasets, transpositions and inverted transpositions
are viewed as possible, but their relative preponderance
with respect to inversions is unknown. Sankoff proposed
the breakpoint distance (the number of pairwise gene
adjacencies present in one genome but absent in the
other), a measure of distance between genomes that is in-
dependent of any particular mechanism of rearrangement;
the breakpoint phylogeny, introduced by Blanchette et
al. (1997), is the most parsimonious tree with respect to
breakpoint distances.

The two software packages for reconstructing the break-
point phylogeny, the original BPAnalysis of Sankoff and
Blanchette (1998) and the more recent and much faster
GRAPPA of Moret et al. (2001), both use as their basic
optimization tool an algorithm for computing the break-
point median of three genomes, although GRAPPA also
supports inversion medians and inversion distance—see
Moret et al. (2002b)—, the latter through the linear-time
algorithm of Bader et al. (2001) and the former through
the algorithms of Caprara (2001) and Siepel and Moret
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(2001). Extensive testing has shown that the trees returned
by GRAPPA are superior to those returned by other meth-
ods used in phylogenetic reconstruction based on gene or-
ders, such as distance-based methods and parsimony based
on encodings—see Moret et al. (2002c) and Wang et al.
(2002) for reviews of these other methods. The closely re-
lated software of Bourque and Pevzner (2002) is the only
method that approaches its accuracy. (A recent Bayesian
approach due to Larget et al. (2002) and an effort based on
local perturbation of a minimum spanning tree from Wu
and Gu (2003), while both showing promise, were tested
on just one or two datasets and thus cannot as yet be prop-
erly evaluated.)

Although GRAPPA runs over one billion times faster
than the initial BPAnalysis implementation, it remains an
exponential-time algorithm. On a modern workstation, it
typically takes one hour to finish a 13-taxon analysis,
but nearly one month to finish a 15-taxon one. Bayesian
methods rarely scale well even for sequence-based data:
it may take months to run an analysis of a 1000-taxon
dataset through Markov Chain Monte Carlo (MCMC)
methods. Distance-based methods run quickly even on
large datasets, but their accuracy decreases rapidly with
increasing number of taxa, as shown by Moret et al.
(2002a) and Nakhleh et al. (2002). Thus our best hope
for accurate reconstruction is to design a way to scale the
current GRAPPA software suite so as to tackle much larger
problems; any such approach must reduce the size of the
problem(s) that GRAPPA will be required to solve.

APPROACHES TO SCALING
A standard approach to scaling is to compute the smallest
possible nontrivial trees: quartet trees, defined on just
four taxa. Quartet methods rely on finding the optimal
4-leaf tree for each quartet and using this information to
build the overall tree. Several theoretical methods (quartet
cleaning and others) as well as one practical method
(quartet puzzling) have been proposed to use quartet
trees—see St. John et al. (2001) for a recent review and
experimental comparison of these methods. In the case of
gene orders, however, computing the best tree for a quartet
is itself NP-hard (it includes finding the median of three
genomes as a special case). Moreover, having to consider
all quartets means that, on large datasets, many quartets
will have very large pairwise distances, in which case
determining the best quartet tree becomes chancy—each
of the three possible trees will have poor scores. Finally,
quartet-based methods, while running in polynomial time,
tend to be slow: all of them must take �(n4) time by
definition. In previous work—see Tang et al. (2002)—,
we conducted preliminary experiments with both quartet
optimization methods and tree-building from quartets, the
latter with the quartet-puzzling method of Strimmer and

von Haeseler (1996) (the best quartet-based method in the
experiments of St. John et al. (2001) and the one used
by biologists); we found that quartet-puzzling, even with
optimal quartet trees, lagged far behind our new DCM-
GRAPPA (discussed below) in both speed and accuracy,
although it did construct more accurate trees than pure
neighbor-joining.

A more sophisticated approach to the decomposition
problem should use a type of divide-and-conquer ap-
proach, in which the set of taxa is decomposed into a
collection of subsets, each of which optimizes some
criterion designed to make reconstruction on the subset
as accurate and efficient as possible. The best such
approach to date is the family of disk-covering methods
(DCM), introduced by Warnow and her group—see
Huson et al. (1999a), Huson et al. (1999b), and Huson et
al. (1999c)—and since shown to produce better results
on sequence-based data than any other distance- or
parsimony-based method through experimental studies of
Moret et al. (2002a), and Nakhleh et al. (2001a,b). We
combined the DCM2 approach of Huson et al. (1999c)
with GRAPPA, limiting the size of the subsets (disks
in the DCM terminology) to at most 13 taxa through a
combination of threshold choices and recursive calls to
the DCM decomposition itself, yielding a DCM-GRAPPA
software for tree reconstruction from gene-order data. We
then tested the performance of DCM-GRAPPA through
extensive simulations.

OUR EXPERIMENTAL APPROACH
We ran simulation studies of DCM-GRAPPA, using
neighbor-joining (NJ)—see Saitou and Nei (1987)—and
DCM-NJ—see Huson et al. (1999c)—as controls. We
generated both uniformly distributed trees and random
birth-death trees, the latter with the program r8s of
Sanderson (2002). We generated trees with 20, 40, 80,
160, 320, 640, and 1280 taxa (the last to test scalability);
on each tree, we evolved signed permutations of 50, 100,
and 200 genes (a range that covers organellar genomes),
using evolutionary rates (r , the expected number of
evolutionary events along a tree edge) of 2, 4, and 8.

For each combination of parameter settings, we gener-
ated 10 datasets and examined the mean and variance of
the outcomes. All our experiments were run on Athlon
1900XP machines with 2GB of main memory running
Linux.

Given an inferred tree (reconstructed phylogeny), we
can assess the topological accuracy by computing the
Robinson-Foulds (RF) distance due to Robinson and
Foulds (1981) with respect to the true tree. (Note that the
true tree may not be the model tree itself, because the
evolutionary process may cause no changes on some edges
of the model tree—the true tree is defined to be the result
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of contracting such edges in the model tree.) For every
tree there is a natural association between every edge and
the bipartition on the leaf set induced by deleting the edge
from the tree. An edge is said to be missing in a tree if
there is no edge defining the same bipartition in the tree.
If an edge in the true tree is missing in the inferred tree,
this edge is then called a false negative (FN). Similarly,
a false positive edge (FP) is an edge of the inferred tree
that is missing in the true tree. The RF distance is the
total number of false negative and positive negative edges.
(These measures can also be normalized by dividing them
by the number of internal edges in the true tree.)

Overall, we found that the reconstructions produced
by DCM-GRAPPA demonstrated excellent topological
accuracy (within a few percent of optimal) throughout the
range of parameters tested.

BACKGROUND
We briefly review the DCM approaches, focusing on the
DCM2 method that we used, and the basic ideas behind
GRAPPA.

The disk-covering methods
The disk-covering methods are a class of phylogenetic re-
construction ‘meta-methods’ that operate in conjunction
with a given ‘base method,’ such as maximum parsimony
or maximum likelihood. These methods operate by divid-
ing a set of taxa into overlapping subsets (the ‘disks’), con-
structing trees on the subsets using the base method, and
then merging the subtrees into a supertree.

Warnow and her group devised two types of DCM. The
first method, DCM1, produces many decompositions for
the dataset; for each such decomposition, it computes
a (possibly different) supertree; finally, it chooses one
of these supertrees according to some criterion such as
maximum parsimony or maximum likelihood. DCM1
was designed to be used with fast base methods, such as
neighbor-joining, because it involves up to O(n3) phy-
logenetic reconstructions of subsets of taxa. In contrast,
DCM2 produces fewer decompositions (potentially only
one, although not in the way we used it) and thus can use
computationally expensive methods such as maximum
parsimony and maximum likelihood. Since our base
method is the very expensive GRAPPA, we use DCM2.

Both methods operate by creating a graph from the
distance matrix: each taxon becomes a vertex and an
edge is placed between two taxa whenever their pairwise
distance falls below a given threshold. (DCM2 typically
uses the smallest threshold that results in a connected
graph.) Edges are then added (greedily, since a minimum
addition is NP-hard) to the graph to make it chordal (i.e.
the graph does not contain simple cycles with more than 3
vertices). A chordal graph has a linear number of maximal

cliques and these cliques can be found in polynomial time;
moreover, minimal vertex separators in chordal graphs are
maximal cliques.

DCM2 uses a vertex separator technique for its decom-
position: if G = (V, E) is the chordal graph it has ob-
tained, it computes (in quadratic time) a separator X ⊆ V
such that X is a maximal clique and G ′ = (V − X, E ′)
has components A1, A2, . . . , Ar where maxi |X ∪ Ai | is
minimized. The overlapping subproblems are then X ∪ Ai
for i = 1, 2, . . . , r . These subproblems overlap in a sin-
gle ‘spine,’ the separator X , a property exploited in the
supertree merging phase, which uses a strict consensus
merger specialized for DCM2 subtrees.

GRAPPA
GRAPPA is our re-implementation and elaboration on the
original BPAnalysis of Sankoff and Blanchette (1998). In
order to identify the best reconstructed tree, the program
examines every possible tree topology on the given taxa,
scoring each (using a sum of tree edge lengths) and retain-
ing the tree(s) of lowest score. Scoring each tree is itself an
NP-hard problem, since it requires reconstructing internal
genomes. In the code, it is carried out heuristically through
local iterative improvement: initial internal genomes are
assigned in some way, then the tree is repeatedly traversed,
replacing each internal genome by the median of its three
neighbors if such a replacement reduces the sum of tree
edge lengths, and continuing until no change takes place.
Finally, computing the median is itself NP-hard, but fast
solutions have been provided by Moret et al. (2001) for
breakpoint medians and by Caprara (2001) and Siepel and
Moret (2001) for inversion medians—although it should
be noted that all of these methods will display exponential
behavior for large pairwise distances. The study of Moret
et al. (2002b) showed unequivocally that inversion medi-
ans are preferable to breakpoint medians (even though ex-
act breakpoint medians can be found faster than exact in-
version medians), so inversion medians are used through-
out this study.

OUR NEW METHOD: DCM-GRAPPA
In combining the DCM approach with GRAPPA, we have
to face two issues. DCM2 uses for its threshold the small-
est value that will produce a connected graph, but the sizes
of the resulting disks are unpredictable (although larger
thresholds tend to produce larger disks). Since we can-
not realistically run GRAPPA on more than 15 taxa, we
must either limit the choice of thresholds to those that
produce sufficiently small disks (but may fail to produce
connected graphs) or use a recursive decomposition of the
larger disks. However, the proofs of convergence and guar-
antees offered for DCM2 hold only when the graph pro-
duced is connected and only for a one-level decomposi-
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Fig. 1. Number of false positives, number of false negatives, and
maximum disk size as a function of threshold values for 320
genomes, 100 genes, and evolutionary rate r = 4

tion. In other words, we must address, at least experimen-
tally, the question of whether our adaptations damage the
quality of results returned by a DCM2 approach. To exam-
ine how large the disks should be when DCM-GRAPPA
converges, we ran experiments to examine how the error
rates and disk sizes vary with different threshold values.
Figure 1 shows a typical example (using uniform random
trees). The figure indicates that, as the threshold value in-
creases, the maximum disk size increases and the error rate
decreases. Error rates hit their lowest level for a maximum
disk size of 20—an encouraging result, since it suggests
that DCM-GRAPPA will not need to handle unrealistically
large disks to obtain good accuracy on datasets of medium
size (several hundred taxa). For larger datasets, the ‘good’
threshold value tends to produce several disks larger than
our limit of 13; on these datasets we used the recursive
approach with very good results, as documented below.

Our second problem has to do with resolving ties.
Since DCM2 creates subsets that have closely related
taxa (as confirmed in our experiments), GRAPPA will
often return a number of trees with the same ‘best’
score. DCM2 does not have a specific tiebreaker nor
any way to take into account all equally ‘good’ trees.
Past experience with DCM2 used on DNA sequence
data shows that the best results are obtained when an
optimal tree refinement (OTR) phase is added as a last
step, because the tree returned by the strict consensus
merging step of DCM2 is likely to have unresolved
edges; thus using a consensus step on the subtrees,
which would further reduce resolution before merging,
would be counterproductive. We investigated the impact
of choosing different ‘best’ trees by introducing a random
selection and running the same dataset through DCM-
GRAPPA many times. Pleasingly, and perhaps somewhat
surprisingly, we found that the results showed very little

variance within the range of datasets we explored; thus
our results below are obtained with an arbitrary selection
among competing ‘best’ subtrees.

EXPERIMENTAL RESULTS FOR TREE
RECONSTRUCTION
Our experiments had two main goals: to assess the accu-
racy of our new methods under a variety of parameters
and to evaluate the scalability (the time/accuracy trade-
off) of these approaches as the number of taxa increases.
We ran tests for up to 640 taxa under various rates of
evolution—the r parameter, which denotes the expected
number of evolutionary events along a tree edge—and on
three types of tree distributions—uniform, birth-death, and
a family proposed by Aldous (2001) as more closely mod-
elling published phylogenies in the biological literature.
We also ran a few tests for 1280 taxa, but only under a
limited range of parameter settings.

Topological accuracy
Figures 2 and 3 show the average numbers† of false
positive and false negative edges for DCM-GRAPPA,
DCM-NJ, and plain NJ (which is always dominated by
the other two) for datasets of 100 genes and varying
numbers of taxa, on uniform trees. (Because NJ always
produces binary trees, its FN and FP values will be
equal whenever the true tree is itself binary.) Two main
observations should be made. First, DCM-GRAPPA is
remarkably accurate within the range of our tests: for
r = 4 and r = 8 and for up to 640 taxa, the normalized
RF error rate stayed below 0.02—i.e. we never saw more
than 10 edges in error, out of 637 internal edges. When the
evolutionary rate is low, the accuracy decreases because
many ties arise in the optimization process; moreover
the disk size increases, since more organisms are closely
related, thereby increasing the running time of DCM-
GRAPPA (although this does not substantially affect the
running time of DCM-NJ). Figure 4 shows the relationship
between rates of evolution and false negatives and false
positives. For our limited results on 1280 taxa, the RF rates
stayed below 0.02, for fewer than 20 edges in error out of
1277 internal edges.

Secondly, DCM-NJ, which consistently outperforms
most methods when used with sequence data, also does
well with gene-order data, but it is consistently outper-
formed by DCM-GRAPPA, in spite of the fact that it
explores all possible thresholds—a distinct advantage at
low evolutionary rates, where the good thresholds are
significantly larger than for more realistic evolutionary
rates.

† Missing data are values of 0, which cannot be shown on a logarithmic scale.
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Fig. 2. Average numbers of false positives for the three algorithms as a function of the number of taxa, for 100 genes and three evolutionary
rates. (Missing values equal 0.)
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Fig. 3. Average numbers of false negatives for the three algorithms as a function of the number of taxa, for 100 genes and three evolutionary
rates. (Missing values equal 0.)
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Tree topologies
A few words should be said about the topology of
model trees. The data shown in Figures 2 and 3 are for
uniform random trees, not for birth-death trees; in terms
of relative accuracy, it more closely matches what we
have found on biological datasets. For instance, on the
Campanulaceae dataset of Cosner et al. (2000), which
has 13 genomes of 105 genes, NJ obtains trees with
score 70, DCM-NJ trees with score 71, and GRAPPA
trees with score 64. On the more challenging dataset
of Raubeson et al. (2001), which has 11 genomes of
38 genes, NJ obtains very poor trees with score 113,
DCM-NJ obtains trees with score 101, and GRAPPA
obtains good trees with score 82. In contrast, birth-death
trees (regardless of their deviation from ultrametricity and
regardless of the choice of evolutionary events) produced
curious results: for the most part, they do not lead to good
DCM decompositions, so that DCM-GRAPPA runs very
slowly; and all three methods, NJ, DCM-NJ, and DCM-
GRAPPA return equally good (very good!) topologies,
except at very high rates of evolution, when NJ starts
faltering. These findings are at odds with our limited
experience on real datasets, where GRAPPA invariably
outperforms NJ by a substantial margin. Uniform trees are
not a perfect match either: in our simulations, DCM-NJ
often performs almost as well as DCM-GRAPPA, which
is not true on real datasets. Mooers and Heard (1997)
observed long ago that neither the uniform nor the birth-
death trees are a good match for the tree shapes seen in
most published phylogenies; Aldous (2001) proposed a
single-parameter family which can generate, for suitable
settings of the single parameter β, both birth-death trees
(β = 0) and uniform random trees (β = −1.5) and
suggested that setting β to −1 gave a better fit. We also
used this type of trees in our experiments and noted
that they produced results falling somewhere between
uniform trees and real datasets—and thus not quite the
desired solution. Unfortunately, large (or even medium-
sized) biological datasets of gene-order data are still under
construction, so our tests were limited to simulations.
Obviously, further research is needed in the production of
realistic model topologies for simulations.

Recursive DCM-GRAPPA
For datasets with more than a few hundred taxa, the
disk size frequently exceeds 15; for these big disks, we
must recursively call DCM to decompose each big disk
into smaller ones. For DNA sequence data, Warnow and
her group found that the accuracy of the reconstructed
tree was poor for small and large thresholds and good
for a substantial range of values in the middle—their
plots show broad U-shaped curves. We observed the same
behavior for small to medium threshold values, leading

us to conjecture that leaving larger thresholds unexplored
is not a major problem. Since we cannot predict which
threshold value is the best, we use the maximum disk
size as a stopping criterion. For example, for 320 taxa,
the maximum disk size is set to 30 and DCM-GRAPPA
starts with the minimum threshold value, increasing the
threshold as it goes; as soon as a threshold value produces
a disk larger than 30, the computation stops. For any
disk larger than 12, we use DCM-GRAPPA instead of
GRAPPA to reconstruct the disk, thereby introducing
a possible recursion; the maximum allowed disk size
for the recursive DCM-GRAPPA is set to 2

3 of the
global maximum disk size. If the recursive instance itself
produces a disk larger than 12, it invokes another instance
of DCM-GRAPPA and further scales the allowed disk size
by 2

3 .

Running time
Detailed running times were not our objective here, since
the various methods differ sharply: on a typical dataset of
640 taxa, NJ takes a minute, DCM-NJ takes 2–3 hours, and
DCM-GRAPPA takes 10–12 hours for r = 4 and r = 8,
but about two days for r = 2 (which gives rise to much
larger disks). What interested us was the total running
time of DCM-GRAPPA and the time used in each call to
GRAPPA. Our test cases ran in a matter of hours (up to 12
hours for the most time-consuming ones, except for r = 2
where it could take 4 times longer). Disks were normally
dispatched quickly: a typical 13-taxon disk took on the
order of 40 minutes. Exceptions obviously must arise:
some of the optimization subproblems solved by GRAPPA
can take a long time—for instance, we encountered one
disk of 5 taxa that required 10 hours. Yet such cases are
obviously very rare—since the code ran in a matter of
hours in spite of the thousands of disks that GRAPPA
processes for each dataset. (Our implementation caches
all processed disks: avoiding the recomputation of just
a few expensive disks may cut the running time by a
factor of 10.) A few hours to a day of computation
on a workstation is common in biological practice—
researchers have been known to run analyses for months
on clusters of workstations (see Rice et al. (1997) for a
well known example).

The other contributing factor to large running times
is the number of genes in each genome. For our test
range (which corresponds to typical organellar genomes),
median computation is not a problem; for nuclear genomes
with a thousand or more genes, condensation (replacing
ordered subsequences of genes by a single entity) works
well in the current GRAPPA implementation, but the
presence of large pairwise distances prevents condensation
from reducing the genome to a workable size. Thus
datasets of nuclear genomes with large pairwise distances
remain computationally intractable to date, although that
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problem can be remedied, at least in part, by better taxon
sampling.

CONCLUSIONS
We have shown that the time-consuming, but accurate
approach to phylogeny reconstruction from gene-order
data first proposed by Sankoff, then refined by our group,
can be placed within a divide-and-conquer framework to
scale it up to larger problems. Our DCM-GRAPPA scales
gracefully to a thousand genomes, returning remarkably
accurate results in our simulations within a few hours to
a day of computation. As larger datasets of gene-order
data are produced by the many existing projects dealing
with organellar evolution, we will have an accurate tool
available for their phylogenetic analysis.

The principal remaining challenge is to handle unequal
gene contents; using our GRAPPA framework, we have
made significant strides in this direction in terms of
handling gene duplication events—for which see Marron
et al. (2003) and Tang and Moret (2003). The other
major challenge is to extend our results from genomes
of organellar size (no more than a few hundred genes)
to the much larger nuclear genomes (thousands of genes)
by devising fast new algorithms for computing inversion
medians.
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