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Abstract

Many large-scale phylogenetic reconstruction methods attempt to solve hard
optimization problems (such as Maximum Parsimony (MP) and Maximum Like-
lihood (ML)), but they are limited severely by the number of taxa that they can
handle in a reasonable time frame. A standard heuristic approach to this problem
is the divide-and-conquer strategy: decompose the dataset into smaller subsets,
solve the subsets (i.e., use MP or ML on each subset to obtain trees), then com-
bine the solutions to the subsets into a solution to the original dataset. This last
step, combining given trees into a single tree, is known as supertree construction
in computational phylogenetics. The traditional application of supertree meth-
ods is to combine existing, published phylogenies into a single phylogeny. Here,
we study supertree construction in the context of divide-and-conquer methods for
large-scale tree reconstruction.

We study several divide-and-conquer approaches and experimentally demon-
strate their advantage over Matrix Representation Parsimony (MRP), a traditional
supertree technique, and over global heuristics such as the parsimony ratchet. On
the ten large biological datasets under investigation, our study shows that the tech-
niques used for dividing the dataset into subproblems as well as those used for
merging them into a single solution strongly influence the quality of the supertree
construction. In most cases, our merging technique—the Strict Consensus Merger
(SCM)—outperforms MRP with respect to MP scores and running time. Divide-
and-conquer techniques are also a highly competitive alternative to global heuris-
tics such as the parsimony ratchet, although the relative performance depends upon
characteristics of the dataset.

1 Introduction
Supertree methods combine smaller, overlapping subtrees into a larger tree. Their tra-
ditional application has been to combine existing, published phylogenies, on which
the community agrees, into a tree leaf-labeled by the entire set of species. The most
popular supertree method is Matrix Representation Parsimony (MRP) [1, 29], which
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has been used in a number of phylogenetic studies [5, 6, 19, 21, 28]. Bininda-Emonds
and colleagues [4, 6] have evaluated the behavior of several variants of MRP on small
simulated datasets with respect to topological accuracy.

We study the application of supertree methods in a different context: as part of
divide-and-conquer methods that can be used to solve difficult optimization problems
such as Maximum Parsimony (MP) and Maximum Likelihood (ML) [11, 12, 16, 34].
These two problems are sufficiently hard that a biologically acceptable phylogenetic
analysis can take a very long time (months, perhaps) to derive. Our conjecture, which
we study in this paper, is that divide-and-conquer strategies can speed up searches for
optimal trees under MP and ML.

A divide-and-conquer method for phylogeny reconstruction operates as follows.
Given a dataset S of n sequences,

• Step 1: The set S is divided into overlapping subsets, S1,S2, . . . ,Sp.

• Step 2: A tree Ti is constructed on each subset Si (e.g., by some heuristic search
for MP or ML).

• Step 3: A supertree method is applied to the set of subtrees {Ti : i = 1,2, . . . , p},
in order to obtain a tree T on the full dataset.

• Step 4: If the tree T is not fully resolved (i.e., if it contains nodes of degree
greater than three), a refinement technique is used to produce a binary tree refin-
ing T that optimizes the chosen criterion.

Supertree methods, therefore, are an integral part of a divide-and-conquer strategy, but
the other three aspects of such a strategy also affect accuracy and speed. Our study
addresses the following questions:

• Should the subtrees used in reconstruction be carefully selected in terms of the
subsets they represent or can the subsets be arbitrary as long as some overlap
exists among them?

• Given a fixed collection of overlapping subtrees, what is the best method to as-
semble them into a single supertree?

• How do divide-and-conquermethods fare when compared to “global” approaches,
such as the heuristic searches for MP in PAUP*4.0b10 [36]?

To investigate the first two questions, we compare methods that differ explicitly in
how they decompose the dataset and how they merge subtrees into a supertree. The
family of Disk-Covering Methods (DCMs) [17, 18] plays a major role in addressing
these questions. DCMs are metamethods for phylogenetic reconstruction that use a so-
phisticated dataset decomposition technique (based on cliques in a triangulated graph),
that use a matched subtree merger (the Strict Consensus Merger or SCM), and that
offer performance guarantees when used with particular base methods. We consider
two variants in the DCM family, plus (as a control) random decompositions; these de-
compositions are coupled with MRP and SCM (only with DCM variants) to merge the
resulting subtrees into a single supertree; finally, all combinations of methods are fol-
lowed by a refinement phase. To ascertain whether divide-and-conquer approaches can
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outperform “global” approaches to solving MP or ML, we compare the performance
of our DCM strategies with the parsimony ratchet (often cited as the best global MP
heuristic).

1.1 Overview of Experimental Results
We compare these methods on ten biological datasets that range from 328 to 854 taxa,
focusing on the question of how techniques used for dataset decomposition and su-
pertree reconstruction impact the running time and the MP score of the result. We
find that the DCM2+SCM method outperforms the other methods on all our datasets.
The specific decomposition technique has a significant impact on the MP score of the
resultant tree as well as on running time, with DCM2 clearly outperforming random
decompositions. Furthermore, we obtain improved MP scores in all decomposition
strategies (DCM and random) when the subproblems are large—an observation that
impacts taxon-sampling strategies. The supertree method used to combine subtrees
into a single tree on the full dataset is also very important. In general, except when the
subproblems are very large and taxon coverage among the subproblems is high, SCM is
faster than MRP and also produces better resolved trees. When MRP and SCM are fol-
lowed by the same resolution technique in Step 4, SCM generally produces better MP
scores than MRP. (The only exception was for DCM1-based decompositions, in which
MRP produces very unresolved trees—compared to SCM, with the consequence that
the refinement phase is able to produce better MP scores after MRP than after SCM—
in effect, the refinement phase does all the reconstruction work, at a significant cost in
running time.)

Our study demonstrates that the benefit of a divide-and-conquer technique de-
pends on the properties of the dataset. When the dataset can be decomposed well
by DCM2—into significantly smaller subproblems with good overlap, DCM2 pro-
vides a clear advantage (in running time or MP scores, as desired). We compared
DCM2-based approaches with the parsimony ratchet—the best MP global heuristic in
our experiments—on two biological datasets: the well-studied 500 rbcL DNA dataset
and a set of 816 mitochondrial rRNA sequences. The rbcL dataset decomposes quite
poorly and, indeed, our study shows that DCM2 provide no improvement over the
parsimony ratchet; in contrast, the rRNA dataset decomposes very well and we find
that DCM2 improves on the parsimony ratchet for this dataset. (Interestingly, DCM2-
Ratchet, using the parsimony ratchet as a base method in a DCM2 decomposition, is
almost as good as a global ratchet on the rbcL dataset, in spite of the extremely poor
decomposition.)

1.2 Comparison with Previous Work
Bininda-Emonds and colleagues [4, 6] studied supertree reconstruction from an experi-
mental point of view, focusing on the MRP method and using small simulated datasets.
While we also study MRP, our focus is as much on decomposition as it is on supertree
reconstruction and so we study several other methods; moreover, our testing uses bio-
logical datasets rather than simulated ones, thereby forcing us to use MP scores as our
measure of accuracy (since the true trees for these datasets are not known); finally, we
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focus on large datasets (limited in this study to datasets below 1,000 taxa due to the
dearth of larger published datasets), since these are the datasets where a divide-and-
conquer methodology will have the largest impact.

Some of the earliest divide-and-conquer methods are quartet-based methods, such
as Quartet Puzzling [35], Short Quartet methods [10], and Quartet Cleaning [2]. Quar-
tet methods are at one extreme of divide-and-conquer methods, since they decompose
the datasets into the smallest possible subsets for which nontrivial trees exist—subsets
of just four taxa each. Quartet-based methods cannot profitably use either MRP or
SCM (the two supertree reconstruction techniques we study here)—MRP is too expen-
sive given the tiny trees and SCM will usually return a totally unresolved tree because
too many quartets will be in error. In an earlier study [33], we compared various
quartet-based methods and the fast and simple neighbor-joining (NJ) [31] method on
simulated data. Quartet Puzzling, which merges quartet trees using a greedy heuristic,
clearly dominated the other quartet-based methods, but was much slower and clearly
less accurate than NJ. These results suggest that decompositions into tiny subsets is
not profitable. Other divide-and-conquer methods include Compartmentalization [23],
which is not fully described and so cannot be implemented, and a strategy used to an-
alyze a biological dataset [26], where again the decomposition and merging steps are
not well enough describe to enable one to implement and test the strategy.

2 Divide-and-Conquer Reconstruction Methods
Each of the divide-and-conquer methods uses four basic steps to construct a supertree
from a given dataset:

• Step 1: Decompose the dataset into smaller, overlapping subsets.

• Step 2: Construct phylogenetic trees on the subsets using the desired “base”
phylogenetic reconstruction method.

• Step 3: Merge the subtrees into a single (not necessarily fully resolved) tree on
the entire dataset.

• Step 4: Refine the resultant tree to produce a binary tree.

Steps 2 and 4 are the same in all of our algorithms (except for our study of global
heuristics versus divide-and-conquer methods in Section 5). We use a slow heuristic
search for MP as the “base method” to construct the subtrees, but a fast heuristic search
for MP to refine the merged supertree into a binary tree. Thus, our methods differ
only in terms of how they perform Steps 1 and 3; Sections 2.2 and 2.3 describe the
techniques used for data decomposition and subtree merging. A summary of all of the
supertree methods used is given in Section 2.5.

2.1 Heuristic Searches for MP
Heuristic searches for MP trees form a basic part of our divide-and-conquer reconstruc-
tions in three places: using a base method on subproblems to construct subtrees, using
MRP to merge subtrees into a supertree, and refining the resultant tree into a binary
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tree. PAUP*4.0b10 Heuristic Search (HS) [36] was used for these analyses since the
datasets are too large (in the hundreds) for exact optimization. Experiments were per-
formed on simulated data in order to determine the quality of the HS needed in each
stage.

• Fast HS: A fast heuristic search in which we save only one tree, starting from
one initial random sequence addition ordering. We used the PAUP*4.0b10 com-
mands:
set criterion=parsimony maxtrees=1 increase=no;

hsearch start=stepwise addseq=random swap=tbr hold=1 nreps=1;

• Medium HS: Medium heuristic search with ten random sequence addition order-
ings and 100 saved trees. We used the PAUP*4.0b10 commands:
set criterion=parsimony maxtrees=100 increase=no;

hsearch start=stepwise addseq=random swap=tbr hold=1 nreps=10;

contree all/ strict=yes;

• Slow HS: A slow heuristic search with 100 random sequence addition orderings
and 1,000 saved trees. We used the PAUP*4.0b10 commands:
set criterion=parsimony maxtrees=100 increase=no;

hsearch start=stepwise addseq=random nreps=100 nchuck=1 chuckscore=1

swap=tbr;

set maxtrees=1000 increase=no;

filter best=yes;

hsearch start=current swap=tbr hold=1 nchuck=1000 timelimit=3600;

contree all/ strict=yes;

We also used the parsimony ratchet [25], in a PAUP*4.0b10 implementation written
by Bininda-Emonds [3]. The ratchet is a simple and effective heuristic for general
optimizing search and works iteratively as follows:

1. Run Fast HS for MP.

2. Randomly select 25% of the sites, set their weights to 2 and run Fast HS on the
perturbed data, starting with the tree from the previous search.

3. Reset the site weights to their original values and run Fast HS starting with the
tree from the previous search.

4. Repeat steps two and three as desired.

2.2 Data Decomposition
2.2.1 DCM-based decomposition

Disk-Covering Methods (DCMs) [17, 18, 24, 37] are meta-methods for phylogenetic
reconstruction: they operate in conjunction with a “base method” such as an MP heuris-
tic or NJ. DCMs decompose the input set into smaller overlapping sets on which sub-
trees are computed using the specified base method. They have a dual goal: improved
accuracy and better speed. Because the subsets have smaller diameter (maximum pair-
wise distance) than the original dataset, they are less likely to cause accuracy problems;
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and because the possibly expensive base methods only have to solve small subsets, the
overall algorithm runs faster. One goal can stressed at the expense of the other; thus
there are several DCMs, each of which was designed for use with a particular base
method.

Our first DCM, DCM1 [17], was designed for methods such as NJ, whose topolog-
ical accuracy is negatively affected by large pairwise distances. DCM1 thus attempts
to minimize the evolutionary diameter of each subproblem; in consequence, it pro-
duces many subproblems, each with small diameter, but does not control the overlap
between the subproblems. Earlier studies we conducted (and confirmed here) showed
that DCM1 does not work particularly well with heuristic MP as a base method. There-
fore, we developed a second DCM, which we called DCM2 [18]. The main difference
between DCM1 and DCM2 is that DCM2 produces a small number (two or three is
typical in experiments presented here) of subproblems, all of which share one subset
of taxa and are otherwise disjoint. Thus DCM2 tightly controls the overlap pattern,
but does not directly attempt to control the diameter of each subset, thereby producing
larger disks than would DCM1.

The input to both DCM1 and DCM2 is a set S = {s1, . . . ,sn} of n taxa (typically,
aligned biomolecular sequences), a matrix d containing an estimate of the pairwise
distances between the taxa, and a threshold—a particular q ∈ {di j}. Both methods
start by computing a threshold graph, G(d,q), defined as follows:

• The vertices of G(d,q) are the taxa, s1,s2, . . . ,sn.

• The edges of G(d,q) are those pairs (si,s j) obeying di, j ≤ q.

The graph is then minimally triangulated, i.e., edges are added to the graph until ev-
ery cycle of length at least four has a chord (an edge connecting two nonconsecutive
vertices on the cycle) [9, 14], while attempting to minimize the weight of the largest
edge added. Obtaining an optimal triangulation of a graph is in general NP-hard [7],
but threshold graphs are usually triangulated or close to it [17]—and our experience
shows that even the simple greedy heuristic we use produces triangulations that do not
have very long edges. We triangulate the threshold graph because triangulated graphs
have many computationally useful properties, notably:

• they have a linear number of maximal cliques (cliques that cannot be increased
by adding a vertex) and these cliques can be computed in polynomial time; and

• their minimal vertex separators (subgraphs whose removal breaks the graphs into
disconnected pieces) are maximal cliques.

(These two problems are NP-hard for general graphs.) Thus, the next step in DCMs
is to compute the maximal cliques. At this point, DCM1 is done and simply returns
these cliques as the subproblems in the decomposition; these cliques have low diameter
by construction. DCM2 scans through the cliques to find one clique X that minimizes
maxi |X ∪Ai|, where the Ai are the pieces into which the graph is broken upon removal
of X ; it then returns the subsets X ∪Ai as the subproblems in the decomposition. Note
that these subproblems have a unique common intersection, but that their diameter can
be much larger (because of the addition of the separator X) than that of a subproblem
generated by DCM1. Figure 1 illustrates the algorithm. We have proved that, as long
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Figure 1: The three steps of Phase I in DCM2: (a) compute clique separator X for set
S in threshold graph G(d,q), producing subproblems A1 ∪X , A2 ∪X ,. . . , Ar ∪X ; (b)
compute tree ti for each subproblem Ai∪X ; and (c) merge computed subtrees to obtain
tree Tq for set S.

as the subtrees are correctly inferred and the subproblems are large enough, the Strict
Consensus Merger (SCM) technique applied to the subtrees will produce the true tree.
These theorems have ramifications for both DCM1- and DCM2-based strategies, but
especially for DCM1 combined with distance-based methods; for these combinations
it is possible to prove nice theorems about the sequence length requirements of the
resultant methods.

Our interest in this study is practical, however, rather than theoretical: we want to
develop faster and more accurate algorithms that perform well in practice. We experi-
ment with different decompositions in order to determine which ones produce the best
empirical results, so that improved MP scores are obtained faster. The reason we pick
a minimum triangulation is that we want to avoid grouping taxa that are evolutionarily
distant; this is equivalent to avoiding the introduction of long edges in the triangulated
threshold graph. In developing the threshold graph, however, we need to choose a
threshold q. The smallest useful value for q is d0, the smallest possible value for which
the threshold graph G(d,q) is connected; the largest possible value is simply max{di j}
(but note that if we applied the algorithm to this largest value, then we would not obtain
any decomposition into smaller subproblems, since the threshold graph would already
be a clique). In our experiments we look at ten equally spaced values between d0 and
max{di j} and run all tests with two values: d0 and d4.

2.2.2 Random decomposition

As a control for DCM2, we also considered the effects of decomposing a dataset into
random, overlapping subsets, using three parameters: the number x of subproblems,
the desired minimum size y of each subproblem, and the desired minimum size z of the
pairwise intersection of subsets. Let n be the number of taxa to be distributed among
the subsets. The x subsets are populated as follows. First, z taxa are randomly selected
and all of them are placed into each of the subsets. For each subset, we then randomly
select an additional y− z taxa from the remaining n− z taxa. Finally, if any taxa have
not yet been placed in any particular subset, we add these taxa randomly to subsets.
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The resulting decomposition mimics the structure of DCM2 in that it produces subsets
with a common pairwise intersection.

2.3 Merging Subtrees
2.3.1 Matrix representation parsimony (MRP)

The MRP approach encodes a set T of trees as binary characters with missing val-
ues (i.e., “partial binary characters”) and then applies some heuristic for maximum
parsimony on the resultant set of sequences. Understanding how MRP works thus
requires understanding the encoding and how maximum parsimony interprets partial
binary characters.

Let S denote the full set of taxa and let T be one of the trees in the set T —thus T
has leaf set S0 ⊂ S. Let e be an arbitrary edge in T . Deleting e from T partitions the
leaves of T into two sets A and B. Now define a character ce on all of S by setting

ce(s) =

{0 if s ∈ A
1 if s ∈ B
? otherwise

The set C(T ) = {ce:∃T ∈ T , e ∈ E(T )} is the MRP encoding of the set T of trees.
Given a set of sequences defined by partial binary characters and a candidate tree

T on the set of sequences, all ?s are replaced by 0 or 1 in such a way as to minimize
the total number of changes on (the parsimony score of) the tree. If every subtree in
the MRP analysis is accurate (i.e., each subtree is identical topologically to the true
tree induced on its set of leaves), then the true tree is one of the maximum parsimony
trees. Hence, an exact solution to maximum parsimony will return the true tree as
one of the solutions. (This observation follows from the fact that the true tree is a
“perfect phylogeny” [7]—i.e., a homoplasy-free phylogeny, for the MRP-encoded set
of sequences.)

For MRP, we used Slow HS. Since the search can identify more than one tree of
lowest score, the strict consensus of the best trees found is returned—that is, the most
resolved tree that is a common contraction of all of the best trees found.

2.3.2 Strict-consensus merger (SCM)

The Strict Consensus Merger (SCM) combines a set of trees into a single tree. The
merging is done pairwise until only one tree is left. The specific order in which the
trees are merged matters when the subtrees are defined by a DCM1 decomposition,
but is irrelevant when the subtrees are defined by a DCM2 decomposition; hence, for
DCM2 it suffices to describe how SCM operates on two trees. (For specifics on how
SCM operates in a DCM1 analysis, see [17].)

Let L(T ) denote the set of leaves of T , C(T ) denote the set of bipartitions of T ,
and TX , with X ⊆ L(T ), denote the tree obtained by restricting the leaf set of T to X
and suppressing nodes of degree 2 (see Figure 2). SCM takes two trees T1 and T2 and
returns a tree T12 on the leaf set L(T1)∪L(T2).

• Set X = L(T1)∩L(T2). X is the backbone and must satisfy |X | ≥ 3.
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Figure 2: Tree T restricted to leaf set {A,B,D,E}

• Compute the strict consensus, TX , of T1 and T2, each restricted to the leaf set X .

• Add the remaining taxa from T1 and T2 into TX to form T , so as to preserve as
much structure as possible. Some piece of each tree T1 and T2 may attach onto
the same edge of TX (causing a collision).

Figures 3 through 7 illustrate the SCM algorithm on both compatible and incompatible
trees with and without collisions; in all figures, the backbone is highlighted with thick
edges. In Figures 4, 6 and 7, there is a collision, i.e., an edge in the backbone to which
both trees contribute pieces. The Strict Consensus Merger handles collisions in the
following way. If an edge e of the backbone has a collision, then we subdivide the
edge, producing a new node ve, to which all contributions will be attached. In each
subtree T contributing to this edge, we identify all pieces of T that should attach to that
edge and attach them directly to ve.

The Strict Consensus Merger of two trees is very similar to Gordon’s Strict Con-
sensus Supertree (SCS) [15]: the only difference is how collisions are handled: in case
of collisions, the SCS tree is a strict contraction of the SCM tree, because it contracts
additional edges located within pieces involved in the collision.

2.4 Optimal Tree Refinement (OTR)
Merging subtrees into supertrees using MRP or SCM can result in unresolved trees; all
steps up to and including the merging step are perhaps best seen as attempts to identify
the best-supported edges. Resolving the remaining polytomies (by adding edges) so
as to minimize the parsimony score of the resulting tree is the NP-hard Optimal Tree
Refinement (OTR) problem [8]. To “solve” it, we pass unresolved trees as constraint
trees to PAUP*4.0b10 and use a fast MP heuristic search for a resolved tree, using the
following command:
constraints c1 (monophyly) = <the unresolved tree which is used as constraint>;

set criterion=parsimony maxtrees=1 increase=no;

hsearch start=stepwise addseq=random swap=tbr hold=1 nreps=1

constraints=c1 enforce=yes;
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Figure 5: SCM on incompatible trees without collision.
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tition {{1,2,3,4,5,6,7},{8,9}} is present in the supertree under SCM, but not in Gordon’s Strict
Consensus Supertree.
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2.5 Supertree Methods Studied
By varying the techniques used to obtain the dataset decomposition into subsets and the
techniques used to merge subtrees into supertrees, we obtain many different divide-and-
conquer methods. For each such method, we also have a choice of parameters. The
methods we study are DCM1 and DCM2, each with a supertree construction phase
of MRP or SCM, plus the random decomposition followed by MRP (SCM is only
applicable to DCM decompositions). For DCM1, we use only threshold d0, whereas
for DCM2 we use both d0 and d4. All methods are followed by the refinement phase,
described in the previous section.

3 Experimental Methodology
We ran two sets of experiments. The first set of experiments was designed to test two
conjectures: (i) that careful decomposition of the dataset is crucial to the success of
supertree methods and that the DCM methods offer such a careful decomposition; and
(ii) that the strict consensus merger developed as part of DCM is superior to MRP as a
supertree assembly tool. The second set of experiments was designed to test our conjec-
ture that divide-and-conquer methods are a competitive alternative to global heuristics.

We used large biological datasets to test these conjectures. The advantage of bio-
logical datasets is that they offer data with all the biases and peculiarities that are so
hard to produce in simulations and thus provide a better basis for prediction of future
behavior on other biological data. Their disadvantages are that: (i) we cannot produce
“tailored” biological datasets designed to test specific aspects of the reconstruction al-
gorithms; and (ii) we cannot judge the outcomes on the basis of accuracy (because
we do not know the “true” tree) and so must instead rely on substitute criteria, such
as maximum parsimony scores or maximum likelihood scores. On balance, we chose
biological datasets for two reasons: (i) we have already conducted large-scale sim-
ulation studies of the DCMs—it is those studies that led us to the conjectures listed
above—and so already have strong supporting evidence for our conjectures from sim-
ulated data; and (ii) in contrast, no experimental study using large biological datasets
has been conducted to date nor is there much known about the characteristics of such
datasets.

Since our conjectures may hold in significant parts of the parameter space, but not
everywhere, we study the effect of various parameter settings. We parameterize the
decomposition in terms of subset sizes and mean coverage (where the mean coverage
is the mean number of subsets in which a taxon appears). Of course, each taxon must
appear in at least one subset, but reconstruction requires mean coverage greater than
1× (otherwise we would obtain a forest and not a tree). We match the size and cover-
age characteristics of random decompositions to match our DCM decompositions and
study the variation in parsimony scores as a function of subset sizes or coverage.
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3.1 The Datasets
We obtained ten biological datasets (all biomolecular sequences) from various sources.
Below we give a brief description of each dataset, noting the number of sequences,
their lengths, and the maximum p-distance (normalized Hamming distance) between
any two sequences in the set.

1. A set of 328 ITS RNA sequences (946 sites) from the flowering plant Astera-
caeae obtained from the Gutell Lab at the Institute for Cellular and Molecular
Biology, The University of Texas at Austin; max p-distance = 0.524.

2. A set of 439 aligned DNA sequences (2,461 sites) [13]; max p-distance = 0.649.

3. A set of 476 aligned DNA sequences (1,008 sites) [13]; max p-distance = 0.445.

4. A set of 500 aligned rbcL DNA sequences (1,398 sites) [30]; max p-distance =
0.184.

5. A set of 556 aligned 16S rRNA sequences (2,402 sites) for the Spirochaetes class
of Bacteria [22]; max p-distance = 0.31.

6. A set of 567 “three gene: rbcL, atpB, and 18s” aligned DNA sequences (4,592
sites) [32]; max p-distance = 0.15.

7. A set of 590 aligned small subunit Archaea rRNA sequences (1,962 sites) [38];
max p-distance = 0.382.

8. A set of 695 aligned 16S rRNA sequences (2,550 sites) for the Cyanobacteria
class of Bacteria [22]; max p-distance = 0.219.

9. A set of 816 aligned small subunit Mitochondrial rRNA sequences (1,253 sites)
[38]; max p-distance = 0.46.

10. A set of 854 aligned DNA sequences (937 sites) [13]; max p-distance = 0.39.

Recall that the DCM-based approaches require a distance matrix to compute the thresh-
old graph as the first step of its computation—and also that the distance matrix does
not play any role in the phylogenetic reconstruction beyond this first step. We used the
Kimura 2-parameter (plus Gamma) [20, 39] distance correction formula to compute
a distance matrix for each dataset, using parameter values of κ = 2 and α = 1 (the
“default” values). We do not need the model to fit the data particularly well, since it
affects only the choice of edges in the threshold graph; nevertheless, it is possible that a
better distance correction (such as could be obtained using MODELTEST [27]) would
yield better results. In other words, our results with the DCM-based approaches should
be regarded as pessimistic—they establish a lower bound, but are subject to further
improvement.

3.2 Implementation and Platforms
Our DCM implementations are a combination of C++ (which uses LEDA 4.3) and Perl
scripts; they were originally written by Daniel Huson and further expanded by us. The
random decomposition is also a combination of C++ and Perl scripts and was written
by us. To run the MP heuristics used for solving the subproblems, for MRP, and for
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OTR, we used PAUP*4.0b10 [36]. Our experiments were run on modest Pentium 500
MHz machines under Debian Linux.

For our running time analysis, we provide the running time (in seconds) of each of
the four major steps separately, as follows:

• Decomposition: For the DCM-based methods this includes the running time for
computing and triangulating the threshold graph and finding the subproblems.
For the random methods it is the time to form the subproblems.

• Base method: This is the total running time for Slow HS on all the subproblems.

• Merge: This is the running time to merge the subtrees into a supertree using
MRP or SCM.

• OTR: This is the cost of running Fast HS with the (unresolved) tree obtained in
the previous step as a constraint tree in PAUP*4.0b10.

4 Results on Decompositions

4.1 Comparing Different DCMs
We began by examining the six different DCM-based approaches we defined: DCM1
using both SCM and MRP for supertree construction, but only using the threshold
d0, and DCM2 based upon both SCM and MRP, using thresholds d0 and d4. Figures
8 and 9 shows relative MP scores and running times on the ten datasets. The best
method (in terms of MP scores) is consistently DCM2+SCM, at either d0 or d4; the
other methods are not nearly as competitive. (MP scores that differ even by these small
percentages are usually considered significant in phylogenetic analysis.) Furthermore,
SCM is better than MRP at combining subtrees in nearly all cases—the only exception
is DCM1 decompositions, but these decompositions are relatively poor and clearly
not competitive, Running times show that MRP is far more expensive than SCM, and
yet, as mentioned, is almost always dominated by SCM in terms of results. We will
therefore focus on DCM2+SCM, since it is clearly the best performing divide-and-
conquer strategy we tested. Our first task is to determine a suitable threshold. Figures
10 and 11 (using the data of Figures 8 and 9) show that DCM2+SCM(d4) outperforms
DCM2+SCM(d0) on most of the ten datasets. This improvement in MP scores as we
increase the threshold value is consistent with previous studies [18] and our recent
simulation studies (not shown). Note that, as we increase the threshold, the number of
subproblems decreases, so that, although the maximum subproblem size increases, the
total time decreases. For DCM2+SCM, whether for threshold d0 or d4, the most costly
aspect of the reconstruction is the time spent in the MP heuristics—in reconstructing
trees on the subsets and, to a lesser extent, in the OTR phase; in contrast, the DCM and
SCM phases are very fast. (These data are shown in the appendix.)

4.2 Comparing Random Decompositions
With random decompositions, we must use the MRP supertree method, since SCM
is specifically designed for DCMs. Our goal here is to understand the effect of the
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Figure 8: Comparison of the MP scores of DCM-based approaches on ten biological
datasets, normalized with respect to the MP score of DCM2+SCM(d0).
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Figure 9: Comparison of the running times of DCM-based approaches on ten biological
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Figure 10: The ratio of the MP scores of DCM2+SCM(d0) to those of DCM2+SCM(d4)
on ten biological datasets.
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Figure 11: The ratio of the running times of DCM2+SCM(d0) to those of
DCM2+SCM(d4) on ten biological datasets.
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(random) decomposition, in particular, the size of subsets and the amount of coverage,
on the quality of reconstructions.

We want the coverage (the average number of subsets in which a taxon appears) to
run from 2× to 5× and the size of the subproblems to range from 10% to 90% of the
dataset, so we we choose the number of subproblems to be

number of subproblems = floor
(coverage·total size

subproblem size

)

So as not to bias the subset decomposition any further, we set the parameter z (the
minimum overlap size) to 0 and let the pairwise overlap be induced through the number
of subproblems and subproblem sizes as chosen above.

We solve the subproblems using Fast HS for MP (see Section 2) and run MRP
using Medium HS for MP. We impose a time limit of 600 seconds on Medium HS. We
examine 5 values of average subproblem sizes: 10%, 30%, 50%, 70% and 90% of the
dataset. For each average subproblem size, we examine coverages of 2×, 3×, 4× and
5×. Figures 18 through 27 in the Appendix show the results on each of the ten datasets.
Shown are the ratios of the MP scores of MRP applied to random decompositions to
the MP scores of DCM2+SCM(d0), for various subset sizes (the horizontal axis, with
the average subset size given as a percentage of the complete set) and coverages (the
various curves). These figures indicate, unsurprisingly, that MRP applied to random
decomposition does much better with larger subsets and somewhat better with increase
coverage (as was also observed in [6]). Furthermore, as the subproblem sizes become
larger, the MP scores of MRP on random decompositions slowly approach those of
DCM2+SCM(d0).

4.3 DCM vs. Random Decompositions
In our divide-and-conquer methods using random decompositions, we only use MRP
as the supertree method, instead of also using SCM. The SCM method is designed for
use on decompositions obtained on triangulated graphs, for which the order of mergers
can be automated and has performance guarantees. However, with subproblems based
on arbitrary decompositions, the order of mergers would need to be suitably defined,
since it could have a large impact on the resultant supertree. Clearly, additional research
would need to be done in order to establish a reliable use of SCM as a supertree method
for arbitrarily defined sets of subtrees. We have begun this research, but have not yet
completed it; for the purpose of this study, therefore, we restrict our use of SCM to
DCM1 and DCM2 decompositions.

In this part of our study, we explore the relative performance of DCM2 decompo-
sitions to random decompositions. We run DCM2+SCM(d0) only as a benchmark, but
focus on DCM2+MRP(d0), since we can ensure that MRP is applied to closely com-
parable decompositions. (We can set the three parameters for random decomposition
so as to produce the same number of subsets as DCM2, with closely matched average
subset sizes and coverage.) We use Slow HS for MP on the subproblems as well as
for MRP and again report the average over 5 runs for the random decomposition. Ta-
bles 1 through 10 (in the Appendix) list the MP scores of the trees obtained by each
method, while Figures 12 and 13 plot the ratios of MP scores (and running times) of
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Figure 12: Comparison of MP scores of DCM-based methods and RANDOM (aver-
aged over 5 runs) normalized with respect to the DCM2+SCM(d0) MP scores on each
of the ten biological datasets.
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Figure 13: Comparison of running times of DCM-based methods and RANDOM (av-
eraged over 5 runs) normalized with respect to the running time of DCM2+SCM(d0),
on each of the ten biological datasets.
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DCM2+MRP and of MRP on random decompositions to the MP scores (and running
times) of DCM2+SCM. The results clearly indicate that DCM2+SCM does much bet-
ter, in terms of both MP scores and running times, than either DCM2+MRP or MRP
on random decompositions, with this last doing worst of all. Thus DCM2 decomposi-
tions are better than random decompositions and SCM does a better job at assembling
supertrees from such decompositions than MRP (scores and resolution are both better).
In contrast, MRP is very slow (both DCM2+MRP and MRP on random decomposi-
tions run more slowly than DCM2+SCM because of the slow MRP phase)—on some
datasets, the time difference is on the order of hours of computation, hours that could
be used to conduct a more thorough parsimony search on the subtrees or in the OTR
phase of DCM2+SCM. (We have not run such an equal-time comparison, but we ex-
pect that the gap in parsimony scores returned by DCM2+SCM and the other methods
would be widened.)

5 Results on Global Heuristics
Our results suggest that a DCM2+SCM analysis is both faster and more accurate (in
terms of MP scores) than the other divide-and-conquer methods studied. However,
does DCM2+SCM compare well to a direct (global) heuristic approach? We expect that
the DCM approach will prove better on those datasets that yield good decompositions
(into a small number of substantially smaller datasets with good overlap), but need to
ascertain how the DCM approach performs when decompositions are poor. We select
two datasets, one for which the DCM2 decomposition is poor (dataset #4, the 500 rbcL
dataset) and another for which DCM2 yields a good decomposition (dataset #9, the
816-taxon rRNA dataset).

We first explore various global heuristics to identify the method that performs best
on the the 500 rbcL dataset—in this case the parsimony ratchet. We then use this
heuristic both as a base method for DCM2+SCM (yielding a method we call DCM2-
Ratchet, that also includes a final OTR phase) and as a global optimization heuristic
and look at the progress of each method over the period of time needed by the global
parsimony ratchet to find the best score (as of June 2003) for the dataset.

5.1 Local Improvement on the 500 rbcL Dataset
We compare local improvement heuristics as implemented in PAUP*4.0b10 on the 500
rbcL dataset. The heuristics we study are of the form fast-k max-m and are imple-
mented using the following commands:
set criterion=parsimony maxtrees=k increase=no; hsearch start=stepwise addseq=random

nreps=k swap=tbr nchuck=1 chuckscore=1; set maxtrees=m increase=no; hsearch start=current

swap=tbr nchuck=m timelimit=<30 hours>;

We vary k and m to study the following versions:

• fast100-max1000

• fast1000-max1000

• fast10000-max1000
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Figure 14: Comparison of six different hill-climbing heuristics on the rbcL dataset

• fast100-max10000

• fast1000-max10000

• fast10000-max10000

shows the MP score of the best tree found by each heuristic as a function of time—up
to a time beyond which none of the heuristics finds better trees.

• fast1000-max1000 is clearly the best performing method in this study; it found
the best tree of MP score 16,531 in the quickest time of approximately 14 hours.

• fast100-max1000 finds a tree of MP score 16,533 and is the fastest method.

• fast100-max10000 and fast1000-max10000 also find trees of MP scores 16,533;
however, they take much longer than fast100-max1000.

• fast10000-max10000 and fast10000-max1000 are the two slowest heuristics;
they find trees of scores 16,531 and 16,532 respectively after 125 hours.

We now compare 1,000 iterations of the parsimony ratchet (denoted by ratchet1000)
against fast1000-max1000, the best of the PAUP* local improvement heuristics. Fig-
ure 15 shows that the parsimony ratchet finds trees with the same MP score as fast1000-
max1000, but does so faster—at the 111th iteration only. This result, along with many
statements in the literature about the observed speed of the parsimony ratchet, leads us
to adopt it as our base method.

5.2 Global Ratchet vs. DCM2-Ratchet on the 500 rbcL Dataset
We explore several variants of DCM2-Ratchet, by restricting the number of iterations
of the ratchet on the subproblems (to 25) and also by using the ratchet to resolve the
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Figure 15: Comparison of ratchet1000 to fast1000-max1000 (on the rbcL dataset)
shows that the parsimony ratchet finds the best known trees faster.

resultant tree (with iterations restricted to 10 and 25). The separator for the 500 rbcL
dataset is very large—so large, in fact, that we elected to produce only two subprob-
lems, rather than the three it naturally produces, by merging the two smaller subsets.
Since ratchet1000 finds the best known trees on the 111th iteration (see Figure 15),
we run 200 iterations of the ratchet for the global analysis. Each method is run 10
times and the average MP score at each time step is collected. Figure 16 shows that
the DCM2-boosted variants of the ratchet are able to find trees almost as good as those
found by the global ratchet, but not as fast. A closer look at the dataset decomposition
shows that the DCM2 subproblems are very large at this threshold value (the average
size is 90%!), which easily explains the slow running time.

5.3 Global Ratchet vs. DCM2-Ratchet on the 816 rRNA Dataset
On the 816 rRNA dataset, the DCM2 decomposition produced at threshold d0 has a
separator of size 3. Such a small separator makes it difficult for SCM to merge trees
with sufficient accuracy, so we select instead a separator of size 36 (at threshold value
d0); this separator produces three subproblems of sizes 132, 270, and 486.

Since this is a larger dataset than the 500 rbcL, we use 500 iterations of ratchet
(ratchet500) for the global analysis. The subproblems are again computed using 25
iterations of the ratchet and three different iteration counts are used for the OTR phase:
ratchet5, ratchet10, and ratchet25. Each method is run 5 times and the average MP
score at each time step is collected. The global ratchet version runs to completion in
about 48 hours. Figure 17 shows that, within the first two hours, DCM2 finds better
trees than the global ratchet. Moreover, when we run the global ratchet with the DCM2
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Figure 16: Comparison of DCM2-Ratchet to ratchet200 on Dataset #4 (averaged over
10 runs). The average subproblem size is 90% and the separator size is 79% of the
problem size.
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trees as starting trees, it finds better trees than the global version started from scratch.
In particular, DCM2ratchet25-OTRratchet25 finds trees with an MP score of 30,115 within
approximately 26 hours, whereas the best trees found by the global ratchet (at the end
of 48 hours) have an MP score of 30117,

6 Summary and Conclusions
We set out to explore the potential of divide-and-conquer methods to improve the speed
and accuracy of maximum parsimony searches; in particular, we wanted to learn which
decomposition strategies and what supertree assembly techniques work well in such ap-
proaches. Our study confirms that divide-and-conquer methods can speed up searches
for optimal MP trees, but (unsurprisingly) only when the decompositions are good.

The specifics of the divide-and-conquer strategy make a large difference. We had
already shown that quartet-based methods (an extreme form of divide-and-conquer)
are not competitive. We now find that random decompositions are clearly inferior to
carefully crafted ones (by the DCMs) and that the SCM approach to merging subtrees
is both faster and more accurate than the traditional MRP approach. (Both approaches,
however, usually require an “OTR” phase in which the supertree is refined into a binary
tree, in order to get good results.)

The significance of this study is both enhanced and limited by our use of biological
datasets: we ensure relevance, but can only conduct fairly simple tests—a simulation
study is required to confirm our findings as well as discern more subtle effects. Other
research suggested by this study includes: (i) how best to decompose datasets for which
DCM2 does not produce a good decomposition? (ii) how long should the base methods
be allowed to run on subproblems? (iii) what is the influence of the OTR phase on
the entire process? and (iv) the DCM-SCM variants produce quite good trees fairly
rapidly and thus can be used to initialize searches to good effect (as we show in this
study), so how can we best make use of divide-and-conquer and global approaches?
All of the work in this study concerns maximum parsimony, but divide-and-conquer
methods, including the DCMs, are equally applicable to maximum likelihood—thus
a study of DCM-ML approaches remains to be conducted. Finally, neither MP nor
ML is the actual goal of phylogenetic reconstruction: both are surrogate optimization
criteria for the real goal, which is topological accuracy (unmeasurable in absence of
knowledge of the “truth”). Our simulations studies indicate that, while large decreases
in parsimony scores or large increases in likelihood scores do translate into increase
topological accuracy, small changes in these scores around near-optimal values have a
nearly random effect on topological accuracy; this observation suggests that it may not
be needed to spend additional days of computation to improve a score by 0.01% (since
such an “improvement” could lead to a topologically worse tree) and thus that heuristic
computations may be terminated earlier.

We conclude with a caveat: in reconstructing a very large tree, such as the Tree
of Life with many millions of taxa, we may not have the luxury of choosing our
decompositions—the data-gathering process may have made that choice for us, at least
at the higher taxonomic levels. For instance, significant data may be missing for many
taxa, so that it is not feasible to analyze all the sequences all at once. In such a case,
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the dataset decomposition will be given to us and thus will not be adjustable (except
for the breaking of large clusters). We thus need a large-scale evaluation of supertree
methods in their traditional use.
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[10] P. L. Erdős, M. Steel, L. Székély, and T. Warnow. A few logs suffice to build
almost all trees– I. Random Structures and Algorithms, 14:153–184, 1997.

[11] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolution, 17:368–376, 1981.

[12] L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-
complete. Advances in Applied Mathematics, 3:43–49, 1982.

[13] P. Goloboff. Analyzing large data sets in reasonable times: solution for composite
optima. Cladistics, 15:415–428, 1999.

[14] M. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press Inc,
1980.

[15] A. D. Gordon. Consensus supertrees: the synthesis of rooted trees containing
overlapping sets of leaves. Journal of Classification, 3:335–348, 1986.

[16] D. Hillis, C. Moritz, and B. Mable. Molecular Systematics. Sinauer Pub., Boston,
1996.

[17] D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast-converging method
for phylogenetic tree reconstruction. Comput. Biol., 6:369–386, 1999.

[18] D. Huson, L. Vawter, and T. Warnow. Solving large scale phylogenetic problems
using DCM2. In ISMB 99, pages 118–129, 1999.

[19] K. E. Jones, A. Purvis, A. MacLarnon, O. R. P. Bininda-Emonds, and N. B. Sim-
mons. A phylogenetic supertree of the bats (mammalia: Chiroptera). Biological
Reviews, 77(2):223–259, 2002.

[20] M. Kimura. A simple method for estimating evolutionary rates of base substitu-
tions through comparative studies of nucleotide sequences. J. Mol. Evol., 16:111–
120, 1980.

[21] F.-G. R. Liu, M. M. Miyamoto, N. P. Freire, P. Ong, and M. Tennant. Molec-
ular and morphological supertrees for eutherian (placental) mammals. Science,
291(5509):1786–1789, 2001.

[22] B. Maidak, J. Cole, T. Lilburn, C. P. Jr, P. Saxman, R. Farris, G. Garrity, G. Olsen,
T. Schmidt, and J. Tiedje. The RDP-II (Ribosomal Database Project). Nucleic
Acids Res, 29(1):173–4, 2001.

[23] B. D. Mishler. Cladistic analysis of molecular and morphological data. American
Journal of Physical Anthropology, 94:143–156, 1994.

25



[24] L. Nakhleh, U. Roshan, K. St. John, J. Sun, and T. Warnow. Designing fast con-
verging phylogenetic methods. In Proc. 9th Int’l Conf. on Intelligent Systems for
Molecular Biology (ISMB01), volume 17 of Bioinformatics, pages S190–S198.
Oxford U. Press, 2001.

[25] K. C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis.
Cladistics, 15:407–414, 1999.

[26] G. J. Olsen, C. R. Woese, and R. Overbeek. The winds of (evolutionary) change:
breathing new life into microbiology. Journal of Bacteriology, 176:1–6, 1994.

[27] D. Posada and K. A. Crandall. Modeltest: testing the model of dna substitution.
Bioinformatics, 14(9):817–818, 1998.

[28] A. Purvis. A composite estimate of primate phylogeny. Philosophical Transac-
tions of the Royal Society of London Series B, 348:405–421, 1995.

[29] M. Ragan. Phylogenetic inference based on matrix representation of trees. Mol.
Phylogenet. Evol., 1:53–58, 1992.

[30] K. Rice, M. Donoghue, and R. Olmstead. Analyzing large datasets: rbcL 500
revisited. Systematic Biology, 46(3):554–563, 1997.

[31] N. Saitou and M. Nei. The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

[32] D. E. Soltis, P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis,
V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen,
L. M. Prince, W. J. Kress, K. C. Nixon, and J. S. Farris. Angiosperm phylogeny
inferred from 18s rDNA, rbcL, and atpB sequences. Botanical Journal of the
Linnean Society, 133:381–461, 2000.

[33] K. St. John, T. Warnow, B. Moret, and L. Vawter. Performance study of phylo-
genetic methods: (unweighted) quartet methods and neighbor-joining. In Proc.
12th Ann. Symp. Discrete Algorithms (SODA’01), pages 196–205. SIAM Press,
2001.

[34] M. A. Steel. The maximum likelihood point for a phylogenetic tree is not unique.
Systematic Biology, 43(4):560–564, 1994.

[35] K. Strimmer and A. von Haeseler. Quartet puzzling: A quartet maximum likeli-
hood method for reconstructing tree topologies. Molecular Biology and Evolu-
tion, 13(7):964–969, 1996.

[36] D. L. Swofford. PAUP*: Phylogenetic analysis using parsimony (and other meth-
ods), 2002. Sinauer Associates, Underland, Massachusetts, Version 4.0.

[37] T. Warnow, B. Moret, and K. St. John. Absolute convergence: True trees from
short sequences. In Proc. 12th Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA’01), pages 186–195. SIAM Press, 2001.

26



[38] J. Wuyts, Y. V. de Peer, T. Winkelmans, and R. D. Wachter. The European
database on small subunit ribosomal RNA. Nucleic Acids Res, 30:183–185, 2002.

[39] Z. Yang. Maximum likelihood estimation of phylogeny from DNA sequences
when substitution rates differ over sites. Mol. Biol. Evol., 10:1396–1401, 1993.

27



10 30 50 70 90
100

120

140

160

180

200

220

240

260

Subproblem size as a % of the dataset size

M
P

 s
co

re
 a

s 
a 

%
 o

f t
he

 D
C

M
2+

S
C

M
(d

0)
 M

P
 s

co
re

Biological dataset #2: 328 taxa, 946 characters

Coverage = 2
Coverage = 3
Coverage = 4
Coverage = 5

Figure 18: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #1 of 328 taxa and 946 sites

Appendix: Detailed Experimental Results
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Figure 19: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #2 of 439 taxa and 2,461 sites
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Figure 20: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #3 of 476 taxa and 1,008 sites
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Figure 21: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #4 of 500 taxa and 1,398 sites
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Figure 22: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #5 of 556 taxa and 2,402 sites
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Figure 23: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #6 of 567 taxa and 4,592 sites
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Figure 24: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #7 of 590 taxa and 1,962 sites
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Figure 25: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #8 of 695 taxa and 2,550 sites
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Figure 26: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #9 of 816 taxa and 1,253 sites
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Figure 27: Comparison of RANDOM (averaged over 5 runs) with various subproblem
sizes and coverages on biological dataset #10 of 854 taxa and 937 sites
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Table 1: Comparison of DCM-based methods and RANDOM on biological dataset #1
of 328 taxa and 946 sites. Also shown are statistics on the subproblem decompositions
from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 77.4% (254), max subproblem size = 87.5% (287)
#subproblems = 6, overlap size = 73.2% (240)
DCM2(d4): Avg subproblem size = 88.2% (289), max subproblem size = 91.8% (301)
#subproblems = 3, overlap size = 82.3% (270)
DCM1(d0): Avg subproblem size = 27.4% (90), max subproblem size = 86% (282)
#subproblems = 28
Dataset: max p-distance = 0.524

Methods MP score Total time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 12759 28623.62 12.47 28592.15 2 17 73.2%
DCM2+MRP(d0) 12779 32741.62 12.47 28592.15 4124 13 87.7%
DCM2+SCM(d4) 12749 15539.88 18.69 15500.19 1 20 77.8%
DCM2+MRP(d4) 12764 19598.88 18.69 15500.19 4065 15 88.9%
DCM1+SCM(d0) 12754 35010 19 34918 53 20 58.2%
DCM1+MRP(d0) 12760 40465 19 34918 5508 20 3.1%
RANDOM(avg) 12810.6 33839.61 1.61 29558.8 4262.6 16.6 82.6%

Table 2: Comparison of DCM-based methods and RANDOM on biological dataset #2
of 439 taxa and 2,461 sites. Also shown are statistics on the subproblem decomposi-
tions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 81% (355), max subproblem size = 98.6% (433)
#subproblems = 3, overlap size = 71.3% (313)
DCM2(d4): Avg subproblem size = 98% (430), max subproblem size = 98.4% (432)
#subproblems = 2, overlap size = 96% (421)
DCM1(d0): Avg subproblem size = 43% (188), max subproblem size = 98.6% (433)
#subproblems = 4
Dataset: max p-distance = 0.649

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 41302 56195.55 15.29 56050.26 2 128 79.8%
DCM2+MRP(d0) 41345 60867.55 15.29 56050.26 4711 91 91.3%
DCM2+SCM(d4) 41294 60598.28 53.78 60428.50 1 115 83.9%
DCM2+MRP(d4) 41297 65124.28 53.78 60428.50 4549 93 88.3%
DCM1+SCM(d0) 41464 42435 28 42150 150 107 79.4%
DCM1+MRP(d0) 41297 46988 28 42150 4588 222 29.1%
RANDOM(avg) 41420.2 73013.43 2.03 68082.8 4785.6 143 87.7%
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Table 3: Comparison of DCM-based methods and RANDOM on biological dataset #3
of 476 taxa and 1,008 sites. Also shown are statistics on the subproblem decomposi-
tions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 77.6% (370), max subproblem size = 85.1% (405)
#subproblems = 4, overlap size = 70.2% (334)
DCM2(d4): Avg subproblem size = 91% (433), max subproblem size = 91.6% (436)
#subproblems = 2, overlap size = 81.7% (389)
DCM1(d0): Avg subproblem size = 39.7% (189), max subproblem size = 77.3% (368)
#subproblems = 50
Dataset: max p-distance = 0.45

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 17793 30891.94 34.98 30723.96 3 130 67.2%
DCM2+MRP(d0) 17824 36173.94 34.98 30723.96 5315 100 82.5%
DCM2+SCM(d4) 17784 20599.19 39.97 20430.22 1 128 71.5%
DCM2+MRP(d4) 17797 25751.19 39.97 20430.22 5181 100 79.3%
DCM1+SCM(d0) 17829 179992 39 179662 149 142 43.6%
DCM1+MRP(d0) 17829 195248 39 179662 15476 71 45.7%
RANDOM(avg) 17891.2 41460.78 2.18 35169 6164 125.6 71.7%

Table 4: Comparison of DCM-based methods and RANDOM on biological dataset #4
of 500 taxa and 1,398 sites. Also shown are statistics on the subproblem decomposi-
tions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 86% (430), max subproblem size = 91.2% (456)
#subproblems = 3, overlap size = 79% (395)
DCM2(d4): Avg subproblem size = 91.7% (459), max subproblem size = 94.4% (472)
#subproblems = 3, overlap size = 87.6% (438)
DCM1(d0): Avg subproblem size = 31.8% (159), max subproblem size = 88% (440)
#subproblems = 23
Dataset: max p-distance = 0.184

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 16535 19999.6 36.90 19860.70 2 100 73.0%
DCM2+MRP(d0) 16563 25301.6 36.90 19860.70 5312 92 90.1%
DCM2+SCM(d4) 16538 28230.84 68.10 28057.74 4 101 71.8%
DCM2+MRP(d4) 16567 33581.84 68.10 28057.74 5363 93 88.9%
DCM1+SCM(d0) 16564 49709 54 49375 211 69 61.6%
DCM1+MRP(d0) 16545 57312 54 49375 7831 52 14.5%
RANDOM(avg) 16576.2 26125.91 2.31 20741.4 5285.4 96.8 85.6%
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Table 5: Comparison of DCM-based methods and RANDOM on biological dataset #5
of 556 taxa and 2,402 sites. Also shown are statistics on the subproblem decomposi-
tions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 70.1% (390), max subproblem size = 86.7% (482)
#subproblems = 5, overlap size = 62.6% (348)
DCM2(d4): Avg subproblem size = 94.1% (523), max subproblem size = 96.9% (539)
#subproblems = 3, overlap size = 91.2% (507)
DCM1(d0): Avg subproblem size = 32% (177), max subproblem size = 82.4% (458)
#subproblems = 41
Dataset: max p-distance = 0.31

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 17547 60306.79 96.89 60070.90 5 134 51.9%
DCM2+MRP(d0) 17544 67844.79 96.89 60070.90 7556 121 66.4%
DCM2+SCM(d4) 17525 65932.1 105.27 65628.83 3 195 53.0%
DCM2+MRP(d4) 17557 71575.1 105.27 65628.83 5718 123 73.6%
DCM1+SCM(d0) 17651 160336 109 159916 217 94 36.9%
DCM1+MRP(d0) 17562 173806 109 159916 13645 136 65.3%
RANDOM(avg) 17686.2 69820.87 3.47 62132.8 7524.8 159.8 51.4%

Table 6: Comparison of DCM-based methods and RANDOM on biological dataset #6
of 567 taxa and 4,592 sites. Also shown are statistics on the subproblem decomposi-
tions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 55.8% (317), max subproblem size = 98.9% (561)
#subproblems = 2, overlap size = 11.6% (66)
DCM2(d4): Avg subproblem size = 94.2% (534), max subproblem size = 98.9% (561)
#subproblems = 2, overlap size = 88.4% (501)
DCM1(d0): Avg subproblem size = 19.4% (110), max subproblem size = 98.9% (561)
#subproblems = 6
Dataset: max p-distance = 0.15

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 45105 20922.03 84.38 20754.65 1 83 92.7%
DCM2+MRP(d0) 45106 26530.03 84.38 20754.65 5613 78 93.4%
DCM2+SCM(d4) 45107 37622.8 191.99 37310.81 1 119 83.5%
DCM2+MRP(d4) 45134 43255.8 191.99 37310.81 5659 94 93.8%
DCM1+SCM(d0) 45125 20668 114 20187 293 74 93.1%
DCM1+MRP(d0) 45113 26532 114 20187 6074 157 36.3%
RANDOM(avg) 45478.2 28404.19 2.39 21347.8 6980.8 73.2 58.1%
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Table 7: Comparison of DCM-based methods and RANDOM on biological dataset #7
of 590 taxa and 1,962 sites. Also shown are statistics on the subproblem decomposi-
tions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 76.3% (450), max subproblem size = 93.7% (553)
#subproblems = 3, overlap size = 64.4% (380)
DCM2(d4): Avg subproblem size = 88.2% (521), max subproblem size = 97.5% (575)
#subproblems = 3, overlap size = 82.4% (486)
DCM1(d0): Avg subproblem size = 36.8% (217), max subproblem size = 92% (540)
#subproblems = 19
Dataset: max p-distance = 0.382

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 25011 34843.18 105.13 34603.05 3 132 70.0%
DCM2+MRP(d0) 25070 40608.18 105.13 34603.05 5818 82 82.3%
DCM2+SCM(d4) 25010 47732.88 33.33 47546.55 3 150 62.7%
DCM2+MRP(d4) 25065 53442.88 33.33 47546.55 5767 96 81.4%
DCM1+SCM(d0) 25037 90095 161 89473 296 165 58.4%
DCM1+MRP(d0) 25041 98619 161 89473 8750 235 24.5%
RANDOM(avg) 25103.6 44648.14 2.74 38274.2 6256.2 115 72.8%

Table 8: Comparison of DCM-based methods and RANDOM on biological dataset #8
of 695 taxa and 2,550 sites. Also shown are statistics on the subproblem decomposi-
tions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 49.5% (344), max subproblem size = 99.6% (692)
#subproblems = 3, overlap size = 24.3% (169)
DCM2(d4): Avg subproblem size = 96% (667), max subproblem size = 99.3% (690)
#subproblems = 5, overlap size = 95% (660)
DCM1(d0): Avg subproblem size = 32.5% (226), max subproblem size = 99.3% (690)
#subproblems = 5
Dataset: max p-distance = 0.219

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 12837 50778.14 49.52 50513.62 2 213 71.7%
DCM2+MRP(d0) 12845 58460.14 49.52 50513.62 7729 168 78.8%
DCM2+SCM(d4) 12856 191558.16 418.27 190843.89 8 288 40.0%
DCM2+MRP(d4) 12860 200001.16 418.27 190843.89 8568 171 76.2%
DCM1+SCM(d0) 12897 50628 127 49658 504 339 56.6%
DCM1+MRP(d0) 12863 58674 127 49658 8472 417 15.6%
RANDOM(avg) 13711.4 48856.73 2.33 32753 15749.8 351.6 63.6%
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Table 9: Comparison of DCM-based methods and RANDOM on biological dataset #9
of 816 taxa and 1,253 sites. Also shown are statistics on the subproblem decomposi-
tions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 36% (296), max subproblem size = 60% (486)
#subproblems = 3, overlap size = 4.4% (36)
DCM2(d4): Avg subproblem size = 85% (693), max subproblem size = 85% (696)
#subproblems = 2, overlap size = 70% (571)
DCM1(d0): Avg subproblem size = 21.4% (175), max subproblem size = 52% (424)
#subproblems = 10
Dataset: max p-distance = 0.46

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 30138 23670.04 126.01 23277.03 1 266 68.0%
DCM2+MRP(d0) 30188 42827.04 126.01 23277.03 18997 427 27.2%
DCM2+SCM(d4) 30157 62627.64 185.22 62041.42 3 398 59.5%
DCM2+MRP(d4) 30209 72896.64 185.22 62041.42 10440 230 72.8%
DCM1+SCM(d0) 30337 41298 124 40495 308 371 53.6%
DCM1+MRP(d0) 30213 55686 124 40495 14676 391 26.7%
RANDOM(avg) 33038 49859.5 1.50 27573 21958 327 44.0%

Table 10: Comparison of DCM-based methods and RANDOM on biological dataset
#10 of 854 taxa and 937 sites. Also shown are statistics on the subproblem decompo-
sitions from DCM1 and DCM2, and the maximum p-distance of the dataset

DCM2(d0): Avg subproblem size = 90.3% (771), max subproblem size = 93.4% (798)
#subproblems = 3, overlap size = 85.5% (730)
DCM2(d4): Avg subproblem size = 84% (717), max subproblem size = 98.8% (844)
#subproblems = 2, overlap size = 68% (580)
DCM1(d0): Avg subproblem size = 27.1% (232), max subproblem size = 93.4% (798)
#subproblems = 35
Dataset: max p-distance = 0.39

Methods MP score Time of each component in seconds Tree resol.
Total Decomp. Base Merge OTR before OTR

DCM2+SCM(d0) 23029 102941.36 456.41 102017.95 6 461 66.3%
DCM2+MRP(d0) 23057 113200.36 456.41 102017.95 10469 257 88.0%
DCM2+SCM(d4) 23035 58571.12 235.88 58012.24 3 320 69.3%
DCM2+MRP(d4) 23061 68801.12 235.88 58012.24 10314 239 82.5%
DCM1+SCM(d0) 23087 238123 547 235959 986 631 54.8%
DCM1+MRP(d0) 23059 267326 547 235959 30396 424 60.0%
RANDOM(avg) 23064 116956.9 6.70 105423.2 11169 358 83.8%

38


