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Abstract

Phylogenetic trees are topological depictions of evolutionary histories that in-

volve birth and death events. This tree model inherently assumes that active lin-

eages evolve independently from all others. However, interspecific events such as

hybridization and lateral gene transfer are known to occur, resulting in an intermin-

gling of DNA information. In essence, this creates a bridge between two previously

independent lineages. By definition, these processes are fundamentally dependent

on other contemporary species and lead to a more complex history, which is often

referred to as a phylogenetic network. Although tree topology software is abundant

and mature, algorithms and applications that permit and address issues specific to

phylogenetic networks are less common and still in their infancy.
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The primary contributions of this work include modelling phylogenetic networks

and algorithms for their reconstruction and characterization. This involved the de-

velopment of three new applications: NetGen for simulating source topologies,

NetReconstruct for inferring histories, and NetMeasure for quantitatively

comparing and categorizing network features. Phylogenetic networks are created

by extending the traditional birth-death model to include hybridizations. This ap-

proach is unique in that the DNA sequences are evolved in conjunction with the

topology, thereby permitting the outcome of hybrid events to be influenced by ge-

netics. By utilizing the sequence information from NetGen’s final active lineages,

a proposed history containing a single-diploid-hybrid event is inferred. This recon-

struction process segments the species into sets for which subtrees are created and

then merged to form the final topology. Finally, hybrid events in a topology can

be quantitatively characterized with three new measures and two networks can be

compared using the existing tripartition method.

Our results show that tripartition scores for this reconstruction model improve

when the number of current day species increases and the branch lengths of the

topology shorten. Additionally, topologies containing a single ancient hybridization

event (one occurring early in time) result in reconstructions more analogous to their

source histories as compared to those with a hybrid event having occurred more

recently. This work supports the ongoing effort of phylogenetic reconstruction in

fields such as pharmacology, genetics, and systematics.
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Chapter 1

Introduction

This first chapter imparts the preliminaries for the research presented in this docu-

ment. Section 1.1 gives a cursory overview of phylogenies and in particular, phylo-

genetic networks. Scope and related work, which serve to motivate and further the

context of this effort, are outlined in Section 1.2. Finally, Section 1.3 contains the

overview of this dissertation.

1.1 Phylogenetic Overview

Phylogenies are evolutionary histories inferred and studied by systematists,biologists

who study biological diversity [25]. However, the use of phylogenies is not limited to

the field of systematics and applications range from studying pathogens (e.g. [16])

to human genetics (e.g. [65]). A sample phylogeny, based upon [80], is annotated in

Figure 1.1 and illustrates the well known fact that chimpanzees are closer primate

relatives to humans than gorillas.

Traditionally, phylogenies at the interspecific (across species) level, such as the

example in Figure 1.1, are accepted to have a tree structure – meaning lineages are
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chimpanzeehumangorillaorangutan

extant species
(leaves)

most recent common
ancestor (mrca) of

humans and
chimpanzees

ancestral

node
(internal)

Tree

Rooted
Phylogenetic

root

Figure 1.1: A sample rooted phylogenetic tree of primates based upon information
from [80]. The term “tree” refers to the complete figure where the top node is the
“root” and the extant species are the bottom “leaves.” The most recent common
ancestor (mrca) refers to the nearest common ancestor of any number of nodes.
Branching patterns depicted in this type of representation provide information about
evolutionary proximity and relationships among the species.

independent of each other and are arranged in a hierarchical fashion. However, it

is known that in certain domains this assumption of independence is inaccurate, as

interactions among two or more lineages do occur [9, 14, 27, 29, 35, 41]. Broadly,

these interactions are referred to as “reticulate events” and at the interspecific level

can be further categorized as “lateral gene transfer” or “hybridization.” Typically

the process of lateral gene transfer is found in prokaryotes (organisms whose cells do

not contain a separate nucleus, such as bacteria) and its process is characterized by

one lineage “donating” DNA to another. With hybridization (occurring in eukaryotes

such as plants), two different lineages combine their DNA in a manner such that the

offspring forms a new lineage that is often capable of sexually reproducing.

Topologies containing one or more of these reticulate situations (see Figure 1.2)

are frequently referred to as phylogenetic networks. This terminology comes from

graph theory and is applied to graphs containing at least one node with more than

one “inbound” edge. Biologists dedicated to population genetics have an intraspe-
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C and D forming node E
hybridization between nodes

lateral gene transfer from node A to node B

C DEBA

Figure 1.2: Two simple phylogenetic networks. On the left the green edge depicts a
lateral gene transfer event and a hybridization is shown on the right.

cific, within species, focus and have a head start on techniques for lineage interaction,

as their domain has historically included the reticulate evolutionary behavior of in-

dividual organisms (e.g. chromosomal recombination [54] and mating [32]1). As the

mechanisms by which reticulation occurs for “within” versus “across” species differ,

models and methods are usually designed for either the intraspecific or interspecific

level. Since trees are the common representation for interspecific evolutionary his-

tories, there is a need for algorithms, techniques, and tools to address reticulate

evolution at this broader level, which is the focus of this dissertation.

By reconstructing phylogenies, biologists gain two important pieces of information

– order of speciation and branch lengths. However, it is difficult to know these facts

with certainty for real biological data. Therefore, when developing and assessing

reconstruction methods, it is common practice to work with a framework such as that

depicted in Figure 1.3. Using a “source” history (either simulated or constructed by

hand), the resulting extant taxa2 are provided as input to a reconstruction algorithm,

which in turn generates a “proposed” evolutionary history by inferring a tree from the

1Chromosomal recombination is also known as meiotic recombination. The terms sexual
recombination and pedigree are often used in lieu of the term mating.

2The term “taxa” here is used to mean a generic collection of items. Depending on
the scope of a phylogeny, a taxon may represent a single species or a single individual of
a species. Recall from Figure 1.1 that the term “extant” refers to present-day taxa as
opposed to ancestral ones.
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“leaves” to the “root” with each internal node representing an ancestral species. The

two phylogenies can then be quantitatively compared to evaluate how topologically

similar they are.

Network Comparison
Techniques

GGCT AATCAGTC

AATTAGCT

AAGT

AGTT

GGCT AATCAGTC

AATTAGCT AGTT

AAGT

Simulator Generated
Phylogenetic Network

Proposed
Phylogenetic Reconstruction

Figure 1.3: The three phases of phylogenetic algorithm development – simulation,
reconstruction, and comparison.

The direct benefit of using this framework is that the source topology, evolution-

ary model, and branch lengths are known. Hence, quantitative and objective com-

parisons between the two topologies can be performed, in addition to developing and

exploring reconstruction algorithms for a potentially diverse set of well-characterized

sources. However, the weakness of this technique is that a good reconstruction is only

a measure of how well one can reproduce simulated networks. Typically, a recon-

struction algorithm that is capable of inferring histories similar to simulated source

topologies, is further validated by biologists using an extant data set for which the

relationships are accepted or known.

There are two general weaknesses of artificial topologies – inadequate models of
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sequence evolution and the generation of branches and their lengths. Both of these

topics as they relate to trees are discussed further in Subsection 1.2.2. Furthermore,

simulations that do not include the possibility of reticulation, or poorly model it, will

fail to produce realistic evolutionary histories for those domains where events such as

hybridization and lateral gene transfer are known to occur. These potential limita-

tions motivate designing a simulator that generates networks arising from real-world

factors. Thus, reconstruction algorithms that recreate these simulated networks will

arguably yield better results when attempting to infer networks from true biological

data.

1.2 Scope and Related Work

Phylogenetic networks with hybrids are the focus of this work. Although an effort

was made to develop algorithms and software applicable to hybrids in general, por-

tions of the research demanded a more narrow scope. In these situations, diploid

hybridizations, which are defined in Subsection 1.2.1, were chosen. Subsection 1.2.2

covers existing simulation, comparison, and reconstruction techniques, which are fre-

quently oriented to tree topologies. Finally, previous reticulate research and how it

relates to this work, is reviewed in Subsection 1.2.3.

1.2.1 Hybridization

Hybridization is an evolutionary event known to occur in many groups of organisms

and has been studied for centuries. In his 1959 article entitled “The role of hybridiza-

tion in evolution” [74], Stebbins states that Kölreuter conducted the first systematic

hybrid experiments from 1761 to 1806. Although hybrids do occur in the animal

kingdom (e.g. [14]), biologists working with plants are fortunate to have multiple
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instances that either occur naturally or can be created in the laboratory [62, 81].

With this abundant supply of sources and new laboratory techniques with increased

data throughput [81], knowledge about the nature of hybrids can be advanced.

The term “hybrid” refers to the sexual crossing of two different lineages that

produce a new offspring, the first generation of which is called “F1.” Within biology,

the general term hybridization can be used for both “within” and “between” species

crosses. Hybrid speciation is a more specific term used to describe lineages that are

not only the result of two different species, but have the capability of reproducing

and existing distinctly from their parents beyond the F1 generation [35]. It is these

interspecific, persistent lineages, resulting from hybrid speciation that are the focus

of this work. However, for the sake of simplicity, we will frequently refer to them as

“hybrids” throughout this document.

Two types of hybridizations are diploid and polyploid, referring to the ploidy level

of the produced offspring. The number of sets of chromosomes found in an organism

defines its ploidy level. (For example, humans are diploid organisms having 23 pairs

of chromosomes, for a total count of 46 chromosomes.) Each chromosome is a strand

of DNA and can be represented as a string of nucleotide bases using the letters A,

G, C, and T for adenine, guanine, cytosine, and thymine respectively [72]. The

chromosomes of diploid organisms are paired, and each of the two members is often

referred to as a chromosomal homologue [37].

A diploid hybrid is the offspring formed from two different, diploid parental

species. Despite the differing parental lineages, the regular sexual process proceeds,

where each parent randomly contributes one chromosome from each of its pairs to

the new offspring. Since each parent only contributes one chromosome from each

of its chromosome pairs, both parents must have the same number of chromosomes.

If they have different numbers of chromosomes, at least one chromosome in the hy-

brid will be unpaired, which will almost always produce a sterile hybrid even if it is
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viable [37]. In contrast, polyploid hybrids inherit all of the chromosomes from the

two different parents. It is possible in this scenario for the parents to have different

numbers of chromosomes. As each parent provides their complete set of chromo-

somes to the hybrid, different levels of polyploidization are possible. For example,

polyploid hybridization between two diploid species results in a tetraploid, and poly-

ploidization between a tetraploid and a diploid species results in a hexaploid [37].

Examples of both types of sequence inheritance, when the two different parents have

a single pair of chromosomal homologues, are illustrated in Figure 1.4. Note that for

diploid hybrids, the chromosome contributed by each parent to form the new pair of

homologues in the offspring is random. Therefore, for each new pair of homologues

in the diploid hybrid, there are four possible combinations.3

AGTC
AGCT
TAGT

TCGT
TAGT

AGCT

Diploid Hybridization

AGTC
AGCT TCGT

TAGT

AGCT
TAGT
AGCT
TAGT

Polyploid Hybridization

Figure 1.4: In the diploid case, each parent randomly contributes one of its chromo-
somes, from every pair, towards the formation of the hybrid’s set of chromosomes.
In contrast, polyploid hybrids inherit all of the chromosomes from both parents.

Although both types of hybridizations are known to occur, there are many more

documented cases of polyploid than diploid events [23, 50]. Nonetheless, we chose

to focus our immediate efforts on diploid hybridization. As compared to polyploids,

diploids are more constrained and more closely parallel the typical mating process

found at the intraspecific level. These features reduce the complexity and allow for

the possibility of comparing and extending our work to intraspecific reticulation.

3Even more than four possible outcomes for a pair of new homologues exist when other
evolutionary processes such chromosomal recombination (“crossing over”) are taken into
account.
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1.2.2 Existing Phylogenetic Techniques

Simulation models are often classified as deterministic versus stochastic [67] and

continuous-time versus discrete-event [5]. Deterministic models are characterized by

fixed relationships [67]. This approach is beneficial when studying a system that has

no random components and changes over a period of time. Stochastic simulations

allow for variation of behavior due to the use of random numbers [59]. With a

simulator of this type, one can produce a new outcome for the same time period

and set of input parameters, by simply changing the random number seed. This

permits the investigation of average behavior over multiple executions. Discrete-

event simulations lend themselves to systems where there is a finite number of changes

over a period of time [5, 67], but the different types of events and their potential

interactions may be sufficiently complex to warrant a method other than one based

on equations. These are in contrast to continuous-time models where differential

equations are used to model an infinite number of changes in a limited time span [5].

When studying the behavior of a system with distinct event types, a stochastic,

discrete-event based simulator is often a reasonable approach in terms of modular

implementation and desired analysis of average behavior.

The birth-death model is a common population model used by biologists [59]. In

searching for patterns to explain the number of species per genus in real data sets,

Yule [85] developed a birth-only, exponential model for speciation [1]. Despite Yule’s

assumptions [21, 85], Yule states that the agreement of the predicted and actual

data is “better than one has any right to expect” [85]. Whether this representation

is used for studying the number of species or individuals, two limitations are that:

1) predicted growth cannot continue indefinitely and 2) an assumption of relative

independence exists [21, 59]. Death/extinction events are commonly integrated with

the Yule process, thus forming the well-established birth-death model. Each lineage

is modelled as a Poisson process, which is characterized by being independent with
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exponentially distributed intervals [18, 66]. For the birth-death model, the expected

number of lineages at time t can be derived as m(t) = n0e
(B−D)t. The mean of

the size at time t is m(t) and n0 is the initial size. The birth and death rates

are B and D respectively. This mathematical result is one technique for validating

an implementation of the birth-death model. Although not without limitations, the

birth-death model does provide, with a minimal amount of mathematical complexity,

a reasonable estimate of the change in the number of species, when studying average

behavior.

When working with a process that begins with a single species or individual and

evolves into many entities, the notions of a root and start time are straightforward.

However, when commencing with many extant taxa and working backwards in time,

a root is typically identified by use of an outgroup. By definition, an outgroup is one

or more taxa known to have a common ancestor with the other extant taxa. However,

the outgroup species is known to have diverged prior to the evolution of the most

recent common ancestor for the other extant taxa. This establishes a common point

of origin, which in turn defines the divergence history for the extant taxa [15].

In addition to the establishment of a root, there are two separate notions of time

associated with a phylogeny – evolutionary and clock based. The passage of seconds,

years, decades, centuries, etc. is known as clock time and assuming a single origin

of species, the amount of time elapsed from the origin until each current day species

is the same. However, the extent of evolutionary change a species has undergone is

referred to as evolutionary time and can vary across species. For example, in [17] it

is reported that rodents and humans, which both originate from a common ancestor,

have very different rates of evolutionary change.4 Topologies where the clock and

evolutionary time are considered equal, or even proportional to one another, are

referred to as ultrametric. Non-ultrametric topologies are where the clock time is

4Humans are shown to evolve more slowly than rodents based upon amino acid substi-
tutions [17].
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consistent across lineages, as it must, but evolutionary time is allowed to vary.

A related, but separate, issue related to ultrametricity is event rates. Typically

phylogenetic models employ a constant rate approach where all lineages share the

same rate for a given event. However, some families of species are known to speciate

more frequently than others, which cannot be captured with a model requiring all

lineages to have the same birth rate. For example, [40] contrasts the cichlids (a type

of fish) known to have speciated many times in the last 12,000 years to the species

of skunk cabbage found in Asia and North America that were separated millions of

years ago and have not speciated at anywhere near the same rate. Variable rate

models such as [22] permit the investigation of such phenomena.

Although phylogenies can be simulated or reconstructed using morphological data

(such as shape and form), the current trend is to use DNA sequences. Chromosomes

are comprised of DNA nucleotide sequence information with each location in the

string being referred to as a site. Although it is possible to study sequence evolution

at higher levels such as protein and gene order [78], our interest is at the nucleotide

level.

Given an evolutionary branch length and a starting DNA sequence, there are

a variety of models that can be used to predict the resulting sequence. Some of

the most common models include: Jukes-Cantor (JC), Kimura two-parameter model

(K2P), Hasegawa-Kishino-Yano model (HKY85), and Felsenstein 1984 (F84) [78].

Two limiting assumptions with these models are independent sites and a consistent

rate across sites. This means they assume that each site within a DNA sequence

evolves at the same rate as all the others and without being influenced by their

own evolutionary history or that of other sites [15].5 They also do not account for

5Note that even if a distribution is used to allow for individual sites in the same sequence
to evolve at different rates, a “consistent rates across sites” limitation is still present if the
same distribution is used for all sequences in the model. For example, if the employed
distribution favors the sites located in the first half of a sequence to evolve more slowly
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insertions and/or deletions of sites (commonly called “indels”) to/from the sequence.

Although [15, 82] list more complex models of evolution that compensate for these

assumptions, and at least one such model is implemented [75], it is typically the

simpler models that are implemented as components of simulation or reconstruction

applications [10, 26, 58, 84].

Phylogenetic trees are often compared by calculating the Robinson-Foulds (RF)

distance [63]. This metric captures the number of incorrect edges between two topolo-

gies. It is covered in Chapter 3 as it is the basis for the Extended Robinson-Foulds

measure [43], which we make use of in our reconstruction experiments. Another type

of comparison used in phylogenetic analysis is the distance between two sequences.

When substitutions, and not other operations such as insertions and deletions, are

the only option for altering a string, the Hamming distance is a common distance

measure. It is defined as the number of indices that do not agree (see Figure 1.5).6

TGATTC
TGATTC

Hamming distance = 0 Hamming distance = 3

G AC
G ACTC

CT
A
T

Figure 1.5: Hamming distances for two pairs of DNA sequences. The pair on the
left has a Hamming distance of 0 indicating the sequences match and the pair on the
right has a Hamming distance of 3.

than those in the second half, this behavior will exist for all branches, thus leading to the
same problem as before, but at a higher level of data [82].

6Hamming originally applied this pairwise distance to sequences of 0’s and 1’s repre-
senting vertices of an n-dimensional, unit cube [20]. However, the definition he provided
in the seminal paper [20]: “Thus we define the distance D(x, y) between two points x and
y as the number of coordinates for which x and y are different.” does not preclude other
alphabets (characters) for the strings. For example, page 214 of [15] states “...Hamming
distance (the observed uncorrected number of differences between two sequences)...” It is
this latter, less restrictive definition of Hamming distance that we will use in this work.
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Sequence distance data can be used as the basis of tree reconstruction algorithms.

Neighbor joining is a common distance method where taxa are repeatedly paired to

form ancestral nodes of the inferred tree according to the minimum distances of their

sequences. Due to its simplistic approach and underlying assumptions, this method

does not assign sequences to the internal nodes and is not appropriate under all

circumstances, however it is one of the least CPU intensive methods available [19, 78].

The two other broad categories of reconstruction techniques, in addition to that

of distance data, are maximum parsimony and maximum likelihood.7 The assump-

tion that evolutionary changes occur in the most efficient manner, namely the fewest

alterations to the DNA sequences, underlies maximum parsimony approaches. Find-

ing the most parsimonious tree is NP-hard [72]. As the number of possible tree

topologies grows rapidly for a given number of extant taxa (e.g. over 2x106 pos-

sibilities for 10 extant taxa and 2x10182 for 100 extant taxa [19]), identifying the

most parsimonious one(s) is a computationally expensive task, even with the aid

of good heuristics. However, this approach does generate the sequence information

for the proposed internal/ancestral nodes, which is an advantage for some biolog-

ical studies [42]. A related problem is to assign sequences to internal nodes of a

given topology in the most parsimonious fashion. This is known as the Fitch small

parsimony problem [11, 15, 78] and is solvable in polynomial time.

The third category of techniques falls under maximum likelihood. These methods

are based on the statistical assessment of how likely the provided aligned sequences

are to be observed, under an assumed model of sequence evolution [78]. On average,

finding the most likely tree is more computationally expensive than finding the most

parsimonious one [42], and like maximum parsimony, is NP-hard [64]. However for

small sets of extant taxa, this approach is preferred often by biologists because it

performs as well as or better than other methods, even when using shorter sequence

7The reader is referred to [15] and [78] for more detailed, yet still accessible, reviews of
reconstruction techniques.
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lengths [78].

With maximum parsimony and maximum likelihood optimally solvable for only

small numbers of extant taxa [15, 19], and as greater quantities of DNA informa-

tion become available, the need for reconstruction algorithms addressing larger sets

of species and/or longer periods of evolutionary time has become more impera-

tive.8 Three separate research efforts addressing these questions are GRAPPA [4],

GARLI [86], and RAxML [73]. The GRAPPA work is focused on reconstructing

evolutionary histories using gene-order data, which is a higher level of DNA informa-

tion as compared to protein strings or individual bases at the nucleotide level. The

benefit of this approach is that rearrangements of DNA sequences usually evolve at a

slower pace than at the nucleotide level and greater amounts of evolutionary time can

be investigated [78]. The GARLI and RAxML tools perform maximum likelihood

reconstructions and both have sequential and parallel implementations. Various al-

gorithmic and performance improvements have allowed them to be successful on data

sets with over 500 extant taxa [73, 86].

Techniques that merge multiple topologies and quantify the amount of confidence

in subtrees are also critical to phylogenetic efforts. As maximum likelihood and max-

imum parsimony techniques in particular can return more than one tree topology

with an optimal, or near-optimal score, there is a need to be able to synthesize the

information into a single topology. Common consensus tree algorithms are majority-

rule and strict consensus [15]. However alternative techniques that seek to identify

common structure across reconstructed trees have also been investigated [13, 52].

A separate technique for evaluating a reconstructed topology is bootstrapping. By

sampling with replacement on the columns of DNA data and repeating the recon-

structions process, insight into which subtrees and evolutionary relationships persist

8Recent advances in techniques are allowing for reconstructions of larger extant taxon
sets [73], but have not yet reached the scale being pursued by projects such as AToL [3]
and CIPRES [6].

13



Chapter 1. Introduction

can be gained [19, 15].

Fortunately, there is a wide selection of tools to accomplish many of the algo-

rithmic tasks discussed above. Felsenstein maintains an extensive list of phylogenetic

software – http://evolution.genetics.washington.edu/phylip/software.html.

Although most of the software is oriented towards tree topologies, many are capable

of providing reasonably good results when applied appropriately. For aspects of our

simulation and reconstruction efforts that could be accomplished with tree-based

techniques, we considered and often chose to use existing tools. This provided the

convenience of not rewriting applications, in addition to affording potential users a

level of reliability and a sense of familiarity.

1.2.3 Prior Reticulate Work Related to this Effort

The term phylogenetic network is often loosely applied to any phylogenetic structure

that is non-tree like and can arise for reasons other than an interspecific reticulate

history. With our goals being the simulation, measurement, and reconstruction of

interspecific networks containing hybrids, we first consider in this section other ef-

forts that address or support this immediate pursuit, and then turn to intraspecific

recombination and the detection of reticulate histories.

A key component for our effort is a realistic network simulator. To date, most

interspecific, reticulate simulators have been primitive. For example, a tree topol-

ogy is created first in its entirety and then reticulate branches are added manually

(e.g. [47]), before any sequences are evolved. Furthermore, it is important to define

event rates and employ a statistical model that are appropriate for an interspecific

focus. Namely, events should be permitted to occur at any point during the sim-

ulation, not be restricted to any certain pattern, and yield reasonable numbers of
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lineages.9 As a suitable generator did not exist, we have created a new one.

No single, all-encompassing metric for quantifying the similarity between phyloge-

netic networks exists. However, the tripartition measure [43] is a leading technique

to compare the topologies of two networks. It is an extension of the well-known

Robinson-Foulds measure for trees and captures the percentage of differing internal

edges. This is a meaningful value when performing reconstructions and is applicable

to all networks whether arising from hybridizations or lateral gene transfer events.

The tripartition measure became our primary method for evaluating reconstructions.

Initial approaches for reconstructing phylogenetic networks at the interspecific

level have been adaptations of existing methods normally applied to trees. Two

techniques motivated by the concept of maximum parsimony have had different lev-

els of success. In [79], a tree topology was first reconstructed and then potential

network edges were added post-facto using a parsimony approach. According to

Tholse [79], this “heuristic appears ill-suited” as the addition of extraneous reticu-

late edges is promoted by the parsimony criterion. However, Hein [24] proposed a

different strategy for applying the parsimony criterion to networks. When restricting

the scope to cases of lateral gene transfer, with a known underlying tree, favorable

results using Hein’s approach have been reported [29]. Maximum likelihood based

techniques have also been applied to scenarios with lateral gene transfer when the

underlying tree structure is known [30]. Unfortunately, with our focus on eukaryotes

and hybrid speciation, having an underlying/starting tree topology is not a realis-

tic assumption and necessitated the development of a more complex algorithm for

reconstruction.

Population geneticists work at an intraspecific level, and although they work with

different models and parameters, they must also deal with reticulate events. Two

9Whereas an annual reproduction cycle may exist for a single species, thus motivating
a different type of model, set of rates, and expected growth for a population level study.
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such events are sexual and chromosomal recombination. Sexual recombination refers

to mating where each parent donates half of its sequences towards the creation of each

offspring. Chromosomal recombination encompasses a reciprocal exchange of DNA

known as “crossing over” and a non-reciprocal form called “gene conversion” [15].

Though operating under different model assumptions from us, Xu [83] worked to

incorporate reticulations using a least-squares approach for reconstruction purposes

at the population level. Schierup and Hein [71], as well as Posada and Crandall [56],

examine the impact of recombination, at the intraspecific level, on phylogenetic trees.

Although these efforts had different goals than ours, they did provide the seeds for

our new timing and diversity measures, as well as some of our experiments.

Simply detecting the occurrence of reticulation before attempting to reconstruct

or analyze data is an active area of research and multiple techniques have been de-

veloped at both the intra [54] and inter [27, 70] specific levels. Posada and Crandall

in [54] state that the most common approach found in the literature for detecting

recombination is based on phylogenies. One such tool is SplitsTree [27], which iden-

tifies when DNA sequence data is inconclusive for forming a tree and displays what

is known as “splits” for a given set of extant taxa. Often referred to as phylogenetic

networks, these topologies can be caused by a variety of sources including a history

of reticulate events, but also error in sampling the DNA sequences or side effects

from interpreting the data. Although an important area of research, this category of

phylogenetic network analysis is separate from our efforts.

1.3 Overview of Dissertation

This work focuses on simulating, reconstructing, and characterizing similarities be-

tween phylogenetic networks with diploid hybrids. Our first task was to develop a

network simulator for creating the topologies that would act as the initial/source,

16



Chapter 1. Introduction

phylogenetic networks. As trees are comprised of independent lineages, the tasks

of creating a topology and evolving sequences on it can be separated without any

impact on the result. However, in the real world, sequences evolve over time and be-

come intermingled across species due to reticulate events. Hence, it became a priority

to generate both a topology and its sequences in a simultaneous fashion. Unable to

find a simulator meeting these requirements we have created NetGen [46], which

is based on the traditional birth-death model [59], but incorporates hybrid events

as well as simultaneous sequences for the topology. The model design and primary

NetGen features, along with experimental results for its validation and characteri-

zation purposes are presented in Chapter 2.

Chapter 3 reviews the Robinson-Foulds distance measure for trees and its ex-

tension to phylogenetic networks [43] along with introducing three new quantitative

measures for describing reticulate nodes within a phylogenetic network. Reticulate

timing captures whether a hybrid is ancient or recent with respect to the overall

height of the network. Calculating the percent of extant taxa that are descendant

from a hybrid node, defines the reticulate impact measure, which is an integral part

of our reconstruction algorithm. And finally, the reticulate diversity measure quanti-

fies the relative topological placement of the lineages involved in the reticulate event

as either being close or divergent. Experimental results and analysis highlighting the

behavior and interaction of these measures are also discussed. The final phase of

this effort required developing a reconstruction algorithm. Restricting the effort to

networks with a single-diploid-hybrid event, NetReconstruct was designed and

implemented. The initial results are promising and Chapter 4 reviews the algorithm,

software details, and experiments exploring the model’s performance and sensitivity

to a variety of parameters.

With the foundation established for simulating, measuring, and reconstructing

networks from the earlier chapters, a case study, presented in Chapter 5, was un-
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dertaken to investigate what types of reticulate nodes have the greatest potential

to impede reconstruction efforts. Following the lead of Posada and Crandall [56]

to categorize and examine topologies with a single reticulate event, we have cre-

ated single-diploid-hybrid networks, categorized them according to our quantitative

measures of timing and diversity, and inferred histories using our reconstruction al-

gorithm. We found at the interspecific level, as Posada and Crandall reported for the

intraspecific level, that generated networks with an ancient reticulate node, one that

occurred early in the simulation, were more accurately reconstructed than those with

a recent, divergent event. Finally Chapter 6 presents the conclusions from this work

and future directions for research in the area of phylogenetic networks are covered

in Appendix C.
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Simulating Phylogenetic Networks

NetGen [46] is a phylogenetic simulator capable of producing tree and network

topologies. Moreover, the DNA sequences are generated simultaneously with the

topology. This is novel because, as in the real-world environment, sequences evolve

over time and are allowed to impact the outcome of reticulate events, whereas past

simulators assign sequences in a post-processing step [47, 49]. Creation of a realistic

network generator is a necessary prerequisite to developing and evaluating future

network-based reconstruction techniques.

In this chapter, we provide the principal motivation and design details (Section

2.1) for our simulator, NetGen. Section 2.2 summarizes results of key validation

tests, and the model’s behavior with hybrids is characterized in Section 2.3. Finally,

this extension to networks required a new text representation for capturing hybrid

nodes in topologies, which is discussed in Section 2.4.
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2.1 Network Simulator – NetGen

Traditionally, phylogenetic networks are created in a multi-phase approach depicted

in Figure 2.1. The first step is to create a tree topology using a tool such as R8S [69]

(pronounced “rates”). Next, reticulate edges and nodes (e.g. hybrids) are added

to the topology by hand. Finally, sequences are evolved to the fixed topology [47].

Another technique is to combine the first two steps into one model, which if chosen

correctly may provide a more realistic placement of reticulate events [49]. However,

neither of these cases allows for the evolving sequences to influence the subsequent

reticulate topology.

Generate Tree Topology Artificially Add Hybrid

ATGA
ATGA

Evolve Sequences Over Topology

Multi−Phased Phylogenetic Network Generation

Figure 2.1: The traditional multi-phased approach: generation of the topology, in-
troduction of hybrid events, and evolution of sequences.

Evolutionary distances are known to play a significant role in hybridization and

two lineages will hybridize only if their genetic makeups are compatible.1 One method

for assessing hybridization compatibility is to calculate sequence distance, motivat-

ing the incorporation of DNA sequence information into the simulation. However,

factors other than DNA sequences do also influence and constrain hybrid events. For

example, two parent lineages cannot hybridize unless they both co-exist at the same

time and reside in geographic proximity. Since it is not possible to incorporate all

1As discussed in Chapter 1, the hybrids of interest for this work are ones that are distinct
from their parental lineages and continue to thrive over an extended period of time.
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potential influences for hybridization into a simulator, time and DNA sequences were

given priority.

Execute Hybrid EventUpdate Sequences in
Preparation for Hybrid Event

Continue Topology and
Sequence Generation

Assign Root Sequences
and Start Topology

ATGA
ATGA

Simultaneous Topology and Sequence Generation

Figure 2.2: The simultaneous approach implemented in NetGen where the se-
quences are evolved as the topology is created as well as influence the outcome of
the topology as the hybrid decision is based upon up to date sequence information.

In an effort to create a tool that produces realistic phylogenetic networks, we

have developed NetGen. As discussed in Chapter 1, the birth-death (B − D)

model [59] generates tree topologies by assuming events occur according to a Poisson

model. The implication of this is that the birth and death events are independent

and have interarrival times that are exponentially distributed. NetGen extends

this model by introducing a new event, H , for hybridization. Prior to a lineage

undergoing a hybridization, updated sequence information is used to identify a suit-

able second parent lineage from other lineages that are currently active. Moreover,

the updated, real-time sequence information is available to influence the evolving

topology. Although the interarrival times for all three events – births, deaths, and

hybrids – remain exponentially distributed, the model can no longer be considered

strictly Poisson because the lineages do interact, thus violating the independence

requirement. In contrast to Figure 2.1, the simultaneous approach to generating

phylogenetic networks is illustrated in Figure 2.2.

Although based on the birth-death model, the source code for the simulator is

completely new and employs a modular design. As there are multiple models for
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evolving sequences and tools already exist for accomplishing this task with trees, we

chose to write an interface that interacts with Seq-Gen [58], a well-established tool

for this purpose. The event management and the hybridization portions of the model

were given extra attention as these are the novel aspects of the software. Drawing

from features of existing tree simulators, we also chose to incorporate such options as

variable rates, non-ultrametricity, and outgroups to allow for the further customiza-

tion of phylogenetic networks and greater exploration of how such parameters impact

a simulation of this nature.

2.1.1 NetGen Executable Structure

NetGen is modular and is comprised of three executables : NG, NSGW, and a

nucleotide sequence generator. NG is the primary simulation code, which creates the

phylogenetic network by processing birth, death, and hybrid events. NSGW inter-

faces between NG and the sequence generator, and is responsible for processing and

responding to sequence requests. The third piece is an independent nucleotide se-

quence generator, which provides an evolved sequence given an initial DNA sequence

and a branch length (period of time). For this task, we have chosen Seq-Gen [58],

which is a well-established sequence generator capable of employing different mod-

els of evolution.2 These three pieces, NG, NSGW, and Seq-Gen, operate sepa-

rately and communicate via pipes. With this configuration, it is easy to swap in/out

new versions of Seq-Gen as they become available and if one desires, a different

nucleotide sequence evolution tool can be employed with only the interface code

requiring modification. Moreover, NSGW is capable of assigning sequences to a

predefined topology independent of requests from NG. Although initially developed

for testing purposes, this functionality provides the capability to perform the final

2Customization options available for Seq-Gen can be specified as input to NG and will
be subsequently used when processing the sequence request.
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step of a traditional, multi-phased network generation, or simply repeated sequence

simulations for a single topology. Figure 2.3 illustrates the three executables that

comprise NetGen, their pipe interaction, and primary responsibilities.

packages and
unpackages
sequence
requests

sequence
coordination

queue management

topology:

deaths
hybrids

births

Sequence
Generator

sequences
according
to provided
parameters
(model type,
branch length,
etc.)

generates 

Seq−Gen

NetGen

NSGW

Interface

NG

Generator
Network

Figure 2.3: Components of NetGen and the flow of sequence requests and re-
sponses among them. Seq-Gen [58] is a well-established sequence generation
tool provided by a group at the University of Oxford while the other two ex-
ecutables (NG and NSGW) were developed for this research and are avail-
able in C source code, under GNU General Public License, from the author at
http://www.cs.unm.edu/∼morin/.

In general, branch lengths and sequences for a lineage are updated at event time.

Birth and death events require only an update for the specific individual lineage

being acted upon as these events occur independently of other lineages. However,

for hybridizations, the branch lengths and sequences for all active lineages must be

updated in order to ensure that the second lineage is chosen based upon current

information. Branch lengths are revised internally and sequences are altered with

external calls. NG requests a sequence update by providing a start sequence and a

branch length to NSGW. In turn, NSGW communicates with Seq-Gen and then

relays the response back to NG. Updates may occur multiple times along a single
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lineage and NetGen tracks these intermediate sequences and branch lengths in order

to guarantee that subsequent requests are performed using the correct information.

2.1.2 Simulation Events and Termination

NetGen tracks events for simulation using a global queue. An event is a generic

structure which has a type, scheduled time, and lineage to which it is assigned.

These events are processed sequentially according to their time-stamps in the queue,

and the simulation progresses as the events are completed. The queue is updated

throughout the simulation. When the lineage undergoes a birth, two new lineages are

formed and random draws, based upon the user-specified birth/death/hybrid rates,

determine their future events. These new events are placed in the global queue in

accordance with their scheduled times. Event times follow a Poisson model by having

interarrival times drawn from an exponential distribution [18]. With a global event

queue, model modification and customization is simplified when new functionality is

desired because additional event types3 can be implemented in a modular fashion.

Traditionally, two options are employed when ending a simulation. The first

involves a user-specified, predetermined end time. Given that NetGen is an event-

driven simulator, the generated networks all evolve at random rates, and fixing a

predetermined end time would result in networks with differing numbers of extant

taxa. The second option is to stop the simulation after the number of active lineages

reaches a specified size. In our case, the final end time is randomly determined to

be between the last event and the next one on the queue. This technique is most

appropriate for an event-driven simulator, but one must ensure all the branch lengths

and sequences for the remaining active lineages are evolved to the final end time.

If not, they will experience an artificial shortening in that their branch lengths and

3Some events that are not included in NetGen at this time include mass extinction
and lateral gene transfer.
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B
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D

H

B

b edca

next
event

current
time

current active
lineages

number of desired
extant taxa reachedRandomly

In This Range

Choose
Simulation
End Time

Figure 2.4: The simulation end time is determined once the desired number of extant
taxa are reached. It is chosen randomly between the last executed event and the next
scheduled event.

DNA sequence information will correspond to the time when they were created, and

not the time at which the simulation ends. This approach is presented in Figure

2.4 and reflects the real world in that the time at which a biologist is sampling

their extant taxa for a phylogeny is really a point in time between two evolutionary

events. If death events are allowed to occur, it is possible the simulation will end

prematurely, before the desired extant count is reached, as there may be no active

lineages remaining.

2.1.3 Hybridization Implementation

Extending the original birth-death model to include hybridizations required the

tracking of two separate notions of branch lengths – clock/elapsed time and evo-

lutionary time. In order for two lineages to hybridize, they must co-exist at the
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same clock time. However, as discussed in Chapter 1, clock time is not necessar-

ily equivalent, or even proportional, to evolutionary time and the two lineages may

have experienced different amounts of evolutionary change since descending from the

root. Evolutionary time dictates the amount of DNA change and is used in request-

ing sequences. Sequences for our networks are generated using Seq-Gen [58]. The

interface, NSGW, coordinates the generation of one sequence along one branch at

a time between the requesting code (NG) and the supplying code (Seq-Gen).

Intermediate
Sequences

Future Birth
Events

Proposed Hybrid
Event

Future Death
Event

Future Hybrid
Event

current timeH

H

B

B

D

ba dc

Figure 2.5: In preparation for the hybridization, all active lineages receive updated
sequences based on the amount of evolutionary time since the last update.

When a hybridization event is scheduled, it is placed in the queue and associated

with a specific lineage. When it is time to execute the hybridization, branch and

sequence information for all active lineages is updated. It is this information that

is used to identify a suitable second parent, see Figure 2.5. If the constraints are

met, and a suitable second parent is found, a hybrid offspring is created and a future

event for this new lineage is added to the queue. The lineage originally identified as

having the hybrid event receives a new event for its lineage that propagates, while

the second parent keeps its previously assigned and scheduled event on the queue

(Figure 2.6). If for some reason the hybridization event does not occur, the event is
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marked as processed, but not executed, and the original lineage is assigned a new

event which is added to the queue.

New Event Chosen
and Scheduled

Previously Chosen
Event Still Scheduled

New Event Chosen
and Scheduled

P2HP1

Figure 2.6: The result of a hybrid event are three active lineages (one from each
of the two parents and the hybrid itself). The lineage initially scheduled for the
hybridization (P1) and the newly created hybrid lineage (H) each receive new events,
while the second parent (P2) keeps its previously scheduled event already present on
the queue.

The user can customize many constraints concerning the hybridization event. As

part of the input process, the user declares the number of chromosomes and ploidy

level for the start of the simulation. Then when specifying the hybrid rate, the

user can provide further values to designate the proportions of diploid and polyploid

hybridizations, thereby allowing both types to occur in the same simulation. The

two parental lineages for a diploid hybridization must have the same number of

chromosomes and an even ploidy level. However, polyploid hybridizations involve

the merging of sequences from both parents regardless of whether the number of

chromosomes are the same. This type of event has the potential to yield tetraploids,

hexaploids, etc. Although the focus of our work here is on diploid hybridization, it

was important to provide the flexibility for the polyploid option as it is the most

common category of hybridization for eukaryotes [37, 50].

There are four user options for how the second parent in hybridization event is

chosen. Two of the options are based on sequences – minimum Hamming distance
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and an exponential function based on Hamming distance. The minimum Hamming

distance option finds the lineage with the closest set of sequences to the first parent.

In the case of a tie, one of the lineages with the minimum distance is chosen at

random to be the second parent. Although this option does not leave room for

deviation, it is motivated by the biological premise that parental lineages need to

be similar. The second option is the most realistic in that the Hamming distance

is the dominant factor, but statistical variation is allowed in order to capture other

influences (e.g. geographical proximity and tendency to hybridize), which are also

known to impact the hybrid choice. Although it is not realistic to explicitly model

these additional factors, we use a Hamming distance function approach based upon

the truncated exponential. The user specifies the average Hamming distance that

has a 1/e probability (approximately 37%) of being the distance that the second

parent will have from the first. This value defines a curve, from which a random

number is chosen from the probability distribution, that in turn defines a target

distance. Candidates with the target Hamming distance are identified and one is

chosen at random. If no potential second parent with the specified distance is found,

the search is incrementally expanded until a user specified bound is reached. Figure

2.7 shows a sample truncated exponential function where the specified value (H) is

250 and the maximum average Hamming distance is 500.

The third and fourth options for selecting the second parent of a hybrid are

random and minimum evolutionary distance. Although these techniques are not

based on sequences, they do offer the possibility of performing alternative hybrid

investigations. With random, as the name implies, a second parent is chosen at

random without consideration of the sequences involved. Although not biologically

realistic, this option is used for analysis purposes as a contrast case and to speed

the simulation when features not dependent on sequences (e.g. population growth

rate) are studied. Finally, the minimum evolutionary distance option searches for a

second parent with a minimum evolutionary branch length distance between the first
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Figure 2.7: Sample function for second parent selection based upon a user-specified
value (H) of 250. The H value identifies the curve based upon H being the average
Hamming distance between the two parents of the hybrid with a 1/e probability.
A random value from this distribution is chosen as the target average Hamming
distance. Hence, the target distance is likely to be minimal, but not necessarily to
the extreme.

parent and all other active lineages. As evolutionary distance is another measure of

lineage compatibility, this is a biologically motivated alternative to using sequence

information for selecting a hybrid’s second parent.

As previously mentioned, occurrences of hybrids can be restricted by a user-

specified threshold. For the exponential function, the threshold limits how far from

the initially selected target Hamming distance to expand the search above and below

the target value. For the minimum Hamming and evolutionary distance options, the

threshold is a value above which hybridizations cannot occur. Furthermore the user

can “cap” the number of hybrids for a simulation, thus influencing the location of

the hybrid(s). For example, having a high rate of hybridization with a limit on the

number of hybrids will lead to hybrid events occurring early on in the simulation.
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2.1.4 Additional Features

In an effort to make NetGen a robust and versatile tool, other features were im-

plemented to permit customization and a wide variety of experimentation. A seed

for the random number generator can be specified on the command line when the

simulator is executed and there are input file parameters that address: the number

and type of sequences generated, constant and variable event rates, ultrametric and

non-ultrametric branch lengths, and outgroup generation.

NetGen requires a stream of pseudorandom numbers for sequence generation

(e.g. seeds provided to Seq-Gen and making choices in “tie” situations) and choos-

ing values from a pre-defined distribution for event time selection. Although it is

recommended that the user specify a seed on the command line for repeatability

purposes, the code will create one from the clock if not explicitly provided.4 The

random number generator employed is known as Mersenne Twister [39] (version

MT19937 February 2002) and is known for its high periodicity. Source code was

available on the web and was used as a component in both NG and NSGW.

The user can set the number of chromosomes and ploidy level, as well as the

length to be used for the root node. If desired, one can specify the DNA sequences

to be assigned to the root node as well. The evolution of sequences is handled by

Seq-Gen, and options that specify certain evolutionary models and parameters to

that software can be specified as input to the NetGen simulation.

The default rate assignment is constant, meaning that all lineages in the sim-

ulation will have the same set of rates (birth, death, and hybrid) as specified on

input. However, the user can opt for variable rates where each lineage is assigned

its own set based on averages and variances provided. Another option is to create

4Whether specified by the user or generated based on the clock, the random number
seed is reported in the output summary.
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a non-ultrametric network, which means the extant taxa will not all be equidistant

from the root in terms of evolutionary branch lengths. (The default is an ultramet-

ric network where evolutionary branch lengths are equidistant.) This is achieved by

multiplying each edge by a gamma distributed random variable, whose parameters

are specified as part of the input file.

Finally, we provide a meaningful generation for an outgroup taxon if the user

so desires. As discussed in Chapter 1, an outgroup is often used in reconstruction

algorithms to root a network. This requires having a species that is common enough

to the other extant species to have a reasonably close common ancestor, yet re-

moved/different enough to not be involved directly with any of the ingroup taxa

under study. Figure 2.8 shows an outgroup for a tree.

GTATGGGA GGGC CTGT CAGT

Ingroup

GGGT CGGT

AGGT

AGGT

All Extant Taxa

Outgroup

Figure 2.8: Outgroups, which are used to root phylogenies, are often carefully picked
by biologists to be similar, yet distant from the ingroup. NetGen allows the user
to specify sequence similarity/dissimilarity bounds so that a meaningful outgroup
can be created to correspond with the simulated ingroup. The number of attempts
at finding such an outgroup is limited by the user and program to avoid excessive
processing.
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By allowing the user to specify values for outgroup sequence similarity and dissim-

ilarity, a more meaningful outgroup, with respect to the ingroup, will be generated

and hopefully of use in reconstruction algorithms. A set of potential outgroup se-

quences is generated according to the evolutionary branch length between the root

and outgroup taxon. The proposed outgroup is then scored based on Hamming dis-

tance, which is calculated between it and each of the ingroup taxa. If the candidate

outgroup meets the similarity/dissimilarity bounds with respect to each member of

the ingroup, the proposed sequences are assigned to the outgroup and the processing

is complete. If the bounds are not strictly satisfied, another set of candidate se-

quences for the outgroup is generated and tested. This approach can be demanding

on the processing time as it requires the potential generation and scoring of multiple

candidates. Therefore, the number of tries is limited and if a candidate that meets

the criteria in absolute terms is not found, a best alternative based on averages is

chosen.

2.2 NetGen Validation

In an effort to gain confidence in NetGen results, experiments were designed to

validate the code and its performance. The common approach for checking a birth-

death implementation is to examine population growth, which is covered in Section

2.2.1. A discussion of branch length distributions is provided in Section 2.2.2. Section

2.2.3 confirms that the technique of incrementally updating a branch’s sequence,

necessitated by the addition of hybrids to the model, does not impact the overall

sequence behavior at the branch or network level.
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2.2.1 Population Growth

The traditional birth-death model has a very well characterized growth pattern [59].

Specifically at any point in time, the population size either stays the same, or gains

or loses one lineage. The equation for growth is: m(t) = n0e
(B−D)t. Where m(t) is

the mean population at time t with n0 as the initial population size and B and D are

the birth and death rates respectively. By running NetGen to generate birth-only

and birth-death trees (no hybrid events) for a variety of rate combinations, we see

(Figure 2.9 and Table 2.1) that the growth pattern is matched and are therefore

confident the implementation of the base model is correct.
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Figure 2.9: Population growth data for four different scenarios. Each line illustrates
the number of lineages (natural log scale) over time for a single run of 100,000 extant
taxa.

2.2.2 Branch Length Distribution

When NetGen terminates with the specified number of extant taxa there are three

sets of branches:
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Multiple NetGen Runs – 100,000 extant taxa
Runs Rates Average Slope
10 B = 2.0 D = 0.0 1.997 ± .009
10 B = 1.0 D = 0.0 0.998 ± .004
8 B = 0.8 D = 0.2 0.598 ± .004
7 B = 0.8 D = 0.45 0.349 ± .004

Table 2.1: Average population growth for the same four scenarios presented in the
table above. Calculating the average slope (natural log of the population size) shows
consistency between the implementation of the model and the underlying mathemat-
ics (namely the slope being equal to the difference of the birth and death rates).

(i) completed branches, which are internal to the topology as their start and end

points occurred during the simulation,

(ii) future branches, which started during the simulation, but were prematurely

terminated when the simulation ended due to the desired number of extant

taxa being reached, and

(iii) the total (combined) set of future and completed branches comprising all the

chosen random variables that were selected to be branch lengths.

The first and third case are of general interest, with the third being the most

straightforward to analyze. By recording the completed and future events, a list of

all branch lengths can be compiled and then a histogram showing the distribution

of branch lengths constructed. Figure 2.10 shows the normalized histograms for two

runs (birth-only and birth-death) of 250,000 extant taxa as well as their fits.

Both distributions are exponentials with the form, r1 ∗ e(−r2∗t). This is consistent

with Poisson processes, which are characterized by events having exponential inter-

arrival times [18]. In the birth-only (b=8) case on the left-hand side of the figure,

the fits for r1 and r2 are 7.990 and 7.988; for the birth-death (b=9, d=3) case on the

right, the fits are 12.007 and 11.999 which is the sum of the birth and death rates.
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Branch Length Distributions of Completed and Future Branches
Single Runs, 250,000 extant taxa

0.0 0.4 1.6 2.00.8 1.2 0.0 0.4 0.8 1.61.2 2.0

12

10

8

6

4

2

0

Branch Length

F
re

qu
en

cy
 (

N
or

m
al

iz
ed

)

Branch Length

0

8

6

4

2

fit data
+   raw data

fit data
+   raw data

b = 9.0
d = 3.0b = 8.0

Figure 2.10: The branch length distribution in both cases is exponential. Fits are
conducted with the datafit function in Scilab [28] which employs a least squares
approach.

In the latter case, this sum (as opposed to the difference used for population growth

earlier) makes sense as this scenario is the superposition of two Poisson processes

(with rates λ1, λ2) which is known to yield a Poisson process itself with an expected

value of λ1 + λ2 [31].
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Figure 2.11: The completed branch length distribution and its fit for the birth-only
case.
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The other branch set of interest is that of (i) where the completed branch lengths

are indicative of what is referred to in the field of branching processes as the age

distribution. Using the same birth-only run from before, Figure 2.11 presents the

data for the completed branches and the fit. The general fit comes from page 151 of

Harris [21] which provides the age distribution formula as:

A(x) =
α

∫

x

0 e−αt[1 − G(t)]dt

1 − 1
m

where for our purposes, α is the birth rate, m is 2 for the number of children produced

at each birth, and G(t) is the generating function 1 − e−αt.5 Solving this equation

in a general manner for our birth-only instances, yields a cumulative distribution

function whose corresponding probability density function is 2αe−2αX , approximately

the shape of the histogram. The fit of the data supports this with r1 and r2 being

16.031 and -16.032 (each twice the birth rate of 8).

2.2.3 Incremental Sequences

When hybrid events are included in the simulation, branch lengths and their cor-

responding sequences are evolved incrementally by the model. The first step of a

hybridization event is to update the branch lengths and sequences of all active lin-

eages, which may mean multiple intermediate updates of these attributes for one or

more lineages. Although NetGen requests the update using the modified branch

length and sequence (see Figure 2.12), it was important to verify such an approach

did not alter the expected Hamming distance for the overall/total branch in such a

situation. (Note that the expected Hamming distance is not necessarily equivalent

to the product of the branch length and the sequence length. This is because bases

are free to change and then revert back to their original state along a single branch.)

5See Chapter 6 of Harris[21] for more details on these parameters.
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Figure 2.12: Two approaches to update branch lengths and sequences. On the left,
a single update for the total branch is shown, while four intermediate updates are
shown on the right. Although two identical start sequences are unlikely to yield the
exact same finish sequences, the average overall Hamming distance for the two cases
should be statistically similar.

An experiment was conducted using 1, 000 randomly generated start sequences

(length = 2,000), a constant total branch length of 0.1, and the evolutionary model

choice of HKY for Seq-Gen. The control case was where one request (for each start

sequence) was given to Seq-Gen. For the second case, the total branch length was

broken into 1, 000 calls, yielding separate branch lengths of 0.0001 each and using

the returned result as the intermediate start sequence for the next call to Seq-Gen,

mimicking the approach of NetGen. It is important to continue the “same” lineage

for the purpose of hybridization and not simply regenerate a new random sequence

for each update. The overall branch Hamming distances in each scenario resulted in

normal curves as expected. The average and standard deviation for each are shown

in Figure 2.13 and were statistically identical.

Although the previous experiment was important to show that Seq-Gen’s per-

formance was not altered by the use of multiple calls, it is also prudent to show

that NetGen’s behavior was similar under the two scenarios. Using a common set

of input parameters (birth only tree with birth rate = 48, one chromosome with a

pair of homologues each having length 1,000, and 1,000 extant taxa) ten runs (per

scenario) using NetGen were executed. The first scenario operated in default mode

where sequences were assigned only once to a single lineage when its birth event
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Figure 2.13: Similar results were obtained regardless of single or multiple update
calls to Seq-Gen. The above histograms present the Hamming distance for the
overall branch whether the sequence was created by a single call to Seq-Gen (top)
or multiple shorter length calls to Seq-Gen (bottom).

occurred. In the second scenario, an additional control parameter invoked updates

to both the branch lengths and their sequences for all active lineages whenever a

birth event occurred anywhere in the topology – leading to frequent, intermediate

updates of lineages. The resulting parsimony score was used to gauge the results.

The parsimony score of a tree or network is the Hamming distance along every
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Parsimony Scores of NetGen Runs
1,000 extant taxa, birth rate = 48.0, total sequence length 2,000

Single Sequence Assignment Multiple Updates to Sequence
38855 40956
40341 40607
40556 42654
42732 43297
43699 39978
41245 43721
41804 41840
41784 39310
39461 41281
42403 41784

avg 41288 41543
stdev +/- 1504 +/- 1411

Table 2.2: Parsimony scores for the ten experimental birth-only trees generated by
NetGen are similar under the two scenarios of branch and sequence updates (single
vs. multiple calls to Seq-Gen).

branch of the topology for the sequence(s). In the case of a tree, this is calculated

by summing the Hamming distance for each sequence along every branch.6 For each

scenario, Table 2.2 shows the parsimony scores for ten topologies and Figure 2.14

contains the Hamming distance distributions from a single run. The results indicate

that the measures are not significantly impacted by the method of branch length and

sequence updates.

2.3 Hybrid Model Characterization

As hybrids were a new event type added to the model, it was important to examine

the behavior when such events were included in the simulation. Using two approaches

6For a network with diploid hybrids, not every homologue propagates along every
branch, so some extra bookkeeping is necessary, but the idea remains the same.
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Figure 2.14: Similar results were obtained regardless of single or multiple update calls
to Seq-Gen. The above histograms present the Hamming distances for the overall
branches whether the sequence was created by a single call to Seq-Gen (top) or
multiple shorter length calls to Seq-Gen (bottom).

from the validation section, scenarios were designed to examine the growth pattern

(Section 2.3.1) and branch length distributions (Section 2.3.2). Being the most com-

plex of the three events, hybridizations dominate the theoretical run time, details of

which are presented in Appendix A.
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2.3.1 Population Growth with Hybrids

The growth data (see Table 2.3 and Figure 2.15) show that the hybrid rate impacts

the population growth in a manner similar to the birth rate presented in Section

2.2.1. This makes intuitive sense as the result of a hybridization is one new lineage

created, just like a birth, and all previously scheduled events (as in the case of the

second parent) are allowed to occur as previously planned.

Multiple NetGen Runs – 5,000 extant taxa
Runs Rates Average Slope
10 B = 48 D = 0.0 H = 12 59.872 ± 0.872
10 B = 48 D = 5.0 H = 12 55.000 ± 1.663
10 B = 0 D = 0.0 H = 50 49.461 ± 1.103
10 B = 0 D = 0.0 H = 12 11.873 ± 0.264
10 B = 0 D = 0.0 H = 0.5 0.495 ± 0.011

Table 2.3: Average population growth for multiple runs of the single run scenarios
presented in the figure below. Calculating the average slope as the natural log of
the population size, labelled here as m, shows that birth and hybrid events impact
the population growth of the model in the same manner. (Note that all simulations
start with two active lineages originating from the root and the B, D, and H rates
refer to all subsequent events.)

2.3.2 Branch Length Distributions with Hybrids

With respect to branch length distributions, shown for the base model in Section

2.2.2, we see a similar behavior with the addition of hybrids. Specifically the hybrid

rate influences the total and completed branch length distributions as one would ex-

pect another birth rate would. Figure 2.16 shows both scenarios and the exponential

fits for the two sets of branches. The fitted values, 7.997 and -7.996 for the total

(completed + future) case and 16.049 and -16.040 for the completed-only scenario

follow the same pattern discussed earlier. This indicates the model is behaving as

expected.
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Figure 2.15: Growth statistics for a variety of runs that contain hybrids. (The run
from Table 2.3 with the hybrid rate of 0.5 is omitted here as its slope is difficult to
display alongside the others given it grows much more slowly over time.)

Branch Length Distributions for Birth−Hybrid Run
Single Run, 250,000 extant taxa
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Figure 2.16: The hybrid rate contributes to the branch length distributions as a
second birth rate in both the total (left) and completed (right) sets.

2.4 Representing Phylogenetic Topologies

The Newick format is a well-known text representation employed for phylogenetic

trees. It employs nested parentheses to capture topological relationship informa-
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tion [2]. A post-order traversal of a tree topology is typically used to generate the

string of text referred to as the “Newick format.” Taxa are separated by commas,

and parentheses group siblings. The roots are implicitly identified by right paren-

theses and may also be explicitly named. Although this is a robust method for

representing tree topologies, there are no provisions for addressing reticulate nodes

and edges which are found in phylogenetic networks.

Original Newick Format

( (4, 5)2, (6, 7)3 )1;

Modified Newick

( (5, (6)3#H )2, (3#H, 7)4 )1;
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Figure 2.17: Original versus modified Newick formats. The phylogeny on the right
contains the hybrid node (3) denoted by #H in the text string.

Motivated by a need to communicate topological information among our appli-

cations, we extended the Newick format to annotate reticulate nodes. Figure 2.17

provides examples of both the original and our modified Newick formats. Specifically

a reticulate node, whether from a hybridization or a lateral gene transfer, is anno-

tated with a #H or #LGT to indicate the nature of its reticulation. Although such a

node appears only once in a topology, the format lists it multiple times – as a child

for each of its parents. This permits a parser to identify the lineages being combined

at a reticulate node and provides the necessary information for a network data struc-

ture. This format also lends itself to reticulate events deriving from any number of

parents. In the case of a tree topology, the format is identical to that which the

original Newick notation would produce. This should facilitate the adoption of the

extension by software packages that currently process and display tree phylogenies.
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A typical implementation of depth-first search (DFS), like the one found in [7],

can be used to produce a post-order traversal. Adding constant requirements to print

the necessary regular and modified Newick symbols as part of the traversal does not

alter the order of the complexity. The complexity of DFS is O(V +E), where V and

E respectively refer to the number of vertices and edges found in the topology [7].

Appendix A provides the details of deriving upper bounds on these values for a given

set of simulation inputs. The result is that DFS, and thus the regular and modified

Newick formats, can be accomplished for NetGen topologies with a complexity of

O(n), where n is the number of extant taxa.
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Measuring Phylogenetic Networks

Having quantitative techniques to capture the characteristics of phylogenetic net-

works is essential for analyzing and comparing topologies that include reticulate

events. The amount of similarity between a reconstructed network and its simulated

(or source) network cannot be measured when methods assuming a tree topology

break down or are incapable of dealing with the complexity of reticulation. Fur-

thermore, experiments such as those undertaken in Chapter 5 are enhanced when

networks can be quantitatively identified and categorized according to their reticulate

properties.

Few measures have been developed for interspecific phylogenetic networks, as the

study of these topologies is relatively new. One such measure is the tripartition,

which was developed by Moret et. al. [43] as an extension of the well-established

Robinson-Foulds bipartition measure for trees [63]. These measures capture the topo-

logical accuracy between either two trees (bipartition) or two networks (tripartition).

Both of these techniques are reviewed in Section 3.1. In Section 3.2, we present three

new measures that capture important properties of reticulate nodes which are useful

for characterization purposes. Finally data illustrating the experimental behavior of
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these measures is discussed in Section 3.3.

The network measures presented in this chapter are generic in that they can be

used for networks containing lateral gene transfer or hybridization nodes, although

the focus of this current work is on the latter. Software called NetMeasure, imple-

menting these measures, has been developed and is available from the author, under

GNU General Public License, at http://www.cs.unm.edu/∼morin/.

3.1 Robinson-Foulds (RF) Distances

The Robinson-Foulds (RF) distance is a well-established and accepted method for

comparing two phylogenetic trees [63]. The measure is a topological one, calculating

the similarity of the branches between two topologies. Due to how the measure is

defined, both topologies must be trees and have the same set of extant taxa.

In theoretical terms, a tree can be analyzed as a graph comprised of nodes and

edges. When a single edge is removed, the graph becomes separated into two pieces,

and is called a bipartition . An edge that bipartitions a graph causing one node to

be isolated from all the others, is often called a “tip.” With the RF measure, the

set of tips for each graph will be identical, as the two topologies must have the same

set of extant taxa. Therefore these edges are considered trivial, and are not part of

the distance calculation. However, all other edges are part of the internal structure

and are regarded as non-trivial. The bipartitions induced from the removal of these

non-trivial edges form the basis of the RF measure, which can be computed in linear

time using what is known as Day’s algorithm [8].

The definition of RF distance used for our purposes is calculated by the following

steps:

1. For each tree, list the bipartition induced for every non-trivial edge. Namely,
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identify the two sets of extant taxa that are created by removing the edge.

2. Compare the two lists of bipartitions to identify which edges have a matching

counterpart in the other topology. A “matched” edge is one that creates the

same bipartition in each topology.

3. Count the number of edges that exist in the first tree, but do not have a match

in the second (false negatives).

4. Count the number of edges that exist in the second tree, but do not have a

match in the first (false positives).

5. Divide the false negative and false positive counts each by the number of in-

ternal edges for their respective tree – this yields the rates of each.

6. The RF distance is calculated as the average of these two rates (sum the rates

and divide by 2).

A C

B D

A B

C D

Figure 3.1: A one non-trivial edge case of Robinson-Foulds distance. The bipartition
of extant taxa induced when the red edge of the tree on the left is compared to that
of the blue edge of the tree on the right yielding an RF distance of 1.0.

Figure 3.1 shows a simple, one edge case. Here there is only one non-trivial edge

in each tree to consider (identified in red and blue). When the edge is removed, the

bipartition of extant taxa in the left tree is (A, B)vs.(C, D). Whereas in the right

tree, the bipartition is (A, C)vs.(B, D).1 In this case, there are no matches for either

edge in the other topology – leading to an RF distance of 1.0.

1When the topologies are unrooted, as in the example, the order of sets for the bipar-
tition induced by an edge removal does not matter (e.g. (A,B)vs.(C,D) is a match for
(C,D)vs.(A,B)). However with rooted topologies, the order does matter as it indicates
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This definition of RF distance is based on the one employed by [43] and results

in a range of values from 0.0 to 1.0. A value of 0.0 for a pair of trees indicates

isomorphism and all edges in one topology have a counterpart in the other topology.

A value of 1.0 on the other hand, means that there are no edges in common between

the two topologies. It should be noted that some authors (e.g [12, 51, 76]), and

one of the seminal papers [63], use slightly different definitions of the RF distance.

Some define the distance as a simple count of false positives and false negatives (not

converted into rates) and may or may not divide by two to average the value. While

these definitions are valid, the value ranges are not necessarily constrained to the

0.0-1.0 interval which is desired for compatibility purposes with our other measures.

The tripartition measure, developed by Moret et. al. [43], is an extension of the

Robinson-Foulds distance from trees to networks. Like the original RF distance, this

measure attempts to match corresponding edges between two topologies. However,

rather than the removal of each edge inducing a bipartition, a tripartition of extant

taxa is created. The three sets induced by each edge removal are:

• extant taxa reachable only from the root via the selected edge,

• extant taxa reachable from the root using a path via the selected edge, and

using a path not via the edge, and

• extant taxa not reachable from the root via the selected edge.

Figure 3.2 is an example based upon [43] and shows two networks with their

corresponding tripartition listing. The measure is defined as FN+FP

2
where:

FN =
Number of edges in N1 that do not have matches in N2

Number of non-trivial edges in N1
(3.1)

which set is disjoint from the root and which is connected to it (e.g. (A,B)vs.(C,D) is not
a match for (C,D)vs.(A,B)).

48



Chapter 3. Measuring Phylogenetic Networks
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Network N1 Network N2

Edge Tripartition Edge Tripartition
1 〈{A, B, C}, ∅, {D, E, F}〉 1 〈{A, B, C}, {E}, {D, F}〉
2 〈{A, B}, ∅, {C, D, E, F}〉 2 〈{A, B}, ∅, {C, D, E, F}〉
3 〈{D, E, F}, ∅, {A, B, C}〉 3 〈{C}, {E}, {A, B, D, F}〉
4 〈{D}, {E}, {A, B, C, F}〉 4 〈∅, {E}, {A, B, C, D, F}〉
5 〈{F}, {E}, {A, B, C, D}〉 5 〈{D, F}, {E}, {A, B, C}〉
6 〈∅, {E}, {A, B, C, D, F}〉 6 〈∅, {E}, {A, B, C, D, F}〉
7 〈∅, {E}, {A, B, C, D, F}〉 7 〈{D, F}, ∅, {A, B, C, E}〉

Figure 3.2: An example of tripartition information for two network topologies based
upon [43]. The internal edges labelled in the topologies correspond to the table at
the bottom. The tripartitions induced by each edge removal are listed in order of
the sets discussed previously. The final tripartition value is 4

7
.

FP =
Number of edges in N2 that do not have matches in N1

Number of non-trivial edges in N2

. (3.2)

For the example in Figure 3.2:

• edges 1, 3, 4, and 5 of the left network have no corresponding edges in the

network on the right, and

• edges 1, 3, 5, and 7 of the right network have no corresponding edges in the

network on the left.
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This leads to:

FN =
4

7
, FP =

4

7
, and a tripartition measure of:

4

7
. (3.3)

In general, tripartition scores can range from 0.0 to 1.0, like the RF distance.

At the extremes, a value of 0.0 indicates two isomorphic (or “indistinguishable”

as defined in [43]) networks and 1.0 results when there are no non-trivial edges in

common. A tripartition score of 0.x means that x% of the branches are mismatched.

3.2 New Topological Measures

In this section, we present three new measures: reticulate timing, reticulate impact,

and reticulate diversity. Each is designed to capture topological features about a

single reticulate node, and when multiple reticulate nodes exist in a network, the

measure is repeated on an individual node basis. Expected run times for these

measures are discussed in Appendix A.

3.2.1 Reticulate Timing

Figure 3.3 illustrates the concept of the reticulate timing measure on a simple topol-

ogy containing one hybrid node. To capture whether a reticulate node happened

relatively early or late in a given phylogeny, a ratio of the time at which the event

occurred and the height of the network is calculated.

This measure is defined using clock time, as opposed to evolutionary time, because

clock time progresses for all the lineages at the same pace, whereas evolutionary time

can vary if the network is non-ultrametric and/or contains lineages with varying rates.
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Figure 3.3: Reticulate timing is a ratio of two clock values – the time at which the
reticulation occurred and the height of the network. The limits of this value are 0.0
(most ancient occurrence) to 1.0 (most recent occurrence).

This measure is useful when characterizing existing topologies as one does for source

networks in a study such as Chapter 5.

3.2.2 Reticulate Impact

The impact measure was developed to provide a sense of how much influence a specific

reticulate node has on the given topology. This measure, illustrated in Figure 3.4, is

defined as a ratio of the number of extant taxa that are descendants of the hybrid

node to the total number of extant taxa.

Of the three new measures, reticulate impact has the greatest potential to be

a component of phylogenetic reconstruction efforts. If the extant offspring of a hy-

bridization speciation is characterized by a specific trait, leading to the identification

of the impacted extant taxa set, the reticulate impact score can be calculated. The
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All Extant Taxa
Taxa Descendant from Reticulate Node

RI =

a reticulate ancestor
no extant taxa have

RI = 0 

a reticulate ancestor
all extant taxa have

RI = 1

Reticulate Impact

R

Figure 3.4: Reticulate impact measure is a ratio of extant taxa descendant from the
hybrid node and the number of extant taxa in the phylogeny. The value can range
from 0.0 to 1.0.

impact information can then be capitalized on for reconstruction purposes, as is the

case with our NetReconstruct algorithm in Chapter 4.

3.2.3 Reticulate Diversity

Diversity was the most difficult topological notion to capture quantitatively. This

goal required finding a value that at one extreme would indicate sister taxa as the

parents of a hybrid node, while the other end of the spectrum would point to parents

as diverse as possible within the given topology.

By combining counts from the concepts of impact (found in the previous sub-

section) and the most recent common ancestor (mrca)2 for the parent nodes, it is

2Note that clock branch lengths are the most accurate measure for determining the
mrca, as clock time remains constant for all lineages, unlike evolutionary time which may
vary from lineage to lineage.
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R and P Extant TaxaMRCA Extant Taxa−
All Extant Taxa

RD =

effectively
sister taxa

parents are
RD = 0 

diversity of
parents

increased
RD 1

Reticulate Diversity

P R P

MRCA

Figure 3.5: The reticulate diversity measure involves counting the difference in ex-
tant taxa between the most recent common ancestor (mrca) and the hybrid and its
parents which is then scaled (divided by) the number of extant taxa in the topology.
The resulting value can range from 0.0 to 1.0, where 0.0 indicates the parents are
essentially sister taxa and 1.0 reflects extremely diverse parents.

possible to capture the extent to which the location of the parents differ. Figure 3.5

shows a case where the parents are sister taxa and a diversity value of 0.0 results.

Like the timing measure, this quantity is most useful when characterizing source

networks for which the topology is known, perhaps as part of a study such as the

one presented in Chapter 5.

3.3 Experimental Behavior of Measures

Experimental results are presented in this section that characterize the measures

described in the last section. Section 3.3.1 focuses on bipartition and tripartition

scores for random topologies in order to establish a baseline against which future

reconstruction algorithm results can be compared. Interdependencies among our
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three new measures (timing, impact, and diversity) are examined in Section 3.3.2. It

is useful to perform these analyses and review their results before proceeding to the

new reconstruction technique presented in Chapter 4.

3.3.1 Characterization of Random Robinson-Foulds Distances

Without a baseline, it is difficult to assess quantitatively the performance of a re-

construction algorithm. For example if a new technique consistently yields, an av-

erage tripartition score of 0.5, is that to be considered good, bad, or just average?

In order to address this situation, characterization experiments were conducted on

well-specified, yet random, topologies.

Our first set of experiments captured the Robinson-Foulds distances for trees

created by NetGen. One hundred and fifty random birth-only trees were created

and then the RF distance was calculated for every pair (11,175 unique pairs avoiding

symmetric ones). As the bipartition measure requires that the two topologies have

the same set of extant taxa, it was necessary to relabel the extant taxa of every

topology. This was accomplished by going through the Newick representation and

changing each extant taxon label to a value between one and the total number of

extant taxa. Runs were executed for three very different birth rates (0.2, 1.3, and 48)

and two sizes of extant taxa (8 and 50) to ensure that these parameters did not alter

the outcome. Figure 3.6 contains the histograms for these six cases and all show a

distribution space that is exponential towards one. The results for the 50 extant case

were so dramatic that the bin size for the histogram had to be reduced by a factor

of 10 (0.1 to 0.01) in order to illustrate its exponential nature.

We repeated the above experiment for networks with exactly one hybrid. The

topologies were created using NetGen and relabelled appropriately, but the ex-

periment was doubled by using two different hybrid rates to assess any impact this
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Figure 3.6: Frequency of bipartition scores for 150 random birth-only trees as gen-
erated by NetGen and measured with NetMeasure. The top row is for 8 extant
taxa, while the bottom row shows runs with 50 extant taxa.

parameter would have on the results. The hybrid rates were chosen as 12 and 100

(with a maximum hybrid count of 1) and 200 topologies were generated in an at-

tempt to ensure a sufficient number of pairs on which to compute the measure. In

the case with the lowest birth and hybrid rates (b = 0.2 and h = 12), 153 of the

200 topologies contained one hybrid leading to 11,628 pairs used for computing the

tripartition measure. With the other rate combinations, all 200 topologies met the

one-hybrid criteria, and therefore there were 19,900 non-symmetric pairs on which

to complete the extended-RF distance. The results shown in Figure 3.7 are similar
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to those of the bipartition score with an exponential bias towards 1.0 indicating no

branches in common. Once again, the 50 extant taxa case required a greatly refined

bin size to show the nature of the distribution, but did not reveal any differences and

that data is omitted here.
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Figure 3.7: Frequency of tripartition scores for 200 random birth-hybrid networks
with exactly one hybrid as generated by NetGen and measured with NetMeasure.
The top row is for runs with a hybrid rate of 12, while the bottom row shows runs
with a hybrid rate of 100.

3.3.2 Diversity, Timing, and Impact Dependencies

Although our new measures were motivated by the desire to characterize reticulate
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nodes in a topological fashion, it seemed probable that such properties would exhibit

dependencies especially in scenarios that did not contain extinct lineages (death rate

equal to 0.0). The dependencies explored were: impact and timing, diversity for

different methods of second parent selection, and diversity and timing.

The data set for the first experiment was birth-hybrid networks generated by

NetGen with exactly one hybrid, where the second hybrid parent was chosen by

the minimum Hamming distance option. The parameters for size of extant taxa (50)

and birth rate (b = 1.0) were kept constant across the scenarios, while we varied

the hybrid rate (0.05, 0.1, 0.5, and 0.9) to promote the placement of the hybrid in

different regions of the topology. Although 10,000 topologies were generated, some

rate combinations did not produce the full set of networks meeting the one hybrid

requirement, but at a minimum there were 9,000 in each scenario.

The contour plots of Figure 3.8 show there is a connection between reticulate

impact and timing measures. The earlier the hybrid occurs, the greater impact it is

likely to have on the extant taxa. One can see that the peak of the hybrid timing

moves along the x-axis from the right to the left as the hybrid rate gets larger, causing

the hybrid to occur sooner in the simulation. These results make intuitive sense as

one would expect hybrids that occur earlier, as opposed to later, in the simulation

to have a better chance of producing more offspring, thus increasing the reticulate

impact score.

The second experiment was to examine in what manner the diversity measure was

affected by how the second parent for a hybridization was chosen. The two extremes

(minimum Hamming distance and random) were examined. In order to enhance any

behavior that might be exhibited, the extant taxa size was set to 500 and the rate

combination was chosen to be birth = 1.0 and hybridization = 0.05 with a limit of

one hybrid per network. This rate combination has the hybrids occurring later in the

simulation where there is more of a difference to be noticed in the choice of a second
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Figure 3.8: Contour plots for reticulate impact vs. reticulate timing measures from
birth-only (b = 1.0) networks with one hybrid, but varying hybridization rates. The
relationship of impact being greater for early hybrids can be seen across all four
plots.

parent. (In the case of only one hybrid occurring early in the simulation, the choice

for a second parent is limited regardless of the method employed.) As expected,

Figure 3.9 shows the diversity scores in the random case have a much greater spread,

whereas the minimum Hamming distance chooses second parents topologically close

to the first.

The third and final experiment was to look at the interaction between the diversity

and timing measures for the same two hybrid parent choices as above (minimum

Hamming distance and random). Using the same parameters (500 extant taxa,
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Figure 3.9: This contour plot shows the two dimensional histogram for diversity
scores. The y-axis contains diversity scores from NetGen runs where the second
hybrid parent is chosen according to the method of minimum Hamming distance
and the x-axis scores comes from runs where the random method was utilized. Not
surprisingly, the results are much tighter and have smaller values in the minimum
Hamming distances case.

10,000 runs, b = 1.0, h = 0.05, limit of one hybrid per topology), NetMeasure

was used to calculate the diversity and timing measures from runs for the two types

of parent selection methods. The plot on the left of Figure 3.10 shows the expected

result that when the second parent is chosen on the basis of Hamming distance, the

diversity is likely to be small. When the second parent was chosen randomly, the

data behavior is more complex. If the hybridization occurs relatively early in the

simulation, indicated by a small value on the x-axis, the diversity is likely to also

be small. This makes intuitive sense, because although the second parent is chosen

randomly, there is not much diversity early in the simulation. At the other extreme of

timing, with hybridizations occurring relatively late in the simulation, the diversity
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score is high. This is consistent with the fact that at this point of the simulation, the

odds are high that the second parent will be in a completely different subtree than

the first, causing the most recent common ancestor to be the root, thus yielding a

high diversity score. In the middle ground, two factors are competing – time and

diversity. While there is certainly plenty of diverse second parents to choose (and

the odds are high such a choice will be made) there is still plenty of time for the

hybrid offspring to propagate, which helps to overcome the gap in how many of the

final extant taxa are impacted by the most recent common ancestor and the hybrid

and its parents – thus decreasing the overall diversity score.
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10,000 runs − 500 extant taxa (b = 1.0 h = 0.05), 1 hybrid per network
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Figure 3.10: The left plot illustrates that regardless of the timing, the minimum
Hamming distance option for selecting the second parent restricts the diversity scores
as one would expect. The low-density bump reflects the fact that most hybrids have
a mid-range score, and as time has advanced enough for lineages to be diverse, there
are a few instances where the diversity score is higher than average. The effect of
random selection for the second hybrid parent is illustrated here in the right plot.
Early in the simulation, it is difficult to have extremely different parents and towards
the end of the simulation the odds make it difficult to have similar parents. These
influences result in the high-density regions found at the top and bottom of the
graph. The middle area shows the trade-off in the diversity measure between having
a high likelihood of choosing a substantially different second parent, but also time
to generate more offspring decreasing the difference in the number of extant taxa
impacted.
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Chapter 4

Reconstructing Phylogenetic

Networks with

Single-Diploid-Hybrid Events

A primary goal of this research is to reconstruct phylogenetic networks, as well as

to generate and measure them. Given the complexity that multiple reticulate nodes

contribute to a network, we have decided to focus our efforts on topologies with one

diploid-hybrid event. Building upon existing ideas and software (e.g. Fitch small

parsimony [11] and PHYLIP [10]) for tree reconstructions, we developed an algo-

rithm to infer a phylogenetic network with a single-diploid-hybrid event from a given

set of extant taxa, an outgroup, and hybrid-impact information. Our reconstruc-

tion software, NetReconstruct is available from the author, under GNU General

Public License, at http://www.cs.unm.edu/∼morin/.

In Section 4.1, we present the design of the reconstruction algorithm. Details

pertaining to the implementation and use of NetReconstruct are provided in

Section 4.2, and experimental results on the performance of the algorithm are given
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in Section 4.3.

4.1 Reconstruction Algorithm

Our reconstruction algorithm is comprised of three subtree stages and builds a net-

work with a single-diploid-hybrid event. At a minimum, tree reconstruction algo-

rithms require a set of extant taxa and their sequences, and an outgroup if a rooted

topology is desired. In addition to these standard inputs, NetReconstruct re-

quires a hybrid-impacted set that identifies the extant taxa believed to be descended

from the ancestral hybrid. This requirement was inspired by the reticulate impact

measure presented in Chapter 3. The foundation for this approach is that biologists

are often able to identify an extant taxon or taxa as having hybrid origins and are

sometimes able to propose the parental lineages that formed the hybrid [33, 34, 77].

However, easily determining whether a group of extant taxa descended from a single

hybridization event is not yet possible, although biologists are constantly developing

new techniques that have the potential to provide this information [23, 61]. In the

interim, alternative ideas for determining a set of hybrid-impacted extant taxa, to

be used with NetReconstruct, are provided in Appendix B. Although it may

be tempting to use the results of any reconstruction algorithm as a final answer, it

is important to remember that techniques such as NetReconstruct are designed

for simulation and algorithm research. Hence, the intention is that they be used

iteratively and in conjunction with other biological data and knowledge.

The first stage of the reconstruction requires generating the “hybrid subtree.”

Starting with the sequences of the extant taxa of the hybrid-impact set and an

outgroup, a call is made to PHYLIP to infer a tree. When the topology is returned,

sequences are assigned to all the internal nodes using the technique known as Fitch
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small parsimony.1 The outgroup is removed, and the root of this tree is labelled as the

hybrid. The last step of this stage is to add the structure surrounding the hybrid.

Taking the sequences assigned to the hybrid, we randomly split the homologues

(sequences) to the two newly created parent nodes. The major steps of this stage

are illustrated in Figure 4.1.

Step 1 − Inputs to PHYLIP for Hybrid Subtree

extant taxa believed to be
impacted by the hybrid

Step 3 − Assign Internal Sequences with
Fitch Small Parsimony Algorithm Establish Hybrid Structure

Step 4 − Remove Outgroup and

Step 2 − Hybrid Subtree Topology Returned

outgroup

HP P

Figure 4.1: The primary steps of Stage 1 for the reconstruction algorithm. Starting
from the hybrid-impacted extant taxa and an outgroup, the hybrid subtree topology,
sequences and related structure are inferred.

1Only the preliminary phase of the small parsimony algorithm is utilized as the final rule
phase allows the generation of all parsimonious assignments and adds realism to internal
nodes provided specific evolutionary assumptions are applicable. As these assumptions
may or may not be appropriate for our reconstructions and the sequences of the root do
not change in this phase, only the preliminary one is required.
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Constructing the “parental subtree” is the second stage of the algorithm and is

depicted in Figure 4.2. With an outgroup and the identification of which extant

taxa will be the descendants of the hybrid’s parents, a single subtree for these taxa

is inferred once again using PHYLIP (though sequences for these internal nodes

are not assigned until later). After removing the topological structure related to the

rooting of this subtree, one or more subtrees will remain. For each of these subtrees,

it must be determined from which parent to descend. This is decided by calculating

an overall average Hamming distance between all extant taxa in the subtree and each

of the two parents of the hybrid node. The closest parent inherits the subtree as one

of its children.

Currently there are four different approaches for identifying the set of extant taxa

that will be affiliated with the hybrid’s parents – custom, extreme custom, closest

neighbor, and closest 2x hybrid. The two custom options (custom and extreme

custom) are best-case scenarios where the parental extant taxa are provided as input

(and further split into two parental sets in the extreme case), thus meaning the

three sets of extant taxa (hybrid-impacted, descendants from hybrid’s parents, and

remaining) are all known a priori. Although it is not expected that these approaches

can be used in real-world cases, they do provide a good baseline comparison when

dealing with reconstructions from known source networks and analyzing results. The

closest neighbor option, which is the default, identifies the extant taxon with the

smallest Hamming distance, for all extant taxa that are not impacted by the hybrid.

If an extant taxon’s closest neighbor is descendant from the hybrid, the original taxon

is added to the parental descendant group, otherwise it will become a part of the

third (remainder) subtree. The final option is the closest 2x hybrid approach where

x refers to the number of hybrid-impacted extant taxa. This method was designed

with the intuition that in a perfect binary network and the idealized case of the same

number of levels of offspring reproduction for both the parents and the hybrid, there

should be twice as many extant taxa descendant from the parents as there are from

65



Chapter 4. Reconstructing Phylogenetic Networks with Single-Diploid-Hybrid Events

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Step 1 − Identify Extant Taxa to be

Parental Descendants

... ... ...

extant impacted
by hybrid

parental
descendants

Topology
Step 2 − Reconstruct Parental Subtree

Step 3 − Remove Outgroup, Root,
and Subroot

Step 4 − Determine Parental Affiliation

outgroup

(remainder)

P PH

Figure 4.2: The primary steps of Stage 2 for the reconstruction algorithm. After
parental descendants are identified, a subtree for those extant taxa are reconstructed.
The resulting subtrees are assigned to one of the parents of the hybrid – connecting
the subtree from Stage 1 and this one. The greyed portion of the figure was completed
in Stage 1.

the hybrid node itself. For this method, Hamming distances are used again, but this

time they are calculated between all those extant taxa not impacted by the hybrid

and the hybrid itself (not its descendants), whose sequences were determined in

Stage 1. Then the 2x extant taxa with the smallest Hamming distances are labelled

as parental descendants.2

2In order for this approach to work, there must be a sufficient quantity of extant taxa
not impacted by the hybrid.
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In the last stage of the reconstruction, the remainder of the network and final

sequence assignments are pieced together. Using all the remaining extant taxa not

assigned to the hybrid and parental subtrees, in addition to the outgroup and the

hybrid’s parental nodes, PHYLIP is called one last time to reconstruct a tree. At

this point, the topology is set and what remains to be completed is the sequence

assignment for the internal nodes of Stage 2, Stage 3, and the hybrid’s parents

(which are missing half of their sequences). (The hybrid and its offspring already

had their sequences set in Stage 1.) These last steps are shown in Figure 4.3.

4.2 NetReconstruct Software Details

An outgroup is an important part of a reconstruction effort because it helps root

the topology. NetReconstruct allows for the input of two, possibly different,

outgroups. The first is a general outgroup that is used for reconstructing the parental

and remaining subtrees in stages 2 and 3. A second outgroup must also be specified

for the hybrid subtree inferred in Stage 1. While it is most likely that the same extant

taxon will be used for both outgroups, the option of specifying a separate outgroup for

the hybrid subtree seemed useful for domains where there is considerable knowledge

about the extant taxa impacted by the hybrid.

Another consideration when involving an outgroup is whether the topology is

considered to be rooted or not (see Figure 4.4). As phylogenetic networks must be

rooted to ensure that parents of any hybrid event exist at the same time, all of our

results are considered rooted. However, during its process, NetReconstruct can

encounter unrooted subtrees (e.g. those returned by PHYLIP that when regarded

as rooted, appear to have a polytomy at the root node, instead of the expected root

and sub-root). With the outgroup known, this situation is automatically adjusted

(though an input option to override it can be invoked) to avoid misinterpreting
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Step 2 − Assign Missing Sequences

Step 1 − Reconstruct Remaining Subtree
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Figure 4.3: The primary steps of Stage 3 for the reconstruction algorithm. Once
the remaining topology is constructed missing sequences are assigned, including the
halves for the two parents of the hybrid. The greyed portions of the diagrams indicate
work completed in the prior stages and is not altered further.

topology information.

As mentioned in the previous section, PHYLIP was chosen to perform the tree

reconstructions at each of the three stages of our algorithm. However, a simple

baseline tree reconstruction technique was also desired in order to assess any im-

provement our algorithm would show over a random approach. Therefore we have
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outgroup

A

B

root
subroot

root

A B outgroup

Figure 4.4: An unrooted (left) and rooted (right) topology for three extant taxa
where one leaf is known to be the outgroup. The tree on the right has one extra edge
and a sub-root node.

created a simple random inference package (RIP), which can be called in lieu of

PHYLIP to recreate the tree topologies at each stage.3 RIP takes a list of input

extant taxa and an outgroup (basically the same input file used for PHYLIP) and

randomly pairs active taxa to infer ancestors in the manner of neighbor joining, ex-

cept no sequence information is used for the pairing decision/choice. The declared

outgroup is reserved from pairing until the last step when it is connected to the root

as NetReconstruct requires, so that it can be stripped from the subtrees in stages

1 and 2. Figure 4.5 shows this approach for a four extant (plus outgroup) example.

PHYLIP is a well-established and widely used software program providing a

variety of routines related to phylogenies for those working with DNA data (e.g.

sequences, proteins, and gene frequencies). NetReconstruct uses a threshold

to determine which method of PHYLIP routines to employ. The default is nine

extant taxa4 and a subtree whose extant taxa count (not including the outgroup)

falls above this threshold will be reconstructed using a neighbor joining approach,

while instances less than or equal to the threshold, a maximum parsimony based

approach is employed. As the three subtrees for a single reconstruction can vary in

3Unless specified to the contrary, NetReconstruct uses the tree reconstructions per-
formed by PHYLIP, not RIP.

4PHYLIP documentation recommends not exceeding 10 or 11 for the DNAPENNY

package, therefore we set the threshold at nine plus an outgroup.
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Random PairingRandom PairingInput

outgroupextant

Random Pairing Connect Outgroup

Random Inference Package (RIP)

Figure 4.5: A four-taxon (plus outgroup) example of how the RIP software recon-
structs a tree topology. The specific choices for pairings are dependent on random
number calls, however the outgroup is always reserved and forced as part of the last
pair. The dark solid colored nodes represent an active status for pairing purposes,
while the lighter nodes are inactive.

number of extant taxa, it is possible that both PHYLIP approaches will be utilized

during one run.

For the maximum parsimony scenario, when the taxa set is small, dnapenny5 is

used to find all the most parsimonious topologies (by using a branch and bound al-

gorithm). As there are often multiple most parsimonious topologies, the consense5

routine is subsequently used to consolidate the reconstruction results using what

is known as the extended majority rule.6 In the larger scenarios, dnadist5 is run

5dnapenny, consense, dnadist, neighbor are all routines contained in
PHYLIP [10].

6A consensus tree is a single phylogenetic tree output made from a set of input trees.
There are different ‘rules’ (or types/methods) that can be employed. The extended major-
ity rule approach starts by including topological features that appear in more than 50% of
the input trees. Then, more structure is added (according to frequency of appearance) as
long as it is compatible with the existing topology.
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prior to neighbor5 to create the distance matrix, which is needed as input for the

neighbor joining algorithm. A PHYLIP input parameter for the dnadist routine

is a model of sequence evolution indicating assumptions of how the sequences were

formed. As the Seq-Gen default when simulating networks with NetGen is the

Jukes-Cantor model [78], the same default is included in NetReconstruct. If one

of the other three sequence models (with default parameters) is desired, it can be

requested or a custom parameters file for dnadist can by provided as part of the

input to NetReconstruct.

The core data structures of NetReconstruct are capable of representing net-

works with multiple hybrids and polytomies which may occur in the topology as

PHYLIP is not limited to returning only binary trees. Like in NetGen (see 2.1.4),

the Mersenne Twister [39] is used when random numbers are required for dividing

sequences between the hybrid’s parents, breaking ties, and providing PHYLIP ran-

dom number seeds. The final topological structure reported by NetReconstruct

is done in the modified Newick format that was presented in Section 2.4.

4.3 Experimental Results and Analysis

The evaluation of NetReconstruct’s performance required an extensive series

of tests. Experiments were conducted where the following parameters were varied:

parental identification methods, PHYLIP thresholds, models of sequence evolution,

and topological parameters (e.g. extant taxa size, event rates, ultrametricity, and

second parent choice for the hybrid). Unless otherwise specified, the single-diploid-

hybrid topologies were inferred with an outgroup, contained two homologues, each

of length 1,000, were ultrametric, and had the second parent for the hybrid event

chosen with the minimum Hamming distance option. The tripartition score was

selected as the primary performance measure since it captures the similarity of two
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networks, in this case, the source topology created by NetGen and the one produced

by NetReconstruct.

4.3.1 Methods for Identifying Extant Taxa of the Hybrid’s

Parents

Outlined in Section 4.1, there are four methods for determining which extant taxa

can be traced back to the hybrid’s parents. They are:

• extreme custom – extant taxa are assigned to each subtree and each parent of

the hybrid,

• custom – extant taxa are assigned to each subtree, though separate assignments

to each parent of the hybrid are not made,

• closest neighbor – if an extant taxon’s closest neighbor is identified as being

impacted by the hybrid, the taxon itself is assigned to the parental subtree,

and

• closest 2x hybrid – twice the quantity of hybrid-impacted taxa are assigned to

the parental subtree based upon average proximity to the hybrid node.

NetGen generated 2,000 source networks each with 50 extant taxa and birth/hybrid

rates of 48 and 12 respectively. Then starting with the extant taxa, outgroup, and

hybrid-impacted taxa, networks were reconstructed using the four techniques above.

The results are shown in Figure 4.6. As one would expect the two custom options,

with their ideal input information, are the best performers. However, it is encour-

aging to see that the closest neighbor option,which is the most likely to be used for

real applications, also exhibits good results.
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Figure 4.6: Tripartition scores for the four different methods of identifying parental
extant taxa. The experiments were conducted with 2,000 source networks (though in
the case of closest 2x hybrid only 1642 of those runs were eligible for reconstruction
as the number of extant taxa impacted by the hybrid was so great that there were
not enough remaining extant taxa for a parental set).

In order to confirm that the above results were not an anomaly based upon the

general location of the hybrid, the experiment was repeated with a birth rate of 240

and hybrid rate of 12. This new birth:hybrid ratio of rates (20:1 here, versus 4:1

previously) means that usually the one hybrid will occur much later in the topology.

The birth rate was scaled up to achieve the greater ratio, instead of decreasing the

hybrid rate, due to concerns about extant taxa similarity. In general, small rates lead

to large inter-event times causing long branch lengths and relatively high amounts

of evolution and dissimilarity among extant taxa.
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Figure 4.7: Tripartition results for the four different possible methods of identifying
the extant taxa impacted by the hybrid’s parents. Each scenario contained 2,000
runs, though most (approximately 1800), but not all of the sources met the one hybrid
requirement. And due to set sizes, like in the previous experiment, approximately
1670 of the runs were capable of having the closest 2x work. Although shifted to
the right, when compared to Figure 4.6 results (indicating slightly higher tripartition
scores on average), the same trends appear to hold, with the customs being the best,
closest neighbor being similar, and closest 2x hybrid having the largest scores on
average.

We observe from Figure 4.7 that the results are similar, where the custom op-

tions performed best (avg = 0.184 ± 0.062 and avg = 0.208 ± 0.065 for the extreme

and regular respectively), followed by closest neighbor being similar (avg = 0.218 ±
0.063), and finally closest 2x hybrid (avg = 0.339 ± 0.087). Although the behavioral

trend is the same, the average tripartition scores are not as low as the first set of ex-

periments. The influence that the rate variations have on reconstruction performance

is further discussed in Subsection 4.3.4. Another intriguing feature of this data is
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that all scenarios, except for the extreme custom, appear to contain a “short” and

“tall” histogram. As this behavior was consistently present in multiple experiments,

it was investigated and is explained in the last subsection of this chapter (4.3.5).

From these experiments, we conclude that although the custom options are con-

sistently better, the closest neighbor option is a good, realistic alternative when it

comes to choosing an identification method for parental extant taxa. As the closest

2x hybrid method did not do well in either of the two cases, it may not be necessary

to pursue extensively and/or analyze this option in the future.

4.3.2 Maximum Parsimony versus Neighbor Joining

The next step in the investigation was to determine what type of influence, if any, the

PHYLIP threshold would have on the reconstruction performance. As explained

in Section 4.2, this threshold determines whether a given subtree is reconstructed

using maximum parsimony (PHYLIP’s dnapenny and consense) or neighbor

joining (PHYLIP’s dnadist and neighbor) routines. A threshold of nine extant

taxa is NetReconstruct’s default as the PHYLIP documentation recommends

restricting the use of the dnapenny routine to when there are ten or fewer taxa.7

Distance methods such as neighbor joining have their drawbacks [15, 78], however

they do provide reasonable results quickly under many circumstances. On the other

hand, maximum parsimony is a computationally hard problem to solve optimally

and without the use of heuristics, requires significantly more processing time.8

These experiments were conducted on ultrametric, single-hybrid topologies with

15 extant taxa, plus an outgroup. This number was kept small to ensure that the

computationally intensive maximum parsimony processing would be completed in a

7The threshold is based on a count without the outgroup.
8A run-time analysis of the NetReconstruct algorithm is presented in Appendix A.
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Tripartition Scores for Various Thresholds
1,000 runs, b=48 h=12, one hybrid, 15 extant taxa

number parental taxa threshold=2 threshold=9 threshold=21
eligible runs method

945 extreme custom 0.098 ± 0.085 0.108 ± 0.085 0.112 ± 0.086
945 custom 0.160 ± 0.102 0.172 ± 0.101 0.177 ± 0.103
945 closest neighbor 0.187 ± 0.100 0.198 ± 0.095 0.197 ± 0.100
814 closest 2x hybrid 0.346 ± 0.133 0.349 ± 0.131 0.351 ± 0.131

approximate wall run-time 1.25 hours 1.5 hours 17 hours

Table 4.1: These tripartition results indicate that NetReconstruct’s ability to
reproduce these types of topologies, small height, ultrametric, and small number of
extant taxa, is not significantly affected by the choice of maximum parsimony or
neighbor joining techniques.

reasonable amount of time. At one extreme, the threshold was set to two extant

taxa, which forced subtree construction using the neighbor joining technique. The

other extreme guaranteed maximum parsimony by setting the PHYLIP threshold

to 21 extant taxa.

Table 4.1 shows the detailed results for 1,000 run scenarios. Although some of the

averages appear slightly better with the larger thresholds, this is a false impression

because when the standard deviation is considered, there is no significant improve-

ment. All runs were performed on a dual processor linux machine (Intel Core 2

CPU at 2.4 GHz) and approximate wall clock times are given for each run. These

results indicate that spending the additional time for a 21 threshold case, for a slight

improvement in average performance, is not warranted, at least for a 15 extant taxa

case with birth and hybrid rates of 48 and 12 respectively.
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4.3.3 Sensitivity to Sequence Evolution Models – Jukes-Cantor,

K2P, HKY/F84

Although the majority of our experiments were conducted using the Jukes-Cantor

model of sequence evolution, other models (e.g. F84, Kimura two parameter (K2P),

HKY, and GTR) exist [15, 78], and tools that either generate sequences or perform

reconstructions typically offer options for some subset of them. The Jukes-Cantor

model was chosen as the default for our tools since it is the simplest model, does

not require additional parameters, and is an option available in both of our support

tools (Seq-Gen and PHYLIP). We chose two models in addition to the standard

Jukes-Cantor with which to compare for this experiment. The other two models were

K2P (with an expected transition/transversion ratio of 2.0) and a HKY/F84 (with

base frequencies of 0.1, 0.2, 0.3, and 0.4 for A, C, G, and T respectively, in addition

to an expected transition/transversion ratio of 2).9 This latter model scenario was

selected as it was used by Posada and Crandall in [56] which is the basis for our case

study in Chapter 5.

By specifying the model parameters for Seq-Gen as part of NetGen’s input,

1,000 source topologies were made for each of the three scenarios. Other parameters

such as rates and size were kept constant at 50 extant taxa, b=48 h=12, second

parent of the hybrid chosen by minimum Hamming distance, closest neighbor used

for selecting parental extant taxa, etc. Then for the reconstruction phase, the correct

model of sequence evolution was provided to NetReconstruct in order to pass it

to PHYLIP’s dnadist routine. In order to ensure the model information would be

used in the reconstruction, the threshold for determining a maximum parsimony or

distance based reconstruction was lowered to two. Hence no reconstructions would

9The expected transition/transversion ratio refers to the ability for altering the fre-
quency of transitions (base changes within the categories of purines (A and G) and pyrim-
idines (C and T) versus transversions, which are defined as changes which cross these
categories.
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be done with maximum parsimony. As the HKY model is available with Seq-Gen,

but not PHYLIP’s distance algorithms, the F84 (which is known to be similar to

HKY [78]) was selected for the reconstruction portion of the third scenario. Shown

in Figure 4.8, the average tripartition scores for the different scenarios are similar.

This implies that for at least this set of parameters, the model of sequence evolution

has minimal influence on NetReconstruct’s performance.
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Figure 4.8: Tripartition scores for the different scenarios of sequence models. All
three scenarios have very similar results indicating that under these parameters, the
reconstruction algorithm is not sensitive to this influence.

4.3.4 Influence of Topological Factors on Reconstruction Per-

formance

As the results in Section 4.3.1 clearly showed a difference in average tripartition

score due to a rate change, this group of experiments was designed to investigate

the influence of topological factors on the performance of NetReconstruct. Sim-

ilar analyses have been conducted for trees (e.g. [44, 48, 68]). The factors chosen

for examination here were: number of extant taxa, birth/hybrid event rates, ultra-

metricity/molecular clock deviation, and second parent choice for the hybrid event.
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Extant Taxa Number

For the number of extant taxa study, we chose the three sizes of 15, 50, and 250.

Although our immediate goal is at the 15-taxon range, it was important to see if

larger scale attempts would result in poorer performance. The first round of 1,000

NetGen runs were conducted all with the same b=48, h=12 rates for all sizes and

two homologues each with length 1,000. The topologies were ultrametric and limited

to one hybrid and the PHYLIP threshold was set to nine. The results are shown in

Figure 4.9.
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Figure 4.9: Tripartition scores for custom neighbor option with constant rates and
varying extant taxa size. While the scores improve with taxa size, the results are
potentially biased as the heights of the networks vary as a function of size.

It should be noted that the average heights (0.043 ± 0.014, 0.068 ± 0.014, and

0.101 ± 0.014) for these three cases differ because the rates were the same (generating

on average the same size branches, thus taking more branches/level to achieve greater

extant taxa counts and leading to greater values of clock heights for the networks).

Therefore in order to make a fair assessment of how the amount of extant taxa

influenced the tripartition results, it was necessary to adjust rates and rerun the

experiments in order to achieve similar clock heights for the three cases of size.

Using the previous 250 extant taxa case as a starting point, two new scenarios were 50

extant taxa (b=36, h=9, average height = 0.090 ± 0.019), and 15 extant taxa (b=24,
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h=6, average height = 0.086 ± 0.028). With these three heights being statistically

close (within 1.5%) to each other, the variable height factor is removed and we

conclude NetReconstruct’s behavior, as measured by tripartition scores, does

indeed improve with the number of extant taxa, as shown in Figure 4.10.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

15

10

5

0

12

8

4

0

25

20

15

10

5

0

Histograms of Tripartition Scores
Varying Sizes of Extant Taxa and Rates

(Closest Neighbor Option, Controlled Heights)
50 extant taxa

avg score = 0.097
250 extant taxa

avg score = 0.067
15 extant taxa

avg score = 0.189

F
re

qu
en

cy
 (

N
or

m
al

iz
ed

)

Tripartition Score

Figure 4.10: With rates adjusted to fairly compare differing sizes of extant taxa,
there is evidence of a trend for better performance with greater sizes of extant taxa.

Event Rate Influence

Another factor which warranted examination was how the birth and hybrid rates

influenced the tripartition results. We chose three different pairs of rates to examine,

and following the approach of the previous experiment, the number of extant taxa was

altered in this case to achieve a fair comparison of networks with similar heights.10

While experimenting with PHYLIP the characteristic that was found to cause the

most difficulty in reconstruction efforts was how similar/dissimilar the extant taxa

were, which is determined not only by the rates, but also the number of extant taxa

and sequence length. Thus an average percent Hamming distance 11 (including the

10As in previous sections, these experiments were conducted with ultrametric, one hybrid
networks, 1,000 NetGen runs with two homologues, each of length 1,000.

11For each run, an average Hamming distance for all unique pairs of extant taxa is
calculated, capturing how much of a spread exists among extant taxa. This representative
value is calculated and tracked per run and averaged over all runs for the final statistic.
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outgroup) was calculated and reported for these runs. Hamming distances in general

are not an ideal measure, as a site can flip one or more times (possibly reversing

earlier changes) during a simulation before arriving in an extant taxon sequence.

However, it was tracked in these cases to see if there would be a significant difference

in the values for different rate combinations.
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Figure 4.11: Tripartition scores for the closest neighbor option with varying rates.
Clock heights for the network were controlled by altering the number of extant taxa.
Results tend to improve as the event rates are higher.

As displayed in Figure 4.11, there is a clear trend that larger event rates have

better performance with respect to tripartition scores. The full set of data for the

closest neighbor option is presented in Table 4.2. It is interesting to observe that

there seems to be a difference between the two cases which have the same (4:1)

ratio of rates (b=48 h=12 and b=36 h=9). This makes intuitive sense because

higher rates mean more frequent events and shorter branch lengths leading to easier,
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Tripartition Score Dependencies for Event Rates
Minimum 950 Runs, Closest Neighbor Option, Ultrametric Networks

event rates num extant height avg % hd extant tripartition score
b=24 h=12 10 0.066 196 ± 64 0.205 ±0.108
b=36 h=9 22 0.068 194 ± 45 0.155 ±0.074
b=48 h=12 50 0.068 198 ± 34 0.103 ±0.043
b=64 h=12 150 0.068 206 ± 26 0.080 ±0.023

Table 4.2: Tripartition data for four different rate combinations. The fact that the
second and third cases have different results for the same ratio of rates indicates that a
higher rate value (leading to shorter branch lengths) in general aids the reconstruction
effort.

more accurate subtree reconstructions by PHYLIP. There is no statistical difference

across the cases for the average percent Hamming distance.

Molecular Clock Deviations

For this set of experiments we compared three different branch length deviation

values for topologies of extant taxa size 250, all with birth/hybrid rates of 48 and 12

respectively. As in the previous sections, there were 1,000 source runs, with single-

hybrid topologies, and two homologues, each of length 1,000. The first case was

the standard ultrametric approach where evolutionary branch lengths are equal to

the clock branch lengths leading to the all extant taxa being equidistant from the

root with respect to evolutionary time. The goal of the other two scenarios was to

deviate the evolutionary branch lengths resulting in non-ultrametric networks where

the extant taxa have different evolutionary distances from the root. Deviations to

the evolutionary branch lengths are achieved by multiplying each branch with a

randomly selected value from a pre-defined gamma distribution. The distributions

used for these experiments were gamma(3,2) and gamma(3,9), where the first term,

η, of gamma(η,λ) is the shape parameter and λ dictates the scale. For a gamma

distribution, the expected value is η/λ, with a variance of η/λ2, leading to a standard
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Tripartition Scores for Clock Variations
250 extant taxa, b=48 h=12, minimum 800 runs

Ultrametric – Avg Evolutionary Height = 0.101 ± 0.014
extreme custom 0.059 ± 0.015

custom 0.064 ± 0.016
closest neighbor 0.067 ± 0.016
closest 2x hybrid 0.225 ± 0.082
Gamma (3,2) – Avg Evolutionary Height = 0.278 ± 0.062
extreme custom 0.073 ± 0.018

custom 0.078 ± 0.019
closest neighbor 0.081 ± 0.019
closest 2x hybrid 0.241 ± 0.071
Gamma (3,9) – Avg Evolutionary Height = 0.062 ± 0.014
extreme custom 0.134 ± 0.024

custom 0.138 ± 0.024
closest neighbor 0.141 ± 0.024
closest 2x hybrid 0.293 ± 0.070

Table 4.3: Average tripartition scores under varying molecular clock assumptions for
all four NetReconstruct methods of identifying parental extant taxa.

deviation of
√

η/λ [18].

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

25

20

15

10

5

0

20

16

12

8

4

0 0

4

8

12

16
ultrametric

avg score = 0.067
gamma (3,2)

avg score = 0.081
gamma (3,9)

avg score = 0.141

Histograms of Tripartition Scores
Varying Molecular Clocks

(Closest Neighbor Option, b=48 h=12)

F
re

qu
en

cy
 (

N
or

m
al

iz
ed

)

Tripartition Score

Figure 4.12: Tripartition scores for differing clock options. While the ultrametric
scenario performs the best, the two deviation scenarios still demonstrate reasonable
tripartition scores. The data results from 1,000 runs using the closest neighbor option
for identification of parental extant taxa.
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Figure 4.12 provides histograms for these three deviation scenarios under the

closest neighbor method of parental extant taxa identification. These results indicate

the deviation does have a noticeable impact. The results for all four parent options,

including the average of the resulting evolutionary height, are presented in Table 4.3

and show similar trends to the closest neighbor histograms.

Second Parent Selection Methods for Hybrids

A final topological factor to consider was the method by which second parents for

the hybrids in the source networks were chosen. For the previous experiments, the

default criteria of minimum Hamming distance was used. Although simplistic, the

algorithm is premised on the biological fact that parental lineages need to be sim-

ilar. NetReconstruct’s design implicitly favors a minimum Hamming distance

approach. Recall that the parents of the hybrid are created by randomly splitting

and assigning the DNA sequences of the hybrid to two parents and subsequent recon-

struction of those two parental nodes is performed as part of the Stage 3 (remaining

subtree) which employs either maximum parsimony or neighbor joining depending

on the set size.

Four different settings for choosing the second parent were specified and the re-

sults for the closest neighbor reconstruction are shown in Figure 4.13. Although the

standard deviations are not small enough to make absolute conclusions, it is interest-

ing that the average scores follow an intuitive trend. Namely, the extreme best and

worst scenarios are when the second parent for the hybrid is chosen by the minimum

Hamming distance and random methods respectively. The two scenarios where the

exponential function is used fall in between the extremes, with the smaller setting

doing better on average. Recall from Section 2.1.3 that a truncated exponential func-

tion is defined by the user specifying a Hamming distance having a 1/e probability

of occurring. A value for the desired Hamming distance between the first and second

84



Chapter 4. Reconstructing Phylogenetic Networks with Single-Diploid-Hybrid Events

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

10

8

6

4
2

0

10

8

6

4

2

0 0

2

4

6

8

12

8

4

0

+/− 0.050
avg score = 0.111

random

+/− 0.046
avg score = 0.106

exp (1/e = 10%)

+/− 0.043
avg score = 0.103

min hamming distance

+/− 0.046
avg score = 0.105

exp (1/e = 5%)

Tripartition Score

F
re

qu
en

cy
 (

N
or

m
al

iz
ed

)
F

re
qu

en
cy

 (
N

or
m

al
iz

ed
)

Histograms of Tripartition Scores
Varying Second Parent Hybrid Selection

(Closest Neighbor Option)

Figure 4.13: Histograms of the tripartition scores for varying scenarios of second
parent selection. The two top plots show that the minimum Hamming distance and
the random techniques yield the most diverse results while the bottom graphs fall
in between. The exponential function (described in Section 2.1.3) appears to have a
small, though not significant, impact on average.

parents is then chosen from the distribution. If no lineages meet this criteria, it is

expanded as needed until the threshold is reached. In this case, the two scenarios

set the 1/e values of 5% and 10%, and both utilized thresholds of 50%. These values

were chosen to allow small variations in the second parent, but purposely not large

as it is known that very diverse species do not hybridize. Under these circumstances,

no significant influence on reconstruction quality was observed.
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4.3.5 Data Characterization

While reflecting upon the results presented in the prior subsections, three questions

have surfaced. First, how well could one expect NetReconstruct to perform with

its dependency on PHYLIP, and in particular neighbor joining, for sufficiently large

subtrees? Second, to what extent did the topological structure versus the sequence

information contribute to the observed success of the reconstruction efforts? Finally,

what was the cause of the appearance of two distributions in many of the tripartition

histograms?

The first question is concerned with performance, however, it indirectly raises

the issue of whether the subtree reconstruction method is a weakness of the overall

model. For this PHYLIP dependency experiment, we created 1,000 source trees with

50 extant taxa using NetGen, having a birth rate of 48 and then used PHYLIP’s

neighbor joining algorithm to reconstruct trees. The similarity was then measured

using the bipartition measure and provides a boundary notion for how well the

subtrees for NetReconstruct can be made using these parameters.

Figure 4.14 shows that PHYLIP is capable of recreating very similar trees of

this nature.12 This outcome indicates that the earlier results for the idealized, ex-

treme custom option are approaching the limit. As neighbor joining recreates rea-

sonable trees given these parameters, this suggests that algorithmic improvements

to NetReconstruct should be sought before changing the subtree reconstruction

software support.

The next aspect to examine was the extent to which the topology assumptions ver-

12As NetGen yields rooted trees and PHYLIP returns unrooted trees, it was necessary
to “unroot” the source trees as failing to do so would create an unfair comparison when
computing the bipartition score since rooted trees contain an additional non-trivial edge.
This is not a factor when the trees are used in NetReconstruct as an adjustment for
the outgroup is made as discussed in Section 4.2.
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PHYLIP Neighbor Reconstructed
(1,000 runs, 50 extant taxa, b=48)

Histogram of Bipartition Scores
NetGen Created

0.0 0.2 0.4 0.6 0.8 1.0

25

20

15

10

5

0

Bipartition Score

F
re

qu
en

cy
 (

N
or

m
al

iz
ed

)

average = 0.053
+/− 0.033

Figure 4.14: PHYLIP’s neighbor joining reconstructions of trees perform very well
for these sets of parameters, implying that one can expect good subtree reconstruc-
tions for the purposes of NetReconstruct.

sus the sequence information for NetReconstruct affected the tripartition results.

The experiment for this area was to look at the results of calculating the tripartition

measure on pairs of random networks (initially presented in Section 3.3.1) against re-

sults of NetReconstruct run with regular subtrees (using PHYLIP) and random

subtrees using RIP. When using the combination of RIP and the extreme custom

option, whose input specifies separate sets for the parental offspring, only topological

aspects such as outgroups and the structure of a hybrid are preserved when executing

NetReconstruct.

Figure 4.15 illustrates the intuitive result that the sequence information relied

upon by PHYLIP for the subtree reconstructions has the most influence on creat-

ing results with low tripartition scores. However, it is interesting that the overall

topological structure of the three subtrees provided by NetReconstruct does con-

tribute favorably to the algorithm’s performance as compared to the purely random
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Figure 4.15: Tripartition histograms for networks reconstructed in three different
manners, purely random, topological (no sequence) constraints, and full information.
Clearly the last option performs the best, though topology does seem to reduce the
scores slightly.

case.

The last issue was the appearance of more than one distribution in some of the

tripartition results. For example, Figure 4.16 provides both the normalized and raw

histograms from the 15 extant taxa case (b=48, h=12) where the closest neighbor

option was used. After studying the reconstruction details for the closest neighbor

case, it was determined that the closest neighbor option often underestimates the

number of extant offspring descending from the hybrid’s parents. On average, the

number of parental extant offspring were 6.02 versus 0.29 for source and reconstructed

networks respectively. This leads to these extant taxa being joined to the network

as part of the remaining subtree, although often right next to the parents therefore

preserving much of the original structure, and artificially increasing the number of

non-trivial edges. This increase from 17 to 18.72 on average, impacts the tripartition

calculation and thus the histogram.

The variation in the parental extant descendants from the closest neighbor re-
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Figure 4.16: Tripartition histograms (normalized and not normalized) for the 15
extant taxa case. The data are comprised of at least two disjoint distributions.

construction technique is not present when using the custom option as the user is

required to identify the parental extant taxa. Even with the number of parental

extant taxa fixed, forcing the non-trivial edge counts to be equal, the custom op-

tion continued to exhibit the multi-distribution feature (see leftmost plot Figure

4.17). The one factor that was still allowed to differ in this scenario was whether

NetReconstruct gave all the parental subtrees to one or both of the hybrid’s

parents. Hence we split the data based on this criteria and cleanly found this to be

the underlying cause. The histogram on the right of Figure 4.17 shows the two sets –

674 cases where one parent has no descendants other than the hybrid (red) and 271

cases where both parents have extant offspring in addition to the hybrid node (blue).

Furthermore, this explains why the multiple distribution effect was not visible with

the extreme custom results.
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Figure 4.17: Tripartition histograms for the custom option. There are 945 data
points in the leftmost plot and rightmost contains two sets (674 in the red and 271
in the blue) sorted according to whether one or both parents have extant taxa.
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Chapter 5

Case Study – Reticulate Node

Influence on Phylogenetic

Reconstructions

Multiple studies have attempted to assess how the inclusion of extant taxa, de-

scendant from an ancestral hybrid, affects the outcome of phylogenetic reconstruc-

tion [81]. In fact, some biologists concerned about possible loss of topological ac-

curacy, will exclude any extant taxon believed to be the progeny of a hybrid [62].

Hence, understanding the influence of reticulate nodes on inferred phylogenies is an

important pursuit by itself. However, when true topologies are known, an additional

question can be asked – “What characteristics about the reticulate nodes themselves

tend to hinder reconstruction efforts?”.

Posada and Crandall conducted such an examination for small topologies that

contained a single instance of chromosomal recombination [56], a different kind of

reticulation event than hybridization. Although different in scope from our work,

their study provided some ideas for how to explore a hybrid’s influence on reconstruc-
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tion at the interspecific level. Section 5.1 reviews pertinent aspects of the Posada and

Crandall study that influenced our investigations. Our experimental design is out-

lined in Section 5.2, and the results in addition to conclusions complete the chapter

in Section 5.3.

5.1 Relevant Components of the Posada and Cran-

dall Study

Posada and Crandall considered topologies of size eight extant taxa with one reticu-

late node of chromosomal recombination. Although DNA is mingled across lineages

by chromosomal recombination, this type of reticulation is unlike hybridization be-

cause individual chromosomes are recombined to become mixtures of different lin-

eages. For simulation purposes, reciprocal chromosomal recombination can be mod-

elled as two single strings with a defined breakpoint at which the remainder of the

sequences are exchanged. For topological representation, such an event can be shown

as an intersection of two lineages. In contrast, hybridizations, as we have defined

them, receive chromosomes from their parental lineages, but the chromosomes are

not recombined. Namely, each homologous chromosome consists of only the sequence

inherited from one parent, not a mixture of the two parents. Diploid hybrids are mod-

elled as the formation of a new lineage with complete strings. Thus, when depicted

topologically, hybridization is illustrated with a new lineage in addition to the two

existing parental ones. Nonetheless, both hybridizations and chromosomal recom-

binations are non-tree like events, which can be studied to assess their influence on

phylogenetic analyses. Given our interest in diploid hybridizations, where each par-

ent of the hybrid contributes half of its DNA sequences, the most applicable portion
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of Posada and Crandall’s study is the reciprocal, 50/50 breakpoint scenario. 1

The technique chosen by Posada and Crandall for modelling an evolutionary

history containing a single, reciprocal recombination event was the composition of

two separately generated trees. With this approach, the topology of the first tree

provides the history of sequence evolution for the left portion of a single DNA string,

up until the breakpoint index, where the history from the second tree is then used

for the latter half of the sequence. Based upon an example from [56], Figure 5.1

shows a simple example of this concept for a four-taxon tree. Posada and Crandall

also restricted their tree topologies to three shapes: 1) balanced (strictly binary tree

structure), 2) unbalanced (all but the last birth event results in exactly one extant

taxon and the subroot for the next event, sometimes referred to as a “caterpillar”

tree), and 3) intermediate (a fixed topology containing balanced and unbalanced

components).

Once source topologies using the HKY model were created2 along with their cor-

responding sequences,3 they were segregated into sets of 100 based upon whether

the type of reticulate event was ancient, recent-divergent, or recent-close. Then,

assuming no reticulate history, tree reconstructions were performed. Reconstruc-

tion techniques included: maximum parsimony, maximum likelihood, and minimum

evolution. The resulting tree histories were assessed according to the percentage of

subtrees found and the number of exact topology matches between the reconstructed

topology and either of the source trees.

Although various tree reconstruction methods, mutation rates, and sequence

lengths were tested, these particular parameters were not found to have a signifi-

1Reciprocal recombination is is also known as “crossing over” and is defined with two
lineages interchanging DNA sequences at the specified breakpoint, which refers to the index
of the base pair where the break occurs.

2The topology heights were chosen as 0.3 and 0.6.
3Source sequences were generated using the HKY model with a transversion ratio of 2.0

and A, C, G, and T base frequencies of 0.1, 0.2, 0.3, and 0.4 respectively.
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Figure 5.1: Posada and Crandall merged two underlying trees to mimic a reticulate
topology resulting from a chromosomal recombination event. The two topologies on
top are for the sequence evolution on either side of the breakpoint. The bottom
topology is the resulting recombination network. (This figure is based upon an
example found in [56].)

cant influence on their results. For the 50/50 reciprocal cases, Posada and Crandall

showed that when the chromosomal recombination was assigned to have occurred

recently between divergent lineages, the reconstructed tree was consistently differ-

ent from the two underlying source trees. However, when the event was ancient or

recent, but between close lineages, one of the underlying source trees was recovered

almost all of the time [56]. There was a third category of results falling between

the two extremes, for capturing when the reconstructed tree was close to one of the

underlying trees, but not an exact match. However, none of the 50/50 reciprocal
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scenarios were described by this type of result.

5.2 Experimental Design for Single-Diploid-Hybrid

Topologies

We adapted some experiments from Posada and Crandall to be applicable for our

interspecific, diploid-hybrid focus, and designed others to capture network recon-

struction performance data. As mentioned in the previous section, hybrid topologies

fundamentally differ from the chromosomal recombination ones, as the sequences of

the parental lineages remain unchanged and a new lineage that contains the intermin-

gled DNA is formed. Even with these differences however, both types of topologies

can be regarded as a single network or multiple, underlying trees. Although we used

NetGen to create our source networks, and not underlying trees as Posada and

Crandall, we chose to break them into their tree components in order to perform

the match analysis like the chromosomal recombination study. An example of a

single-hybrid topology decomposed into its two underlying trees is shown in Figure

5.2.

The first step in our experiments, was to use NetGen for creating large quan-

tities of source networks containing single-diploid-hybridization events. For consis-

tency with Posada and Crandall, we chose two sets of base rates (b=4.85, h=1 and

b=2.43, h=0.5) that would on average yield heights of 0.3 and 0.6 for the eight

extant taxa case. In addition to these small scenarios, we expanded the study to

include topologies with an ingroup of 50 extant taxa.4 The decomposition of source

networks into their underlying subtrees, as described in the previous paragraph, was

performed as a post-processing step to network generation.

4Note that the final sizes were actually one greater in each case as we used an outgroup
for both generation and reconstruction.
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Figure 5.2: A network with a single hybrid event can be broken into two underlying
trees. The top topology is the network with one hybridization. The two topologies
on the bottom are the corresponding, underlying subtrees. The one on the left (red
extant taxa), represents the evolutionary history for the chromosomes contributed
by parent 1 (P1) to the descendants (D,E,F) while the topology on the right with
green extant taxa shows the same information for parent 2 (P2).

With respect to sequence evolution, we created source topologies using the same

model and parameters as Posada and Crandall (HKY, expected transition/transversion

ratio = 2.0, base frequencies A=0.1, C=0.2, G=0.3, and T=0.4). As diploid hybrids

use multiple chromosomes by definition, we worked with two, each of length 1,000.

In order to generate networks for all of the reticulate node categories, we chose the

second parents for the hybrids with the exponential function option where the dis-

tribution defining (1/e) values were set to 10% and 50% of the chromosome length

of 1,000, allowing for diversity to range.
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As eight extant taxa networks are small, Posada and Crandall segregated their

source topologies into three categories of recombination: ancient, recent-close, and

recent-divergent. Using our measures for reticulate timing and diversity we quanti-

tatively established six categories, a subset of four which was used with the smaller,

eight-taxon case. The categories were:

(i) ancient with low diversity,

(ii) ancient with high diversity,

(iii) mid-range with low diversity,

(iv) mid-range with high diversity,

(v) recent with low diversity, and

(vi) recent with high diversity.

The diversity component is divided into low, when scores are less than 0.5, and

high, when scores are greater than or equal to 0.5. With eight extant taxa, timing

was evenly split between ancient, scores less than 0.5, and recent indicating a value of

greater than or equal to 0.5. For the 50 extant taxa, timing was segregated into three

categories – ancient (0 <= x <=0.333), mid-range (0.333 < x <= 0.666), and recent

(0.666 < x <= 1.0). Given the simulation parameters, it was possible to generate

source networks for all categories, though often disproportionately. Therefore, after

source networks were segregated, a fixed number were randomly chosen for each

category.

Both tree and network reconstructions were performed for each source network.

NetReconstruct, with the extreme custom option, was used for the network re-

constructions, and the threshold for the subtree algorithm choice between maximum

parsimony versus neighbor joining was set to nine extant taxa. When neighbor join-

ing was required by NetReconstruct, the sequence model parameters from above
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were provided as input to PHYLIP [10]. However, as HKY is not an option available

with PHYLIP, the similar F84 model [78] was substituted in these situations.

In order to assess overall performance, tripartition scores were calculated for each

pair of source and inferred networks across the reticulate node categories. It was also

desirable to investigate the accuracy with which the hybrid nodes were located in

the reconstructed networks, by comparing timing and diversity categories for the

source and reconstructed networks. Unfortunately, a perfectly parallel comparison

cannot be made as clock branch lengths are used by both the timing and diversity

measures (see Chapter 3), as opposed to the evolutionary branch lengths produced

by reconstruction algorithms. However, given the timing measure is defined in rela-

tive, not absolute terms, and that the networks are generated with the assumptions

of constant rates and ultrametricity, this difference in type of branch lengths was

not anticipated to have a significant influence on the results. By making both the

overall and the more refined category assessments, insight into the behavior of the

reconstruction algorithm was achieved.

For the straight tree portion of our study, trees were reconstructed using either the

maximum likelihood technique, which was computationally reasonable for the eight-

taxon scenarios, or neighbor joining at the fifty-taxon size. PHYLIP [10] was used

for neighbor joining, again with the aforementioned sequence model parameters and

RAxML’s GTRGAMMA model [73] was used for the smaller scenarios. Bipartition

scores were calculated and examined for exact and close matches between the two

underlying source trees, TA and TB, and the reconstructed one, TR.

At first glance, it may appear that one tree reconstruction, yielding a single

tree, TR, and two bipartition calculations for comparing TR to each of the underlying

source trees, TA and TB, would be sufficient to mimic the Posada and Crandall match

analysis. However, this is incorrect as our networks produce a diploid hybrid by

randomly selecting a homologous chromosome from each pair of homologues present
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in the two parents. This mimics what happens in the real-world when diploid hybrids

are formed. However, as tree reconstructions use a single aligned sequence as input for

each taxon, there are two possibilities for concatenating the two homologues from our

source networks. Therefore it was necessary to perform a second tree reconstruction

where the extant descendants of the hybrid had their chromosomes concatenated in

the opposite order. This resulted in a total of four bipartition calculations to search

for matches between the reconstructed trees, TR1 and TR2, and the underlying trees,

TA and TB.

Finally, an overall estimation of the performance for tree versus network recon-

structions was conducted. A set of source topologies was generated and two sets of

inferred networks were created – one using the closest neighbor option for selecting

the parental descendants and the other using the extreme custom technique. By

comparing these results to the bipartition scores of underlying source and recon-

structed trees, conclusions were drawn as to whether network reconstructions have

the potential to infer more accurate topologies than tree approaches.

5.3 Results and Conclusions for Single-Diploid-

Hybrid Networks

Before addressing the results of the experiments, it is important to highlight what is

being measured and the applicability of the results. Recall that each reconstruction

was executed based on a complete set of extant taxa, including those lineages de-

scended and not descended from the reticulate event. For the specified parameters,

the results capture: 1) if, and how much, a reconstructed topology is altered by a

reticulate node, and 2) what categories of reticulate nodes are more or less problem-

atic for the chosen reconstruction techniques. The data reflect the performance of
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the selected tree and network reconstruction algorithms, from which one can assess

the capabilities of the algorithms. The data do not reflect the difficulty, ease, or

accuracy with which other algorithms and/or laboratory techniques may perform

when attempting to detect or reconstruct the same reticulate sources.5

The data in Table 5.1 indicate that the tripartition scores improve with larger

numbers of extant taxa and higher rates. Given the results of Chapter 4, this per-

formance is consistent with NetReconstruct’s general behavior. Upon closer

observation, the more intriguing result is that within each set of experiments, the

tripartition score follows a clear trend according to the category defined by the timing

and diversity of the hybrid. Namely, the reconstructed networks with lower triparti-

tion scores are most probable when the hybrid is ancient with low diversity. Poorer

reconstructions are found when the topology has a recent and high diversity hybrid.

One finds a similar trend when examining the timing and diversity scores pre-

sented in Table 5.2. Using the same set of reconstructed and source networks from

above, the timing and diversity scores for the reconstructed hybrids were calculated

in order to determine if the reconstruction placed them in the same range as their

sources. The percentages in Table 5.2 indicate how many reconstructed hybrids in

the set possessed comparable timing and diversity scores relative to the category.

The data here show that in general, NetReconstruct tends to infer hybrids as

being ancient and occurring between parental lineages with low diversity. The timing

results are the most significant of the two, with drastic differences between the two

ends of the spectrum (ancient versus recent). It is possible that using clock versus

evolutionary branch lengths, as discussed in the previous section, influenced these

results, but nevertheless these values motivate future investigation. The fact that the

5For example, a traditional tree analysis may be performed if a biologist has pairs
of homologous chromosomes that are known to come from separate parents and are not
suspected of having undergone recombination. In this scenario, each member of the paired
homologues is treated as a separate extant taxon and a tree reconstruction is performed
to determine if the different members of a pair associate with a different subtree.
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Average Tripartition Scores by Category
(Reconstructions Performed with Extreme Custom Option)

birth rate = 4.85, hybrid rate = 1.0
8 extant taxa 50 extant taxa

Category Tripartition Set Tripartition Set
timing/diversity Score Size Score Size

ancient low 0.048 ±0.066 500 0.063 ±0.033 500
ancient high 0.132 ±0.092 125 0.082 ±0.035 500
middle low — — 0.090 ±0.038 500
middle high — — 0.115 ±0.041 500
recent low 0.162 ±0.105 500 0.122 ±0.046 500
recent high 0.231 ±0.122 500 0.159 ±0.049 250

birth rate = 2.43, hybrid rate = 0.5
8 extant taxa 50 extant taxa

Category Tripartition Set Tripartition Set
timing/diversity Score Size Score Size

ancient low 0.056 ±0.072 500 0.086 ±0.051 500
ancient high 0.149 ±0.091 125 0.099 ±0.045 500
middle low — — 0.129 ±0.084 500
middle high — — 0.140 ±0.070 500
recent low 0.168 ±0.108 500 0.182 ±0.128 500
recent high 0.237 ±0.122 500 0.212 ±0.111 250

Table 5.1: Average tripartition scores for the four scenarios sorted by hybrid category.
Reconstruction scores improve when the hybrid occurs early during the simulation
and its parents are from closely related lineages.

diversity scores exhibit a similar, but slightly different behavior in a less significant

fashion, leads to the suspicion that the sequence evolution model may play a role in

these results.

Depending on the sequence data and analysis techniques employed, one might

expect that a hybridization between diverse parents in recent history would be the

easiest kind to detect because its differences should be significant, and there would

not have been sufficient time for it to blend into the evolutionary history. However,

a very different trend is found in Tables 5.1 and 5.2, with the topologies containing
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Reconstructed Hybrids with the Same Range of
Timing and Diversity Scores as their Source Category

(Reconstructions Performed with Extreme Custom Option)

birth rate = 4.85, hybrid rate = 1.0
8 extant taxa 50 extant taxa

Category % Timing % Diversity % Timing % Diversity
timing/diversity Correct Correct Correct Correct

ancient low 74.6 98.8 78.6 90.4
ancient high 95.2 76.0 98.0 52.0
middle low — — 6.0 66.2
middle high — — 2.2 49.6
recent low 49.6 79.4 0.0 51.6
recent high 8.4 75.4 0.0 42.4

birth rate = 2.43, hybrid rate = 0.5
8 extant taxa 50 extant taxa

Category % Timing % Diversity % Timing % Diversity
timing/diversity Correct Correct Correct Correct

ancient low 72.2 99.0 75.5 91.6
ancient high 92.0 76.0 87.8 49.6
middle low — — 18.2 65.2
middle high — — 16.8 52.2
recent low 48.8 78.2 4.4 48.4
recent high 8.0 74.8 4.4 48.4

Table 5.2: The data indicates that NetReconstruct has a tendency to place
reconstructed hybrids as being ancient and occurring between low diversity parents.
It is interesting to note that the rate of decline across the categories between timing
and diversity is significantly different.

an ancient hybridization scoring better than the recent ones. This trend is a re-

flection of how the reconstruction algorithm performs on simulated data. A simple,

initial explanation for this tendency is that perhaps NetReconstruct performs

better whenever sequences are more close than diverse. A more intriguing question

is whether NetGen contains biases that cause the recent and diverse hybrids to be

too diverse leading to reconstruction difficulties. This issue is addressed further in

relationship to the results of the next experiment.
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In addition to examining the tripartition scores, we also conducted a match anal-

ysis like the one performed by Posada and Crandall. For this measure, the bipartition

score between the inferred trees, TR1 and TR2, and each of the underlying source trees,

TA and TB is calculated. Recall that a bipartition result of 0.0 for a pair of trees

indicates the topologies are isomorphic. Table 5.3 shows the bipartition information

for the scenarios examined. The percentages are reported for comparison purposes

because it was not computationally reasonable to have the same number of source

networks in each category.

Case Study
Reconstructed vs. Underlying Tree Matches by Category

birth rate = 4.85, hybrid rate = 1.0
8 extant taxa 50 extant taxa

Category Match Set % Match Set %
timing/diversity Count Size Count Size

ancient low 429 500 85.8% 26 500 5.2%
ancient high 86 125 68.8% 20 500 4%
middle low — — — 19 500 3.8%
middle high — — — 15 500 3%
recent low 311 500 62.2% 15 500 3%
recent high 272 500 54.4% 15 250 3.6%

birth rate = 2.43, hybrid rate = 0.5
Category Match Set % Match Set %

timing/diversity Count Size Count Size
ancient low 392 500 78.4% 11 500 2.2%
ancient high 80 125 64% 15 500 3%
middle low — — — 5 500 1%
middle high — — — 9 500 1.8%
recent low 324 500 64.8% 5 500 1%
recent high 234 500 46.8% 1 250 0.4%

Table 5.3: Percentage of matches between the reconstructed trees and the underlying
trees of the source network. Although topologies with eight extant taxa are often
matched, this behavior occurs significantly less often for the larger scenarios.

The higher frequency of perfect matches with eight extant taxa makes intuitive
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sense as there are fewer internal edges that must be correctly reconstructed. This is

supported by examining a simple case analysis for birth only trees. One thousand

trees of two different sizes (rates are kept constant) are created by NetGen and

then inferred using RAxML. The histograms in Figure 5.3 indicate that although

the average bipartition score is similar for both scenarios, the one on the left with

fewer extant taxa has three distinct bins – each one corresponding to whether zero,

one, or two edges are incorrect. Furthermore, it is interesting to note the eight taxon

case on the left implies an upper bound of 79.3% for how often, on average, one can

expect to have a perfect tree reconstruction.
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Figure 5.3: Histograms reflecting the spread of bipartition scores for two differing
sizes of simulated/reconstructed birth-only trees. Specifically, the scores for the
smaller topology are more discretized.

Although it is encouraging that our study yields high percentages of matching

for the eight-taxon case, it remains unclear for certain why Posada and Crandall

found almost 100% matches for their ancient, reciprocal 50/50 breakpoint scenario.

We hypothesize the cause is related to their limited tree shapes, as that is the pri-

mary difference found between the experimental setups. Furthermore, our values
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for matching in the recent diverse cases are much higher than their results which

is puzzling. Even with potential confounding factors between the chromosomal re-

combination and single-diploid-hybrid studies, we see the re-emergence of the earlier

trend where ancient hybrids are more easily reconstructed than recent and diverse

ones. The appearance of this trend in both the tree and network studies motivates

considering whether the behavior is real or an artifact of the algorithms employed

by both Posada and Crandall and us for generating sequences.

This sequence evolution issue may be more pronounced with our diploid hybrid

model than others, as there is an element of randomness when selecting and assigning

the homologues from the parental lineages to the hybrid. Recall that the multiple

possible outcomes for the hybrid sequences required the reconstruction of a second

tree for the underlying tree experiments. NetGen models homologues as individual

sequences that evolve over time. Although it is realistic that a pair of homologous

chromosomes do not match identically, it may be desirable to maintain some level

of genetic similarity between them throughout the simulation. However, there is

no current capability to ensure this, and for topologies with greater evolution, the

similarity of homologues will diminish over time. Thus for hybrids occurring later

in the simulation, it is quite likely the combined homologues donated by each of the

parents will exhibit even less genetic similarity. However, Hamming distance, or min-

imum evolutionary distance, is typically a factor for selecting the second parent of

the hybrid. Therefore, although the resulting hybrid lineage may contain dissimilar

paired homologues, they cannot be too disparate, otherwise the second parent would

not have been a candidate to participate in the hybrid event. This issue of extended

sequence divergence certainly warrants future work. If it is found to be a real limi-

tation, it would be interesting to see if other simulators exhibit a similar weakness.

As the Posada and Crandall results demonstrated the same trend across the reticu-

late node categories for reconstruction performance, it is possible the difficulty is a

general limitation of evolutionary sequence models.
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The final experiment investigated how network and tree reconstructions com-

pare to each other. Ideally one would like to quantify the topological similar-

ity/dissimilarity between a reconstructed tree and a source network. This would

facilitate a comparison of two scores – one for a reconstructed tree/source network

and another for a reconstructed network/source network. It would then be possible

to gauge which reconstruction algorithm is better suited for inferring the evolutionary

history.

Unfortunately, the ways in which the bipartition and tripartition measures are

defined, attempting to score a tree and a network topology results in incomparable

edge lists. Additionally, even with the same number of extant taxa, networks inher-

ently have more internal edges due to the reticulate event(s). This fact makes it more

difficult to achieve a perfect match between two network topologies than two trees,

as there are more internal edges under consideration. However, having a single edge

incorrect between two topologies has a smaller cost for a network than a tree due to

the extra internal edges present. Furthermore, comparing bipartition and triparti-

tion scores does not capture the benefit of the hybrid information (e.g. location of

hybrid in the history, relationship of hybrid’s parents to each other, etc.) produced

by a network reconstruction algorithm. Given these shortcomings and restrictions,

the best available option at this time is to compare network and tree reconstructions

by examining their respective scores (tripartition and bipartition) for the appropriate

corresponding source. Namely, we compare tripartition scores of reconstructed and

source networks to bipartition scores of reconstructed and underlying source trees.

These experiments examined the same four size/rate sets as previously discussed.

In order to achieve an overall performance assessment, each scenario contained 1,000

single-diploid-hybrid networks from all categories (in proportion to their frequency

of occurrence during the generation process). To review, the four sets of simulation

parameters were:
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• 8 extant taxa, birth = 4.85, hybrid = 1.0,

• 8 extant taxa, birth = 2.43, hybrid = 0.5,

• 50 extant taxa, birth = 4.85, hybrid = 1.0, and

• 50 extant taxa, birth = 2.43, hybrid = 0.5.

The three reconstruction scenarios examined were:

1. Tripartition score of reconstructed network, NR−CN (NetReconstruct with

closest neighbor option), and the source network, NS. This calculation is:

tripart(NR−CN , NS).

This corresponds to a possible real-world situation where a single hybrid and

its extant descendants are identified and a network reconstruction is performed.

2. Bipartition score of a reconstructed tree and an underlying tree of the source

network.6 In this situation we perform both tree reconstructions (TR1 and TR2)

possible (where the sequences have been flipped for hybrid impacted taxa) and

compute all four bipartition scores with the two underlying source trees (TA

and TB). The average of TR1’s and TR2’s best bipartition score with respect to

TA and TB is then calculated, namely:

average(X, Y ),

where X = min(bipart(TR1, TA), bipart(TR1, TB)), and

where Y = min(bipart(TR2, TA), bipart(TR2, TB))).

6For the smaller size of eight extant taxa the tree reconstructions are performed with
the maximum likelihood technique implemented in RAxML. Topologies with 50 extant
taxa are inferred with PHYLIP’s neighbor joining application.
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This is representative of a situation where the extant taxa are known, but a

hybrid is not suspected to have occurred and therefore a tree reconstruction

with a single sequence is performed. However, not knowing the order of the

sequences or which underlying tree is more likely, the above calculated value is

used.

3. Tripartition score of reconstructed network, NR−EC (NetReconstruct with

extreme custom option), and the source network, NS. As expressed by:

tripart(NR−EC , NS).

This is an ideal situation where all the extant details are known and it provides

an upper bound on NetReconstruct’s potential performance.

The first set of histograms, Figure 5.4, indicates that for birth and hybrid rates of

4.85 and 1.0 respectively, the tree reconstructions are topologically more close to their

underlying source trees than are the reconstructed networks to their source networks.

However, the difference between the extreme custom and tree reconstructions is small

for both extant sizes and indicates that network reconstructions have the potential

of outperforming tree efforts.

For the second set of histograms (b = 2.43 h = 0.5) in Figure 5.5, the tripartition

scores for the extreme custom option are lower on average than the bipartition values

in both size scenarios. The fact that the smaller rates, which on average result in

longer branches and more evolutionary change, performed better than the first set

of rates is not consistent with the findings of Chapter 4 where tripartition scores im-

proved with larger rates. We hypothesize that the differing proportions of the hybrid

categories represented in each scenario may be influencing these results and further

experiments would be required before drawing any global conclusions. The results

do indicate however, that in addition to hybrid information provided by network
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reconstructions, the potential to acquire a more accurate topology with a network

instead of tree reconstruction does exist.
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Figure 5.4: Tripartition and bipartition scores for topologies based upon single-
diploid-hybrid source networks. The bipartition scores of the reconstructed trees
and underlying source trees perform the best on average for this set of rates.
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Figure 5.5: Tripartition and bipartition scores for topologies based upon single-
diploid-hybrid source networks. On average, the tripartition scores resulting from
the extreme custom reconstructions and source networks perform the best out of the
three scenarios examined for this set of rates. This indicates a network reconstruction
algorithm is capable of providing a more topologically accurate reconstruction than
a tree technique under certain conditions.
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Chapter 6

Conclusions

This work contributes to both the fields of computer science and bioinformatics. A

direct benefit for bioinformatics is the three new pieces of publicly available soft-

ware, NetGen, NetMeasure, and NetReconstruct. Although not designed

to address every question pertaining to reticulate events, these programs do pro-

vide a framework for exploring modelling issues and promoting the development

of new techniques relevant to phylogenetic networks. The new node-based mea-

sures of timing, diversity, and impact, should aid communication between biologists

and computer scientists when discussing the characterization of reticulate nodes in

graphs. Additionally, NetGen’s underlying models of hybridization and simultane-

ous sequence evolution represent significant advances for the simulation community.

Moreover the techniques related to subtree reconstruction, which were developed for

NetReconstruct, yield new applied algorithms. Finally, the modified Newick for-

mat answers an immediate need of biologists and computer scientists by representing

reticulate phylogenies.

The dissertation proposal [45] for this work put forth the following research goals:

(i) provide reasonable simulation data for network reconstruction benchmarks,
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(ii) assuming there is a significant meaning to the region and/or type of hybrid,

develop a new measure to capture this information,

(iii) gain insight into the impact of hybrid data on phylogenetic trees, and

(iv) assess the impact and propose a reconstruction method that will place a single

hybrid event in an appropriate region of the reconstructed network.

At the time of the proposal, it was believed that an existing network simulator

from our extended laboratory group could be modified to incorporate simultaneous

sequences and would provide reasonable source data for our research. Upon closer

inspection, it was found to produce an expected number of lineages proportional to

ln(2). Although a valid model, it was not appropriate for our interspecific efforts,

where the exponential growth of the birth-death model (reviewed in Chapter 1), is

more biologically realistic. Therefore, as presented in Chapter 2, a new model was

created and NetGen developed. Experiments validating the sequence design of the

software, as well as the population growth behavior and branch length distributions,

were conducted. This provided confidence in the code’s primary functionality. With

an extensive list of input parameters, this simulator is capable of providing a wide

array of source networks containing diploid and/or polyploid hybrids.

An unanticipated contribution from the initial phase of research was the devel-

opment of the modified Newick format which emerged from a software input/output

requirement [46]. Using the well-established Newick format as a foundation, supple-

mental notation was formulated to annotate hybrid nodes and their descendants in an

efficient manner. The parsing and internal structure for topologies in NetMeasure

and NetReconstruct were facilitated by having a common representation com-

bined with a graph traversal algorithm. Since a standard format for representing

networks is lacking in the phylogenetic community, and as this format reverts to the

generally accepted Newick in the case of trees, it is hoped the modified Newick will
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lend itself to being incorporated with existing analysis and visualization tools that

are already established for phylogenetic trees.

In our experiments, we found the pre-existing tripartition measure [43] was a good

metric for capturing the topological similarity/dissimilarity of two networks. When

reviewing background literature, the measures that could be used to characterize

reticulate nodes in a quantitative manner were found to be lacking. Guided by our

reconstruction algorithm development, the new measures, reticulate timing, impact,

and diversity were developed to meet this need and provided structure to our case

study.

NetReconstruct is a new reconstruction algorithm that employs a subtree

approach. Various experiments were conducted to assess the model’s performance

under different simulated scenarios. The novel component of the algorithm, and the

primary contributor to its favorable performance, is the input data identifying the

extant offspring of the hybrid. For simulated source topologies, this information is

known. However with real DNA sequence information, a hybrid-impacted set may

not be easily identified at this time. It is believed that as DNA sequence analysis

techniques for detecting hybrid origins are advanced, it will be possible to derive these

sets and during the interim, the alternative ideas from Appendix B for conjecturing

such sets can be explored and employed.

The case study brought all of our applications NetGen, NetMeasure, and

NetReconstruct, together for the purpose of investigating the influence of a

single-diploid hybrid on reconstruction efforts. We found, as did Posada and Cran-

dall [56] in their chromosomal recombination study, that reconstruction algorithms

perform better with networks containing an ancient reticulate event formed by non-

diverse parents than those with a recent hybridization of divergent lineages. In

addition, we found evidence that network reconstruction algorithms have the po-

tential to infer more accurate topologies than tree techniques, as well as providing
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hybrid information. A by-product of our case study was that our newly developed

timing and diversity measures provided a solid quantitative structure for categorizing

networks and investigating their behaviors. Furthermore, through these experiments

we have observed how various models (e.g. hybrid creation, sequence evolution, and

subtree structure) can interact to possibly produce artificial behaviors.

In summary, this work provides a practical framework for researching phyloge-

netic network algorithms. It is hoped, that with a realistic simulator such as NetGen

and characterization techniques as contained in NetMeasure, NetReconstruct

will be the first of many reconstruction algorithms developed for phylogenetic net-

works with hybrids. From this effort, there are many directions of research that can

be pursued in this burgeoning area. We anticipate this work will prove to be one

small, yet serviceable step, along those paths.
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Run-Time Analyses

When developing algorithms, it is beneficial to assess their theoretical computational

time. Such analyses can provide insight into the complexity of the algorithm and how

its run time will increase as the input size grows. In Section A.1, we first calculate

the average number of events that will be executed in a simulation. Using this value,

an upper bound on conducting a depth-first-search of a simulation’s topology is then

calculated. With these two components complete, complexities can be assessed for

the new simulation (Section A.2), node measures (Section A.3), and reconstruction

algorithms (Section A.4). Finally, Section A.5 provides some experimental run-time

results for NetGen, as it is the most complex of these applications.

A.1 Topological Preliminaries

Our first step is to estimate the average number of events that will occur in a sim-

ulation given the number of extant taxa specified, in addition to the birth, hybrid,
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and death rates. We define input and output variables as:

Inputs :

B birth rate

H hybrid rate

D death rate

n number of extant taxa

Outputs :

ne average total number of events in a simulation.

First we calculate the proportions of birth, hybrid, and death events with respect

to all events. These values are defined as:

fb = B

B+D+H
fraction of birth events on average,

fh = H

B+D+H
fraction of hybrid events on average, and

fd = D

B+D+H
fraction of death events on average.

A net increase of one in the number of extant taxa, n, is achieved for every birth

and hybrid event. (The one exception to this rule is that the initial birth event for

the root node actually increases the number of extant taxa from 0 to 2.) However,

each death event decreases n by one. Thus, in general, the number of events in the

simulation, ne, will be greater than simply n, in order to account for the death events

reducing the final number of extant taxa. An average value for ne can be calculated

by using the fractions of average birth, hybrid, and death events defined above. The

equation, including +1 to account for the root’s additional contribution beyond that

of a regular birth, is:

((fb + fh) ∗ ne) − ((fd) ∗ ne) + 1 = n,

116



Appendix A. Run-Time Analyses

which can be rewritten as:

ne =
n − 1

fb + fh − fd

to yield the desired output value ne, the average total number of events in a given

simulation. Note that the order for this result is simply O(n).

Once the average number of events is known for a simulation, it is trivial to

place an upper bound on the average number of vertices (nodes) and edges in a

corresponding topology. A single birth or death event is topologically represented

as a single vertex. Hybrids however require at least three vertices, and possibly four

if the offspring lineage is created and then terminated as an extant leaf. Assuming

every event in a given topology is a hybrid, the upper bound on the number of

vertices is 4ne. The bound on the number of edges can be estimated in a similar

manner. A death event only involves the single inbound edge to the vertex where

the lineage dies. There are three edges associated with a birth vertex, one inbound

connecting a vertex to its parent, and two outbound edges providing the connections

to its children. Hybrid events however can involve up to seven edges – four to connect

the parents to their parents and their non-hybrid offspring in addition to the 3 edges

associated with the hybrid node itself. Note that by counting inbound and outbound

edges for events, we are over-estimating the number of edges by double counting edges

that serve as outbound and inbound connectors. The only implication of this fact

is that the upper bound is not as tight as possible. Thus, assuming all events are

hybrid events requiring seven edges we have an upper bound on the number of edges

for the topology as 7ne.

As depth-first search (DFS) is a common algorithm required for our subsequent

analyses, we also calculate that value now. From [7], the complexity for DFS is

O(V + E). Using our results for the vertex and edge counts from above, we find

that a DFS of an average network topology will be 0(11ne), which reduces to simply
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O(ne). With respect to simulation input parameters, the DFS complexity further

reduces to O(n), where recall n is the number of extant taxa.

A.2 Network Simulation Model

Generating a network, with the model presented in Chapter 2, is comprised of

five main components: birth events, death events, hybrid events, end of simulation

work, and outgroup generation. Thus we write:

Generation = BRT + DRT + HRT + EOSRT + OGRT

where the variables correspond to the run time for each component. Input parame-

ters, in addition to those already defined in Section A.1, that influence the run time

include:

sl sequence length for each homologue

nhg number of homologous groups of chromosomes per lineage

(sometimes referred to as haploid number)

pld ploidy level

OG 1 if outgroup requested, 0 if not

MOGT maximum number of outgroup tries
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SPRT second parent choice is one of the following:

rand when second parent for hybrid(s) chosen randomly,

mhd when second parent for hybrid(s) chosen according

to minimum hamming distance,

exphd when second parent for hybrid(s) chosen with

exponential function based on hamming distance, or

evd when second parent for hybrid(s) chosen by minimum

evolutionary branch distance.

From the previous values, we can derive the following:

ala average number of active lineages ne

2

tsl total sequence length for one node/lineage nhg ∗ pld ∗ sl.

Finally we define SG as the time for Seq-Gen, the software we use to evolve se-

quences, to process the sequences for one lineage. As the evolutionary models im-

plemented by Seq-Gen assume independent sites, the run time associated with this

effort should be linearly proportional to the total sequence length (tsl).

Having established the above values, we can now calculate the run times for the

five main components. The birth and death components can be represented as:

BRT = fb ∗ ne ∗ SG =⇒ O(n) ∗ O(tsl) and

DRT = fd ∗ ne ∗ SG =⇒ O(n) ∗ O(tsl).

The run time for each of these two pieces is simply the expected number of events

multiplied by the Seq-Gen effort. Both result in run times of O(n ∗ tsl).
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The hybrid events are the most complicated and the run time associated with

these events can be described as:

HRT = (fh ∗ ne) ∗ ((ala ∗ SG) + SPRT )

where SPRT =







































n if rand =⇒ O(ne),

n if mhd =⇒ O(ala ∗ tsl),

n2 if exphd =⇒ O((ala ∗ tsl) + (ala ∗ sl)),

n2 if evd =⇒ O(ne2).

This reduces to an overall, worst-case run time of:

HRT = O(n) ∗ ((O(n) ∗ O(tsl)) + O(n2)) = O(n3).

For each hybrid event, all active lineages require an update to their branch lengths

and sequences before a second parent can be chosen. The cost of this component is

dictated by how the second parents are chosen. The rand option is the most simple

and could be executed in constant time theoretically, but NetGen first identifies a

candidate pool of active lineages (from all lineages) prior to selecting the second par-

ent, thus its execution time is proportional to the number of events. Total sequence

length contributes to the mhd option as the Hamming distance must be calculated

for each possible pair between the known first parent and all active lineages as poten-

tial second parents. The exphd option is also influenced by total sequence length due

to its Hamming distance component. However, it has the additional complication

that if a second parent with the calculated target distance is not found, the bounds

are expanded. Hence, there may be an incremental search up until the maximum

sequence length for a homologue is reached. Finally, Dijkstra’s algorithm for find-

ing shortest paths, with a quadratic run time [7], dominates the evd option. Thus,

when one of the more complicated options is chosen, the overall run time for this

component is dominated by O(n3).
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When the simulation reaches the desired number of extant taxa, all the final

lineages must have their sequences updated and the outgroup, if requested, is cre-

ated. The outgroup processing includes generating candidate sequences (limited by

MOGT ) and scoring them with respect to the n extant taxa. The run times for

these components are:

EOSRT = n ∗ SG =⇒ O(n) ∗ O(tsl) and

OGRT = MOGT ∗ (SG + (n ∗ tsl) + n) =⇒ O(n) ∗ O(tsl).

Thus the average simulation run time where n is the number of extant taxa, reduces

to:

Generation =











O(n2) when the second parent option is simple, and

O(n3) when the second parent option is complex.

A.3 Reticulate Node Measures

The reticulate node measures of timing, impact, and diversity described in Chap-

ter 3 are topological in nature. All of the measures can be performed with depth-first

searches. The diversity measure is the most complicated, and yet requires only four

such searches. Therefore, using the DFS result from Section A.1, we find that the

reticulate timing, impact, and diversity measures all have a complexity of O(n),

where n is the number of extant taxa.

A.4 Reconstruction Algorithm

The reconstruction algorithm presented in Chapter 4 involves: inferring three

subtrees, using the Fitch small parsimony algorithm [11] twice, and performing a

constant amount of work for creating the single-diploid-hybrid structure. This is

expressed as:
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Reconstruction = 3 ∗ TR + 2 ∗ FSP + C.

The subtree reconstructions (TRs) are performed either with maximum parsi-

mony or neighbor joining. As maximum parsimony is NP-hard [72], it is used with

only small sets of extant taxa.1 The exhaustive version of maximum parsimony,

where every possible tree is examined, has O(n!) running time, where n is the num-

ber of extant taxa. In contrast, the neighbor joining algorithm, again with n extant

taxa, has a run time of O(n3). This low polynomial complexity comes from the n

rounds of pairwise comparisons between taxa, where each round involves n2 or less

distance calculations.

The Fitch small parsimony algorithm (FSP ) requires making two separate passes

of the subtree for the purpose of assigning sequences. These traversals are propor-

tional to the number of taxa in the subtree, which is linearly proportional to the

number of extant taxa.

Therefore the run time of the reconstruction algorithm for a single-diploid hybrid

is:

Reconstruction =











O(n!) + O(n) + O(1) if (n1 or n2 or n3) ≤ 10

O(n3) + O(n) + O(1) if (n1 and n2 and n3) > 10

and reduces to:

Reconstruction =











O(n!) if(n1 or n2 or n3) ≤ 10

O(n3) if(n1 and n2 and n3) > 10

where n refers to the total number of extant taxa and ni refers to the number of

extant taxa affiliated with each of the three subtrees.

1The default threshold for using maximum parsimony is 10 extant taxa, including the
outgroup. If the number of extant taxa exceeds the threshold, neighbor joining is employed.
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A.5 Experimental Run-Time Results for NetGen

As the simulation model had the most interesting theoretical analysis due to

its multiple components, we decided to conduct experiments using NetGen for

those parameters that are most likely to be varied. The following experiments were

conducted on a Dell power server.2

For the first round of experiments the performance measure was simple elapsed

time between the beginning and the end of each simulation run, which is commonly

referred to as wall-clock time [53]. Three experiments were conducted as deviations

from a birth-only base case. The parameters for the base case were: birth rate =

0.6, 10 extant taxa, 10 pairs of homologous chromosomes, each of length 1,000 (for a

total sequence length of 20,000), and no outgroup generation. Run-time dependencies

were investigated for varying sequence length, number of extant taxa, and maximum

number of outgroup tries. Each point of data is an average wall-clock time based

upon 50 executions of NetGen. The standard deviation for each point is plotted,

but is often so small that it is not visible. As predicted by the prior analysis and

shown in Figures A.1, A.2, A.3, all three of these parameters exhibited a linear

behavior.3

The second round of experiments examined the performance of NetGen with

respect to hybrids. Specifically we wanted to confirm the predicted quadratic and

cubic behaviors for the minimum Hamming distance (mhd) and evolutionary distance

(evd) approaches of selecting the second parents for the hybridizations. In order to

capture this data, CPU time in seconds was measured for each execution of the

appropriate selection routine and summed for each run. The numbers of extant taxa

2This machine has two dual-core Xeon 5140 processors, 4MB L1 cache, 4GB main
memory and runs Debian Linux, kernel 2.6.17.

3All lines were fitted with Scilab’s [28] datafit function, which employs a least squares
approach.
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Figure A.1: The sequence length for the 20 individually tracked homologues were
varied between 1,000 and 1,000,000 leading to a range of total sequence lengths of
20,000-20,000,000. As predicted, a linear behavior of the run time is exhibited as the
sequence length changed.

0 200 400 600 800 1000 1200

140

120

100

80

60

40

20

0

Number of Extant Taxa

Average Wall−Clock Time vs. Number of Extant Taxa
(50 runs per scenario)

A
vg

 N
um

be
r 

of
 S

ec
on

ds
 p

er
 R

un

Figure A.2: Varying the number of extant taxa in the birth-only case leads to a
linear behavior of the run time, as expected.

were: 250, 500, 1,000, 1,500, and 2000, which were normalized for data analysis

purposes. The base case parameters were: birth rate = 0.0, hybrid rate = 0.6, 1 pair

of homologous chromosomes (each of length 1,000), and no outgroup generation.

These are artificial scenarios in that all events, except for the initial birth at the

root, are hybridizations and the sequence length is short compared to the number
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Average Wall−Clock Time vs.
Maximum Number of Outgroup Tries
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Figure A.3: For all five scenarios, the outgroup similarity range was set to 50-55%
(min/max similarity values). This being a narrow range, the maximum number
of outgroup tries for each scenario influenced the run time in a linear fashion as
expected.

of extant taxa. However, these experiments were designed to highlight the run time

for hybrids (HRT ) discussed in Section A.2. Figure A.4 illustrates the respective

cubic and quadratic behaviors of the evd and mhd options. Although the O(n3)

term from second parent selection dominates the theoretical and these experimental

results, one would anticipate actual run times to be influenced the most by the linear

factors investigated in the first round of experiments. This is due to the expectation

that the number of hybrids in a simulation would be much smaller than the sequence

length and/or number of extant taxa.
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Figure A.4: As predicted by the theoretical analysis, the evolutionary distance (evd)
method for selecting second parents behaves in an O(n3) manner and O(n2) describes
the results for the minimum Hamming distance (mhd) option. The fits were per-
formed with Scilab’s datafit function using y = a1 + m1 ∗ x3 and y = a2 + m2 ∗ x2

for the evd and mhd options respectively. The values for the cubic function were
a1 = 1.24 and m1 = 411.57. The quadratic function values were a2 = 0.35 and
m2 = 77.84.
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Alternative Ideas for Determining

Hybrid-Impacted Extant Taxa

A set of extant taxa believed to be descended from a hybridization event is required

for the NetReconstruct algorithm presented in Chapter 4. Although biological

research has yielded much information about the nature of plant hybridizations [60,

62, 81], no single, universal characteristic has been found at this time to indicate

if a species is a descendant of a single hybridization event [23, 61]. Although it is

believed that advances will permit the identification of these sets in the future, at

present alternative techniques are required. Biologists currently have a variety of

techniques to investigate hypothesized origins for a single extant taxon suspected

of being a hybrid progeny [23, 62]. Given a starting taxon of this nature, one can

construct a proposed set of hybrid-impacted taxa for use with NetReconstruct.

Clustering is a common approach in computer science. As the name implies,

items of a similar nature are placed together. For this situation, the single extant

taxon, believed to be of hybrid origin, would be compared and scored against all the

other extant species under investigation. Taxa scoring favorably would be considered
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neighbors of the original taxon and placed in the set. One would expect the scoring

technique to be customized for the domain of interest. Hamming distance, for a

subsection or the total length of the DNA string(s), or even morphological data,

depending on biological insight, are potential scoring mechanisms. A complementary

approach would be to start with the complete set of extant taxa and repeatedly

segregate the taxa into subsets based upon a score. When the scores between sets

were similar, the set containing the taxon believed to be the hybrid descendant would

be taken as the hybrid-impacted set.

A more involved approach would incorporate a spectrum of information into the

decision of which species should be placed in the same set as the originally identified

hybrid descendant. If the hypothesized parents of the hybrid are known to not be

extremely divergent,1 a pre-processing tree reconstruction can be performed to gain

some general information about the evolutionary history. Using the reconstructed

tree as a guide, an expansion around the initial hybrid descendant could be considered

by choosing subroots that include progressively more descendants. At each level, as

shown in Figure B.1, a biologist could make an informed guess as to whether the

included taxa are similar enough to be in the same impacted set. One method for

deciding set inclusion would be to determine potential hybrid origins for one or more

of the proposed constituents. If evidence was found for origins similar to the initial

hybrid progeny, the set could be expanded; if not, the set could be restricted.

Other pieces of information that could be used in combination to contribute to

the set selection process include examining factors such as novel characters and sim-

ilar chemical compounds. It was found by [62] that many later generation hybrid

descendants do not have morphologies common to a blend of parental lineages, but

rather taxa tend to have novel characters, perhaps as a result of such factors as the

initial instability of a hybrid, or an increased rate of mutation, among other poten-

1Tree reconstructions of extant taxa sets containing hybrid descendants are less dis-
rupted when the hybrid’s parents are similar [61].
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Figure B.1: Proposed hybrid-impacted sets (identified in the blue boxes) increase in
size as subroots closer (identified in green boxes) to the root are considered.

tial explanations. Also found by [62] was the tendency for first generation hybrids to

contain a mixture of chemical compounds found in the two parental lineages, which

may be useful if working with a recent hybridization. Finally, a tool such as Split-

sTree [27] could be used to analyze the complete set of extant taxa for sequence

data incongruencies, possibly indicating a reticulate history.2 If a group of extant

taxa were found to be closely related with splits, one could choose them as the set

of hybrid-impacted taxa.

2Tools that detect data incongruencies are known to propose reticulate histories even
when none are present.
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Future Work

As NetGen provides a variety of parameters that impact the height, shape, size,

and branch lengths of a tree or network, further experiments could be tailored for dif-

ferent types of topologies. For example, non-ultrametric topologies with extinctions

and/or varying lineage rates, all of which can be generated by the current version of

NetGen, but have not been explored in this work, may be a priority when consider-

ing a wide span of extant taxa. Another potentially interesting investigation would

be to compare single-diploid-hybrid networks generated with different options for se-

lecting the second parent of the hybrid. Or idealized phylogenies with few parameters

might be used to explore upper bounds on new reconstruction techniques.

Two tasks that could be undertaken to extend the current functionality of NetGen

are the generation of: 1) outgroup subtrees and 2) a function-based option for min-

imum evolutionary distance, when selecting the second parent of a hybridization.

The first improvement would involve generating a subtree of possible extant taxa to

serve as an outgroup instead of a single taxon, as is currently performed. A long

evolutionary distance would still exist, now between the root of the topology and

each of the extant taxa in the outgroup subtree, thus leading to a set of potential
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taxa from which to choose the outgroup. This may prove beneficial to biologists

interested in exploring how outgroup selection influences reconstruction efforts [38],

as it is known to do [15]. Another area of the model’s behavior that biologists may

wish to explore is the influence of how the second parent for a hybrid is selected. By

adding an option for a truncated exponential function based on minimum evolution-

ary distance, similar to the Hamming distance one already implemented, the model’s

behavior with respect to the second parent selection could be explored. Specifically

an investigation could be made into how reticulate topologies and the hybrid progeny

are altered when different techniques for second parent selection are employed [37].

A more complex undertaking would be to include homologous sequence evolu-

tion in the underlying model of NetGen. Specifically, this would involve coupling

a homologue’s evolution to the other sequences, possibly both within and across lin-

eages. From a biological perspective, these sequences are expected to evolve over

time, but also maintain some similarity with one another. The degree of similarity is

determined by population genetic processes, controlling similarity within a species,

and natural selection, constraining sequence evolution across lineages. Presently,

the NetGen approach of completely independent sequence evolution, does not re-

tain the genetic similarity between and/or across homologues. As simulation time

progresses, sequences can diverge significantly from each other. The problem is com-

pounded when a diploid hybrid event occurs. The currently implemented, biological

model of randomly selecting homologues from each pair of chromosomes found in

the parents, can lead to diverse and potentially unrealistic combinations for the new

offspring. Subsequent hybrid events could compound the problem further when the

second parent for a hybrid is selected according to Hamming distance.1 If homolo-

gous sequence evolution is modelled, one could also consider modelling homologous,

1Although one could artificially redefine Hamming distance across lineages to be calcu-
lated between the correct homologues when searching for the second parent, it does not
resolve the underlying issue of a hybrid’s homologous sequences from being potentially
unrealistically diverse.
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chromosomal recombination (e.g. crossing over and gene replacement [15]). Al-

though it is not clear what the best modelling approaches for these problems are, an

improvement to homologous sequence evolution would result in NetGen producing

more realistic sequences and hybrid topologies.

A major extension of this work would be to develop NetReconstruct so that

more than one hybrid could be reconstructed. The concept of combining multiple

reconstructed subtrees for each hybrid event may appear straightforward on the

surface, however the complexity increases drastically when considering the details.

The most challenging aspect would be how to deal with overlap between, or among,

extant taxa descendant from hybrids. Figure C.1 illustrates a simple occurrence of

this difficulty, where an algorithm would be required to merge the two trees since

there are extant taxa that exist in both sets.

Extant Taxa in Common

H1 H2

Figure C.1: Overlap of extant taxa in hybrid subtrees. The red extant taxa are
impacted by both hybrids and would therefore complicate a merge operation.

As the number of hybrids events increase and the set relationships among extant

taxa become more complicated, the task of merging becomes even more daunting

(e.g. three impacted sets A, B, and C and there exist extant taxa belonging to

each possible pair of sets as well as all three). With or without intertwined hybrid

subtrees (i.e. networks that have hybridizations events involving hybrids), there is
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another complication of how the subtrees are arranged chronologically with respect

to each other (see Figure C.2).

Time

H1

H2

H1

H2

Figure C.2: The axis in middle relates to clock time and highlights that a decision
must be made regarding the relative placement of the hybrid subtrees.

As the hybrid impact measure can be calculated from NetReconstruct’s in-

put data and the connection between it and timing (presented in the analysis of

Chapter 3), a stochastically based method for resolving this issue would be an initial

path to investigate. Moreover the tasks of identifying and assigning extant offspring

to parents of a hybrid would need to be adapted for the multiple hybrid scenario.

Although a version of NetReconstruct with multiple hybrids would be a worth-

while project benefiting the community, these unfortunately are not trivial issues to

resolve.

At a smaller scale, modifications could be made to the current one-hybrid version

of NetReconstruct. As identified in Section 4.3.5, the closest neighbor option,

although resulting in reconstructed topologies with good tripartition scores, tends to

underestimate the number of offspring that are descendant from the hybrid’s parents,

resulting in additional internal edges and slight variations from the source topology.

A new algorithm allowing for variation in this identification (e.g. examining a node’s

closest 3 out of 5 neighbors for example) might yield better results. Furthermore,

there is room for improvement with how the parental subtree(s) is(are) assigned to

each parent in order to address the tendency of the current technique to assign all
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parental descendants to only one of the two parent nodes. Modifications in these

areas are worthwhile, regardless of whether or not the model is expanded to more

than one reticulate node.

As explained in Section 1.2.2, there are three categories of tree reconstruction

techniques – distance methods, maximum parsimony, and maximum likelihood. Cur-

rently NetReconstruct employs one of the first two approaches, depending on the

provided threshold. As analyzed in Section 4.3.5, the neighbor joining approach pro-

duces good subtrees for our reconstruction effort and improvements are more likely

to be found in ways other than changing the supporting software. However, depend-

ing on the application, there may be a need to use a maximum likelihood technique

for reconstructing the subtrees. As a preliminary test we generated 1,000 NetGen

trees, each having 50 extant taxa and an outgroup (birth rate = 48), and then at-

tempted reconstruction using PHYLIP’s neighbor joining [10] and RAxML [73], a

tool that performs maximum likelihood based inferences. The performance was mea-

sured by computing the bipartition score for 1) source and PHYLIP reconstruction

and 2) source and RAxML reconstruction.2 Figure C.3 shows that the averages are

rather close, with no significant difference between the two methods for this set of

NetGen source trees. This result further confirms the finding of Section 4.3.5 that a

different subtree reconstruction tool was not a priority at this stage of development.

It also is consistent with two of the known strengths of maximum likelihood, which

are robustness against DNA sampling errors and good performance with shorter se-

quences [78]. Although not influential factors for this work, they may arise in the

future if NetReconstruct is used with real biological data.

Lateral gene transfer is the other common reticulate event found at the inter-

2While all the trees were made (either simulated or reconstructed) with an outgroup
specified, PHYLIP’s neighbor joining routine returns unrooted trees. As the value of non-
trivial edges (which is used in the bipartition calculation) changes depending on whether a
tree is rooted or not, we adjusted the NetGen source trees and the reconstructed RAxML

trees to be unrooted as well in order to facilitate a fair comparison of bipartition scores.

134



Appendix C. Future Work

PHYLIP (NJ) and RAxML Tree Reconstructions
of NetGen Birth−Only Trees (b=48)
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Figure C.3: The bipartition scores for the two tree reconstruction tools (PHYLIP

on the left and RAxML on the right) do not differ significantly in this case and thus
switching to a maximum-likelihood based method for NetReconstruct’s subtrees
is not a priority at this time.

specific level. While the focus of this work was on hybridization, the new measures

presented in Chapter 3 are applicable not only to hybrid nodes, but to topologies

containing reticulate nodes that donate or exchange DNA information without the

formation of a separate lineage as well. An event based simulator such as NetGen

permits the addition of new events, therefore a new module could be added for gen-

eration. However, if reconstructions containing one or more lateral transfer events

were desired, a new reconstruction algorithm would be required. A subtree approach,

similar to that of NetReconstruct’s for inferring hybrids, may prove useful for

reconstructing other types of ancestral reticulate events.

Motivated by the phylogenetic tree perspective, another potential research area

for networks is bootstrapping [35], which is used to assess the reliability of recon-

struction results. For this technique, reconstructions are repeated multiple times

(after altering the columns) to determine how “strong” the subtree relationships are

in the original, inferred topology [19]. We are not aware of any research that has
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developed an equivalent for phylogenetic networks. An obvious option would be to

do traditional bootstrapping for the three subtrees created by NetReconstruct

that would provide values for most, but not all, edges of the topology. A more ro-

bust approach would be to implement the underlying principles of bootstrapping for

networks. Most likely this would start with a program such as seqboot (available

as part of the PHYLIP software [10]) to make multiple sets of extant taxa with ran-

domly selected and rearranged column data [19]. Then, NetReconstruct would

have to be executed for each data set and some type of network consensus would

be required to summarize the results for each edge. Another option for improving

the performance of NetReconstruct and/or extending its applicability to real

data would be to offer permutations on the hybrid-impacted extant taxa. Patten-

gale et. al. has begun to investigate how “rogue” taxa affect subtree mergers of

disk-covering methods [52]. This motivates an idea where slight permutations (e.g.

adding or dropping one or two taxa) to the set of extant taxa descendant from the hy-

brid, may prove useful for reconstructing more reliable hybrid subtrees. This would

potentially compensate for errors or inconsistencies in the identification of impacted

taxa, which is not an exact process as NetReconstruct currently assumes. Sub-

sequently, experiments assessing how perturbations in the hybrid-impacted set affect

NetReconstruct’s performance would be of benefit to the biological community

interested in using the software.

Finally, modifications to the underlying reconstruction approach could be also

explored. In a presentation by Linder and Moret [36], the problems of data loss, in-

adequate sampling, and levels of reticulation were highlighted as issues confounding

reticulate reconstruction. Linder proposed that increasing the number of samples

and markers are the most likely methods for correcting these deficits. In general,

any reconstruction can be subject to these problems, so all are areas for improve-

ment. As part of a private communication following the presentation, Linder and the

author discussed ideas motivated by population genetics, which both had pondered
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independently. Essentially, instead of a single sample representing a whole species

(as is common for many interspecific efforts), sets could be implemented. If dealing

with DNA sequences collected from the field, multiple samples of the same species

could be used, or in the case of simulated data, slight permutations in the sequences

could be made by a program such as Seq-Gen. Then reconstruction efforts could be

generated either as a consensus of multiple runs using different or randomly chosen

individuals from each set during a single run, or a “composite individual” could be

created prior to a single reconstruction run. It is believed these two approaches have

the potential to minimize the odds of common genes being overlooked and unusual

ones having a disproportionate influence on any reconstruction results.
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