CS 521: DATA MINING TECHNIQUES

Description: This course covers data mining topics from basic to advanced level. Topics include data cleaning, clustering, classification, outlier detection, association-rule discovery, tools and technologies for data mining and algorithms for mining complex data such as graphs, text and sequences. Students will work on a data mining project to gather hands-on experience.

The course learning objectives include
- Learning basic data mining algorithms and their applications
- Learning about the tools and technologies available for analyzing various types of data
- Gaining hands-on experience in cleaning, managing and processing complex data.

Book: Data Mining: Concepts and Techniques, 3rd ed, By Jiawei Han, Micheline Kamber and Jian Pei, The Morgan Kaufmann Series in Data Management Systems Morgan Kaufmann Publishers, July 2011. ISBN 978-0123814791. We will be occasionally referring to this book by Charu Aggarwal. The book is freely available to download in campus network.

Grading: Grading: There will be a final exam worth 35% of the grade. Students will pick datasets for projects and apply mining algorithms. Project is worth 40%. There will be three to five homework, together they are 20% of the course. Homework will focus on understanding the algorithms and techniques. Remaining 5% will be on class participation and attendance.

Lecture Schedule: A tentative weekly distribution of topics is given below. There will be rearrangement for holidays and exams.

Week 1:	Ch. 1, 2: What is Data Mining? Types of Data.
Week 2:	Ch. 3: Data Preprocessing. Cleaning, Integration, Reduction and Transformation
Week 3:	Ch. 6, 7: Mining Frequent Patterns (FP), Associations and Correlations. Apriori, FP Tree
Week 4:	Ch. 8: Basic Classification: Decision Tree, Bayes Classifier, Rule Based, Goodness measures
Week 5:	Ch. 8, 9: Advanced Classification: Boosting, Bagging, Random Forest, Lazy Learners, FP based classification
Week 6:	Ch. 10: Basic Clustering: Hierarchical, Partitioning, Density-based, Grid-based
Wek 7: Ch. 11: Advanced Clustering: Subspace clustering, Co-clustering, Fuzzy clustering, Expectation-Maximization clustering

Wek 8: Ch. 12: Outlier Detection: Statistical and Proximity based methods

Wek 9: Ch. 13: Mining Complex Data Types: Sequences (real and discrete)

Wek 10: Mining Complex Data Types: Graphs and Trees

Wek 11: Mining Complex Data Types: Text, Logs, Reviews

Wek 12: Ch. 4,5: Data Mining Systems: Data warehousing, Data cubing, Business Intelligence systems

Wek 13: Data Mining Tools: Weka, Vowpal-wabbit, Pivot-tables, Matlab Statistics Toolbox

Wek 14: Web Mining: Web search, Computational advertising, User behavior modeling, Fraud detection

Project: Each student will do one project. A project consists of four phases with equal weights.

1. Classification: Perform classification on the chosen dataset and produce cross-validated precision/recall numbers.
2. Clustering: Perform clustering on the chosen dataset and produce meaningful clusters.
3. Outlier Detection: Perform outlier detection algorithms on the given dataset and identify anomalous behavior.
4. Ensembling: Perform an ensembling technique to improve accuracy of any of the above tasks.

In each phase, a student produces a report describing data cleaning, method(s), results, and discussions. Phase specific goals will be announced in the class page. A student will merge four small reports in a final report and submit in the finals week.

Exam:

The exam will cover everything taught in the class. Questions will be deterministically testing the student’s knowledge about the algorithms. Two sample questions are attached.

No form of discrimination, sexual harassment, or sexual misconduct will be tolerated in this class or at UNM in general. I strongly encourage you to report any problems you have in this regard to the appropriate person at UNM. As described below, I must report any such incidents of which I become aware to the university. UNM also has confidential counselors available through UNM Student Health and Counseling (SHAC), UNM Counseling and Referral Services (CARS), and UNM LoboRespect.

UNM faculty, Teaching Assistants, and Graduate Assistants are considered "responsible employees" by the Department of Education (see pg 15 - http://www2.ed.gov/about/offices/list/ocr/docs/qa-201404-title-ix.pdf). This designation requires that any report of gender discrimination which includes sexual harassment, sexual misconduct and sexual violence made to a faculty member, TA, or GA must be reported to the Title IX Coordinator at the Office of Equal Opportunity (oeo.unm.edu).

Complete information on the UNM policy regarding sexual misconduct, including reporting, counseling, and legal options, is available online: https://policy.unm.edu/university-policies/2000/2740.html
1.

<table>
<thead>
<tr>
<th>Age</th>
<th>Graduated</th>
<th>Income</th>
<th>Gender</th>
<th>Smokes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>No</td>
<td>12K</td>
<td>M</td>
<td>Yes</td>
</tr>
<tr>
<td>22</td>
<td>Yes</td>
<td>32K</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>27</td>
<td>No</td>
<td>59K</td>
<td>M</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>0K</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>29</td>
<td>Yes</td>
<td>65K</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>45</td>
<td>No</td>
<td>47K</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>59</td>
<td>Yes</td>
<td>75K</td>
<td>M</td>
<td>No</td>
</tr>
<tr>
<td>37</td>
<td>Yes</td>
<td>72K</td>
<td>M</td>
<td>Yes</td>
</tr>
<tr>
<td>31</td>
<td>No</td>
<td>32K</td>
<td>M</td>
<td>No</td>
</tr>
</tbody>
</table>

a. What are the information gains for the attributes Graduated and Gender? You don’t have to compute the log functions. Analytical expression with numbers are fine.

The formula for information gain of an attribute is the following.

\[\text{InfoGain} = \text{Info}(D) - \text{Info}_A(D) \]

\[\text{Info}(D) = -\sum_{i=1}^{m} p_i \log(p_i) \]

\[m \] is the number of classes and

\[\text{Info}_A(D) = \sum_{j=1}^{v} \left(\frac{|D_j|}{|D|} \right) \text{Info}(D_j) \]

\[v \] is the number of values of attribute A.

b. Draw any decision tree that fits the above data.

2. Assume \(C_1 \) and \(C_2 \) are the two initial cluster centers. Assume each grid is one unit and \(K = 2 \). Find the new cluster centers for the next iteration if you are clustering using the K-means algorithm.

Assume \(C_1(10,16) \) and \(C_2(6,7) \).

\((0,0) \)