### CS 521 Data Mining Techniques Instructor: Abdullah Mueen

LECTURE 4: FREQUENT PATTERN MINING



### What Is Frequent Pattern Analysis?

Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set

First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining

Motivation: Finding inherent regularities in data

- What products were often purchased together?— Beer and diapers?!
- What are the subsequent purchases after buying a PC?
- What kinds of DNA are sensitive to this new drug?
- Can we automatically classify web documents?

#### Applications

 Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

### Why Is Freq. Pattern Mining Important?

Freq. pattern: An intrinsic and important property of datasets

Foundation for many essential data mining tasks

- Association, correlation, and causality analysis
- Sequential, structural (e.g., sub-graph) patterns
- Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
- Classification: discriminative, frequent pattern analysis
- Cluster analysis: frequent pattern-based clustering
- Data warehousing: iceberg cube and cube-gradient
- Semantic data compression: fascicles
- Broad applications

### Basic Concepts: Frequent Patterns

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |



itemset: A set of one or more items

k-itemset 
$$X = \{x_1, ..., x_k\}$$

*(absolute) support,* or, *support count* of X: Frequency or occurrence of an itemset X

*(relative) support, s,* is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)

An itemset X is *frequent* if X's support is no less than a *minsup* threshold

### Basic Concepts: Association Rules

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |



Find all the rules  $X \rightarrow Y$  with minimum support and confidence

- support, s, probability that a transaction contains  $X \cup Y$
- confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

*Freq. Pat.:* Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules: (many more!)
  - Beer  $\rightarrow$  Diaper (60%, 100%)
  - Diaper  $\rightarrow$  Beer (60%, 75%)

### Closed Patterns and Max-Patterns

A long pattern contains a combinatorial number of sub-patterns, e.g.,  $\{a_1, ..., a_{100}\}$  contains  $\binom{100}{1} + \binom{100}{2} + ... + \binom{1}{1} \binom{0}{0} = 2^{100} - 1 = 1.27 \times 10^{30}$  sub-patterns!

Solution: *Mine closed patterns and max-patterns instead* 

An itemset X is closed if X is *frequent* and there exists *no super-pattern* Y > X, *with the same support* as X (proposed by Pasquier, et al. @ ICDT'99)

An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)

Closed pattern is a lossless compression of freq. patterns

• Reducing the # of patterns and rules

### Closed Patterns and Max-Patterns

Exercise: Suppose a DB contains only two transactions

- <a<sub>1</sub>, ..., a<sub>100</sub>>, <a<sub>1</sub>, ..., a<sub>50</sub>>
- Let min\_sup = 1

What is the set of closed itemset?

- {a<sub>1</sub>, ..., a<sub>100</sub>}: 1
- {a<sub>1</sub>, ..., a<sub>50</sub>}: 2

What is the set of max-pattern?

• {a<sub>1</sub>, ..., a<sub>100</sub>}: 1

What is the set of all patterns?

- {a<sub>1</sub>}: 2, ..., {a<sub>1</sub>, a<sub>2</sub>}: 2, ..., {a<sub>1</sub>, a<sub>51</sub>}: 1, ..., {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>100</sub>}: 1
- A big number: 2<sup>100</sup> 1? Why?

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

**Basic Concepts** 



Frequent Itemset Mining Methods

Which Patterns Are Interesting?—Pattern Evaluation Methods

Summary

### Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

Improving the Efficiency of Apriori

FPGrowth: A Frequent Pattern-Growth Approach

ECLAT: Frequent Pattern Mining with Vertical Data Format

| $\wedge$ |  |
|----------|--|
|          |  |
| $\nabla$ |  |

### The Downward Closure Property and Scalable Mining Methods

The downward closure property of frequent patterns

- Any subset of a frequent itemset must be frequent
- If {beer, diaper, nuts} is frequent, so is {beer, diaper}
- i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}

Scalable mining methods: Three major approaches

- Apriori (Agrawal & Srikant@VLDB'94)
- Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
- Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

### Apriori: A Candidate Generation & Test Approach

Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

#### Method:

- Initially, scan DB once to get frequent 1-itemset
- Generate length (k+1) candidate itemsets from length k frequent itemsets
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated

#### The Apriori Algorithm—An Example



## The Apriori Algorithm (Pseudo-Code)

 $C_k$ : Candidate itemset of size k  $L_k$ : frequent itemset of size k

 $\begin{array}{l} \mathcal{L}_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; \mathcal{L}_{k} \mid = \varnothing; k + +) \text{ do begin} \\ \mathcal{C}_{k+1} = \text{candidates generated from } \mathcal{L}_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } \mathcal{C}_{k+1} \text{ that are contained in } t \\ \mathcal{L}_{k+1} = \text{candidates in } \mathcal{C}_{k+1} \text{ with min_support} \\ \text{end} \end{array}$ 

**return**  $\cup_k L_k$ ;

## Implementation of Apriori

How to generate candidates?

- Step 1: self-joining *L*<sub>k</sub>
- Step 2: pruning

Example of Candidate-generation

- L<sub>3</sub>={abc, abd, acd, ace, bcd}
- Self-joining: L<sub>3</sub>\*L<sub>3</sub>
  - *abcd* from *abc* and *abd*
  - acde from acd and ace
- Pruning:
  - *acde* is removed because *ade* is not in  $L_3$
- $C_4 = \{abcd\}$

#### Further Improvement of the Apriori Method

Major computational challenges

- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates

Improving Apriori: general ideas

- Reduce passes of transaction database scans
- Shrink number of candidates
- Facilitate support counting of candidates

## Partition: Scan Database Only Twice

Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB

- Scan 1: partition database and find local frequent patterns
- Scan 2: consolidate global frequent patterns

A. Savasere, E. Omiecinski and S. Navathe, VLDB'95



#### DHP: Reduce the Number of Candidates

A *k*-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent

- Candidates: a, b, c, d, e
- Hash entries
  - {ab, ad, ae}
  - {bd, be, de}
  - ...
- Frequent 1-itemset: a, b, d, e
- ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold

J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. *SIGMOD'95* 

| count      | itemsets     |  |
|------------|--------------|--|
| 35         | {ab, ad, ae} |  |
| 88         | {bd, be, de} |  |
|            |              |  |
|            |              |  |
| •          |              |  |
|            |              |  |
| 102        | {yz, qs, wt} |  |
| Hach Tablo |              |  |

#### Sampling for Frequent Patterns

Select a sample of original database, mine frequent patterns within sample using Apriori

Scan database once to verify frequent itemsets found in sample, only *borders* of closure of frequent patterns are checked

• Example: check *abcd* instead of *ab, ac, ..., etc.* 

Scan database again to find missed frequent patterns

H. Toivonen. Sampling large databases for association rules. In VLDB'96

#### DIC: Reduce Number of Scans



Dynamic itemset counting and implication rules for market basket data. In SIGMOD'97 Once both A and D are determined frequent, the counting of AD begins

Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins



# Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

Bottlenecks of the Apriori approach

- Breadth-first (i.e., level-wise) search
- Candidate generation and test
  - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
- Depth-first search
- Avoid explicit candidate generation

Major philosophy: Grow long patterns from short ones using local frequent items only

- "abc" is a frequent pattern
- Get all transactions having "abc", i.e., project DB on abc: DB | abc
- "d" is a local frequent item in DB|abc  $\rightarrow$  abcd is a frequent pattern

Construct FP-tree from a Transaction Database



## Partition Patterns and Databases

Frequent patterns can be partitioned into subsets according to f-list

- F-list = f-c-a-b-m-p
- Patterns containing p
- Patterns having m but no p
- •
- Patterns having c but no a nor b, m, p
- Pattern f

Completeness and non-redundency

#### Find Patterns Having P From P-conditional Database

Starting at the frequent item header table in the FP-tree

Traverse the FP-tree by following the link of each frequent item p

Accumulate all of *transformed prefix paths* of item *p* to form *p*'s conditional pattern base



#### From Conditional Pattern-bases to Conditional FP-trees

For each pattern-base

- Accumulate the count for each item in the base
- Construct the FP-tree for the frequent items of the pattern base





Cond. pattern base of "cam": (f:3) 
$$\begin{cases} \\ f:3 \\ f:3 \end{cases}$$

*cam-conditional* **FP-tree** 

#### A Special Case: Single Prefix Path in FP-tree

Suppose a (conditional) FP-tree T has a shared single prefixpath P

Mining can be decomposed into two parts

Reduction of the single prefix path into one node

 $a_2:n_2$ 

{ }

 $a_1:n_1$ 

Concatenation of the mining results of the two parts



#### Benefits of the FP-tree Structure

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count node-links and the count field)

### The Frequent Pattern Growth Mining Method

Idea: Frequent pattern growth

Recursively grow frequent patterns by pattern and database partition

Method

- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree
- Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

#### Advantages of the Pattern Growth Approach

Divide-and-conquer:

- Decompose both the mining task and DB according to the frequent patterns obtained so far
- Lead to focused search of smaller databases

Other factors

- No candidate generation, no candidate test
- Compressed database: FP-tree structure
- No repeated scan of entire database
- Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching

A good open-source implementation and refinement of FPGrowth

• FPGrowth+ (Grahne and J. Zhu, FIMI'03)

### Mining Frequent Closed Patterns: CLOSET

Flist: list of all frequent items in support ascending order

• Flist: d-a-f-e-c

Divide search space

- Patterns having d
- Patterns having d but no a, etc.

Find frequent closed pattern recursively

• Every transaction having d also has  $cfa \rightarrow cfad$  is a frequent closed pattern

J. Pei, J. Han & R. Mao. "CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", DMKD'00.

| Min_sup=2 |               |  |  |
|-----------|---------------|--|--|
| TID       | Items         |  |  |
| 10        | a, c, d, e, f |  |  |
| 20        | a, b, e       |  |  |
| 30        | c, e, f       |  |  |
| 40        | a, c, d, f    |  |  |
| 50        | c, e, f       |  |  |

#### CLOSET+: Mining Closed Itemsets by Pattern-Growth

Itemset merging: if Y appears in every occurrence of X, then Y is merged with X

Sub-itemset pruning: if  $Y \supset X$ , and sup(X) = sup(Y), X and all of X's descendants in the set enumeration tree can be pruned

Hybrid tree projection

- Bottom-up physical tree-projection
- Top-down pseudo tree-projection

Item skipping: if a local frequent item has the same support in several header tables at different levels, one can prune it from the header table at higher levels

Efficient subset checking

### MaxMiner: Mining Max-Patterns



Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan

R. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98

#### Computational Complexity of Frequent Itemset Mining

How many itemsets are potentially to be generated in the worst case?

- The number of frequent itemsets to be generated is senstive to the minsup threshold
- When minsup is low, there exist potentially an exponential number of frequent itemsets
- The worst case: M<sup>N</sup> where M: # distinct items, and N: max length of transactions

The worst case complexty vs. the expected probability

- Ex. Suppose Walmart has 10<sup>4</sup> kinds of products
  - The chance to pick up one product 10<sup>-4</sup>
  - The chance to pick up a particular set of 10 products: ~10<sup>-40</sup>
  - What is the chance this particular set of 10 products to be frequent 10<sup>3</sup> times in 10<sup>9</sup> transactions?

#### Interestingness Measure: Correlations (Lift)

*play basketball*  $\Rightarrow$  *eat cereal* [40%, 66.7%] is misleading

• The overall % of students eating cereal is 75% > 66.7%.

play basketball  $\Rightarrow$  not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence

Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

 $lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$  $lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$ 

|            | Basketball | Not basketball | Sum (row) |
|------------|------------|----------------|-----------|
| Cereal     | 2000       | 1750           | 3750      |
| Not cereal | 1000       | 250            | 1250      |
| Sum(col.)  | 3000       | 2000           | 5000      |

### Are *lift* and $\chi^2$ Good Measures of Correlation?

"Buy walnuts  $\Rightarrow$  buy milk [1%, 80%]" is misleading if 85% of customers buy milk

Support and confidence are not good to indicate correlations

Over 20 interestingness measures have been proposed (see Tan, Kumar, Sritastava @KDD'02)

Which are good ones?

| symbol    | measure                                            | range               | formula                                                                                                                                                                               |
|-----------|----------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\phi$    | $\phi$ -coefficient                                | -11                 | $\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$                                                                                                                       |
| Q         | Yule's Q                                           | -11                 | $\frac{\dot{P}(A,B)P(\overline{A},\overline{B}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},\overline{B}) + P(A,\overline{B})P(\overline{A},B)}$                       |
| Y         | Yule's Y                                           | -11                 | $\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$ |
| k         | Cohen's                                            | -11                 | $\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$                                                       |
| PS        | Piatetsky-Shapiro's                                | -0.250.25           | P(A, B) - P(A)P(B)                                                                                                                                                                    |
| F         | Certainty factor                                   | -11                 | $\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$                                                                                                                |
| AV        | added value                                        | $-0.5 \dots 1$      | $\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                                  |
| K         | Klosgen's Q                                        | -0.330.38           | $\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                     |
| g         | Goodman-kruskal's                                  | $0 \dots 1$         | $\frac{\sum_j \max_k P(A_j, B_k) + \sum_k \max_j P(A_j, B_k) - \max_j P(A_j) - \max_k P(B_k)}{2 - \max_j P(A_j) - \max_k P(B_k)}$                                                     |
| M         | Mutual Information                                 | $0 \dots 1$         | $\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i) P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i) \log P(A_i) - \sum_{i} P(B_i) \log P(B_i) \log P(B_i))}$               |
| J         | J-Measure                                          | $0 \dots 1$         | $\max(P(A, B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(B A)}{P(B)}))$                                                                                                  |
|           |                                                    |                     | $P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$                                                                                |
| G         | Gini index                                         | $0 \dots 1$         | $\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$                                      |
|           |                                                    |                     | $P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B}[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] - P(A)^{2} - P(\overline{A})^{2})$                               |
| s         | support                                            | 01                  | P(A,B)                                                                                                                                                                                |
|           | confidence                                         | 01                  | $\max(P(B A), P(A B))$ $(NP(A,B)+1, NP(A,B)+1)$                                                                                                                                       |
|           | Laplace                                            | 01                  | $\max(\frac{-NP(A)+2}{NP(A)+2}, \frac{-NP(B)+2}{NP(B)+2})$                                                                                                                            |
| IS        | Cosine                                             | $0 \dots 1$         | $\frac{\Gamma(A,B)}{\sqrt{P(A)P(B)}}$                                                                                                                                                 |
| $\gamma$  | $\operatorname{coherence}(\operatorname{Jaccard})$ | $0 \dots 1$         | $\frac{P(A,B)}{P(A) \pm P(B) - P(A,B)}$                                                                                                                                               |
| α         | $all\_confidence$                                  | $0 \dots 1$         | $\frac{P(A,B)}{\max(P(A),P(B))}$                                                                                                                                                      |
| 0         | odds ratio                                         | $0 \dots \infty$    | $\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$                                                                                                       |
| V         | Conviction                                         | $0.5 \ldots \infty$ | $\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$                                                                         |
| $\lambda$ | lift                                               | $0 \dots \infty$    | $\frac{P(A,B)}{P(A)P(B)}$                                                                                                                                                             |
| S         | Collective strength                                | $0 \dots \infty$    | $\frac{P(A,B)+P(AB)}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(A)P(B)}{1-P(A,B)-P(\overline{AB})}$                                                           |
| $\chi^2$  | $\chi^2$                                           | $0 \dots \infty$    | $\sum_{i} \frac{(P(A_i) - E_i)^2}{E_i}$                                                                                                                                               |

## Summary

Basic concepts: association rules, support-confident framework, closed and max-patterns

#### Scalable frequent pattern mining methods

- Apriori (Candidate generation & test)
- Projection-based (FPgrowth, CLOSET+, ...)
- Which patterns are interesting?
  - Pattern evaluation methods