CS 521
Data Mining Techniques
Instructor: Abdullah Mueen

LECTURE 1: OVERVIEWS, DATA TYPES AND SIMILARITY
John Snow and the Broad St. Pump

John Snow (15 March 1813 – 16 June 1858) was an English physician and a leader in the adoption of anaesthesia and medical hygiene. He is considered one of the fathers of modern epidemiology, in part because of his work in tracing the source of a cholera outbreak in Soho, London, in 1854.

On 31 August 1854, after several other outbreaks had occurred elsewhere in the city, a major outbreak of cholera struck Soho. Over the next three days, 127 people on or near Broad Street died. In the next week, three quarters of the residents had fled the area. By 10 September, 500 people had died and the mortality rate was 12.8 percent in some parts of the city. By the end of the outbreak, 616 people had died.

He identified the source of the outbreak. It was the public water pump on Broad Street.
John Snow and the Broad St. Pump

Location of each death in the outbreak and locations of the pumps with the help of Rev. Henry Whitehead

Associate pumps with deaths to support the causal relationship
Components of Data Mining

Data (Images, Files, Tables, Charts)

Tools (Hadoop, Matlab, Algorithms)

Objective (Information integration, organization and scientific discovery)

Data Scientist
Data Domains
Web Sensing

Individual Sensing

Data:

1. Search Query Logs: Mostly Tabular. Query, IP address/Account, Time, Link Clicked
2. Action Sequence: Every Click you make is being recorded across devices
3. Key Sequence: Text, Reviews, Comments, Survey, Instant messaging
4. Voice/Video Data: Video Conferencing
5. Spatio-temporal Data: Check-in Services
Web Sensing

Applications Targeted to Individuals

1. Targeted advertisement
2. Personalized Search Results
Web Sensing

Social/Community Sensing

Data:
- Networks: Friend Net, Call Net, Follower Net,
- Text: News, Reviews, Comments, Tweets
- Census Data

Applications:
- Flue Trends
- BoxOffice Prediction
Business

Stock market
Banks
Insurance...

Health and Medicine

Patient Records (Clinical, Pathological etc.)
Sequencing Data...

Success Stories in Data/Text Mining by Christophe Giraud-Carrier
Remote Sensing

From Earth to the Outer Space
From Space to the Earth

Data:

Images and spectrograms

Derived Data:

Vegetation Index
Sea-surface Height
Remote Sensing

Applications in Space Exploration

1. Detecting, Tracking, categorizing asteroids
 - TopCoder Contest

2. Categorizing stars based on types and their remaining life using *light curves*

Applications in Observing Earth

1. Modeling and Validating *Climate Changes*

2. Predicting storm formation

3. Detecting forest fire, deep ocean eddies, air pollution, etc. [*Expedition*]
Movement Sensing

Data: GPS Traces of Human and Animals, Maps

Applications
1. Traffic based route planning
2. Destination Prediction
3. Opportunistic Crowdsourcing
Government Data

Data:
- Transportation Data
- Environmental Data
- Utility Data
- Police Data

Applications:
- Smart City Applications
- Energy Efficient Building, Transportation etc.

Anthropology

Data:
Images and Shapes of the Petroglyphs and Petrographs

Applications:
Clustering Petroglyphs
Finding repeated Petroglyphs across states or countries

Atlatls
Anthropomorphs
Bighorn Sheep
Linguistics

Data:
Text Data: Books and News
Audio: Audio Corpus

Applications
Machine Translation
Dialogue Processing
NLP for assistive technologies
IBM Watson
Data Mining Algorithms
Clustering

• Divide the data in meaningful partitions
• Needs a goodness measure

• Tool: **Weka**, Matlab

Houston, Ethnic Distribution
Graph Clustering

- Neighborhood based similarity
- Co-Clustering is a way to find the heavily connected components of a bipartite graph.
- Tool: `cocluster`
Signal Clustering

- Clusters the subsequences of the signal
- Ignores unnecessary segments
- Tool: Epenthesis

== Poem (original order) ==
In a sort of Runic rhyme,
To the throbbing of the bells--
Of the bells, bells, bells,
To the sobbing of the bells;
Keeping time, time, time,
As he kneels, kneels, kneels,
In a happy Runic rhyme,
To the rolling of the bells,--
Of the bells, bells, bells--
To the tolling of the bells,
Of the bells, bells, bells, bells,
Bells, bells, bells,--
To the moaning and the groaning of the bells.

== Poem (grouped by clusters) ==
bells, bells, bells,
Bells, bells, bells,
Of the bells, bells, bells,
Of the bells, bells, bells--
To the throbbing of the bells--
To the sobbing of the bells; To the tolling of the bells,
To the rolling of the bells,-- To the moaning and the groan-
time, time, time, kneels, kneels, kneels,
sort of Runic rhyme, groaning of the bells.
Image Clustering

• Clustering based on color, texture, background etc.
• Ranges from small scale to web scale.

http://www.ulrichpaquet.com/current.html

http://groups.csail.mit.edu/vision/TinyImages/
Classification

• Intuitive pattern for classification
• Very fast testing
• Tool: Shapelet
Repetition Detection: Graph

• Frequent Subgraph Mining
• Various Constraints on the Subgraph
• Tool: \textit{gSpan}

Reference
Repetition Detection: Signal

- Motif Discovery in Time Series
- Parameter-free method
- Tool: MOEN
Visualization

- High Dimensional Data Visualization
- 2D and 3D
- Preserving Neighborhood of the points
- Tool: t-SNE
Anomaly Detection: Signal

• Most unusual pattern in the signal
• Works in two passes
• Tool: Discord
Anomaly Detection: Graph

- Neighborhood based features
- Finds extremes in both direction
- Tool: OddBall
Association Detection

• Finds association among items with high support and confidence
• The algorithms are mostly exponential
• Tool: SPSS Modeler, Weka

- Of transactions that included milk:
 - 71% included bread
 - 43% included eggs
 - 29% included toilet paper

<table>
<thead>
<tr>
<th>No.</th>
<th>Association Rule</th>
<th>Support</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Vaginal ultrasound; Surgical pathology; Pregnancy test; Hematology; Induced abortion; Penicillin injection} (\Rightarrow) {Legally induced abortion}</td>
<td>173</td>
<td>99.42%</td>
</tr>
<tr>
<td>2</td>
<td>{Pulmonary bronchospasm evaluation; Pulmonary vital capacity test; Non-pressurized inhalation treatment for acute airway obstruction; Doctor’s office visit} (\Rightarrow) {Asthma}</td>
<td>56</td>
<td>91.80%</td>
</tr>
<tr>
<td>3</td>
<td>{Debridement of nails, manual, five or less; Debridement of nails, each additional, five or less; Intestine excision: Enterointerostomy, anastomosis of intestine with or without cutaneous enterostomy; Transurethral surgery (Urethra and bladder)} (\Rightarrow) {Dermatophytosis}</td>
<td>619</td>
<td>91.43%</td>
</tr>
</tbody>
</table>
Data Types
Getting to Know Your Data

Data Objects and Attribute Types

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Summary
Types of Data Sets

Record
- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: term-frequency vector
- Transaction data

Graph and network
- World Wide Web
- Social or information networks
- Molecular Structures

Ordered
- Video data: sequence of images
- Temporal data: time-series
- Sequential Data: transaction sequences
- Genetic sequence data

Spatial, image and multimedia:
- Spatial data: maps
- Image data:
- Video data:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>
Important Characteristics of Structured Data

Dimensionality
- Curse of dimensionality

Sparsity
- Only presence counts

Resolution
- Patterns depend on the scale

Distribution
- Centrality and dispersion
Data Objects

Data sets are made up of data objects.

A **data object** represents an entity.

Examples:
- sales database: customers, store items, sales
- medical database: patients, treatments
- university database: students, professors, courses

Also called *samples, examples, instances, data points, objects, tuples.*

Data objects are described by **attributes.**

Database rows -> data objects; columns -> attributes.
Attributes

Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
- *E.g., customer ID, name, address*

Types:
- Nominal
- Binary
- Ordinal
- Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled
Attribute Types

Nominal: categories, states, or “names of things”
- Hair_color = \{auburn, black, blond, brown, grey, red, white\}
- marital status, occupation, ID numbers, zip codes

Binary
- Nominal attribute with only 2 states (0 and 1)
- **Symmetric binary**: both outcomes equally important
 - e.g., gender
- **Asymmetric binary**: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal
- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- \textit{Size} = \{small, medium, large\}, grades, army rankings
Numeric Attribute Types

Quantity (integer or real-valued)

Interval

- Measured on a scale of equal-sized units
- Values have order
 - E.g., *temperature in C° or F°, calendar dates*
- No true zero-point

Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - E.g., *temperature in Kelvin, length, counts, monetary quantities*
Discrete vs. Continuous Attributes

Discrete Attribute
- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute
- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables
Getting to Know Your Data

Data Objects and Attribute Types

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Summary
Basic Statistical Descriptions of Data

Motivation
◦ To better understand the data: central tendency, variation and spread

Data dispersion characteristics
◦ median, max, min, quantiles, outliers, variance, etc.
Measuring the Central Tendency

Mean (algebraic measure) (sample vs. population):
Note: \(n \) is sample size and \(N \) is population size.
- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

Median:
- Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for grouped data):

\[
\text{Median} = L_i + \left(\frac{n/2 - \left(\sum \text{freq} \right)_i}{\text{freq}_{\text{median}}} \right) \text{width}
\]

Mode
- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula:

\[
\text{mean} - \text{mode} = 3 \times (\text{mean} - \text{median})
\]
Symmetric vs. Skewed Data

Median, mean and mode of symmetric, positively and negatively skewed data
Measuring the Dispersion of Data

Quartiles, outliers and boxplots

- **Quartiles**: Q_1 (25th percentile), Q_3 (75th percentile)
- **Inter-quartile range**: $IQR = Q_3 - Q_1$
- **Five number summary**: min, Q_1, median, Q_3, max
- **Boxplot**: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
- **Outlier**: usually, a value higher/lower than 1.5 x IQR

Variance and standard deviation (sample: s, population: σ)

- **Variance**: (algebraic, scalable computation)

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2$$

- **Standard deviation** s (or σ) is the square root of variance s^2 (or σ^2)

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right]$$
Boxplot Analysis

Five-number summary of a distribution

- Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually
Visualization of Data Dispersion: 3-D Boxplots
The normal (distribution) curve

- From $\mu - \sigma$ to $\mu + \sigma$: contains about 68% of the measurements (μ: mean, σ: standard deviation)
- From $\mu - 2\sigma$ to $\mu + 2\sigma$: contains about 95% of it
- From $\mu - 3\sigma$ to $\mu + 3\sigma$: contains about 99.7% of it
Graphic Displays of Basic Statistical Descriptions

Boxplot: graphic display of five-number summary

Histogram: x-axis are values, y-axis represents frequencies

Quantile plot: each value x_i is paired with f_i indicating that approximately 100 f_i% of data are $\leq x_i$

Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another

Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane
Histogram Analysis

Histogram: Graph display of tabulated frequencies, shown as bars.

It shows what proportion of cases fall into each of several categories.

Differs from a bar chart in that it is the *area* of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width.

The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent.
Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions
Quantile Plot

Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)

Plots quantile information

- For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i% of the data are below or equal to the value x_i
Quantile-Quantile (Q-Q) Plot

Graphs the quantiles of one univariate distribution against the corresponding quantiles of another

View: Is there is a shift in going from one distribution to another?

Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.
Scatter plot

Provides a first look at bivariate data to see clusters of points, outliers, etc.

Each pair of values is treated as a pair of coordinates and plotted as points in the plane.
Positively and Negatively Correlated Data

Positively correlated

Negative correlated
Uncorrelated Data
Getting to Know Your Data

Data Objects and Attribute Types

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Summary
Similarity and Dissimilarity

Similarity
- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]

Dissimilarity (e.g., distance)
- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity
Data Matrix and Dissimilarity Matrix

Data matrix
- n data points with p dimensions

Dissimilarity matrix
- n data points, but registers only the distance
- A triangular matrix

\[
\begin{bmatrix}
 x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 x_{n1} & \cdots & x_{nf} & \cdots & x_{np}
\end{bmatrix}
\]
Proximity Measure for Nominal Attributes

Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)

Method 1: Simple matching
 ° \(m \): # of matches, \(p \): total # of variables/features
 \[
 d(i, j) = \frac{p - m}{p}
 \]

Method 2: Use a large number of binary attributes
 ° creating a new binary attribute for each of the \(M \) nominal states
Proximity Measure for Binary Attributes

A contingency table for binary data

<table>
<thead>
<tr>
<th></th>
<th>Object i</th>
<th>Object j</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>0</td>
<td>s</td>
<td>t</td>
</tr>
<tr>
<td>sum</td>
<td>q + s</td>
<td>r + t</td>
</tr>
<tr>
<td>sum</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

Distance measure for symmetric binary variables:

$$d(i, j) = \frac{r + s}{q + r + s + t}$$

Distance measure for asymmetric binary variables:

$$d(i, j) = \frac{r + s}{q + r + s}$$

Jaccard coefficient (similarity measure for asymmetric binary variables):

$$\text{sim}_{\text{Jaccard}}(i, j) = \frac{q}{q + r + s}$$
Dissimilarity between Binary Variables

Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>M</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mary</td>
<td>F</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Jim</td>
<td>M</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

\[
d(\text{jack, mary}) = \frac{0 + 1}{2 + 0 + 1} = 0.33
\]

\[
d(\text{jack, jim}) = \frac{1 + 1}{1 + 1 + 1} = 0.67
\]

\[
d(\text{jim, mary}) = \frac{1 + 2}{1 + 1 + 2} = 0.75
\]
Standardizing Numeric Data

Z-score:
- X: raw score to be standardized, μ: mean of the population, σ: standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the raw score is below the mean, “+” when above

An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n} (|x_{1f} - m_f| + |x_{2f} - m_f| + \ldots + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + \ldots + x_{nf})$$

- standardized measure (z-score):

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

- Using mean absolute deviation is more robust than using standard deviation
Example:
Data Matrix and Dissimilarity Matrix

Data Matrix

<table>
<thead>
<tr>
<th>point</th>
<th>attribute1</th>
<th>attribute2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>x3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>x4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Dissimilarity Matrix

(with Euclidean Distance)

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>3.61</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>2.24</td>
<td>5.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>4.24</td>
<td>1</td>
<td>5.39</td>
<td>0</td>
</tr>
</tbody>
</table>
Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

\[
d(i, j) = \sqrt[\hbar]{|x_{i1} - x_{j1}|^\hbar + |x_{i2} - x_{j2}|^\hbar + \cdots + |x_{ip} - x_{jp}|^\hbar}
\]

where \(i = (x_{i1}, x_{i2}, \ldots, x_{ip}) \) and \(j = (x_{j1}, x_{j2}, \ldots, x_{jp}) \) are two \(p \)-dimensional data objects, and \(h \) is the order (the distance so defined is also called L-\(h \) norm)

Properties

- \(d(i, j) > 0 \) if \(i \neq j \), and \(d(i, i) = 0 \) (Positive definiteness)
- \(d(i, j) = d(j, i) \) (Symmetry)
- \(d(i, j) \leq d(i, k) + d(k, j) \) (Triangle Inequality)

A distance that satisfies these properties is a **metric**
Special Cases of Minkowski Distance

$h = 1$: Manhattan (city block, L_1 norm) distance

- E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i, j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

$h = 2$: (L_2 norm) Euclidean distance

$$d(i, j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + ... + |x_{i_p} - x_{j_p}|^2)}$$

$h \rightarrow \infty$. “supremum” (L_{max} norm, L_{\infty} norm) distance.

- This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \rightarrow \infty} \left(\sum_{f=1}^{p} |x_{i_f} - x_{j_f}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{i_f} - x_{j_f}|$$
\[h = p \]
Example: Minkowski Distance

Manhattan (L₁)

<table>
<thead>
<tr>
<th>point</th>
<th>attribute 1</th>
<th>attribute 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>x3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>x4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Euclidean (L₂)

<table>
<thead>
<tr>
<th>L²</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>3.61</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>2.24</td>
<td>5.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>4.24</td>
<td>1</td>
<td>5.39</td>
<td>0</td>
</tr>
</tbody>
</table>

Supremum

<table>
<thead>
<tr>
<th>L∞</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Dissimilarity Matrices
Ordinal Variables

An ordinal variable can be discrete or continuous

Order is important, e.g., rank

Can be treated like interval-scaled

- replace \(x_{if} \) by their rank
- map the range of each variable onto \([0, 1]\) by replacing \(i \)-th object in the \(f \)-th variable by

\[
z_{if} = \frac{r_{if} - 1}{M_f - 1}
\]

- compute the dissimilarity using methods for interval-scaled variables
Attributes of Mixed Type

A database may contain all attribute types
- Nominal, symmetric binary, asymmetric binary, numeric, ordinal

One may use a weighted formula to combine their effects

\[
d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta^{(f)}}
\]

- \(f \) is binary or nominal:
 \[d_{ij}^{(n)} = 0 \text{ if } x_{if} = x_{jf}, \text{ or } d_{ij}^{(n)} = 1 \text{ otherwise} \]
- \(f \) is numeric: use the normalized distance
- \(f \) is ordinal
 - Compute ranks \(r_{if} \) and
 - Treat \(z_{if} \) as interval-scaled

\[
z_{if} = \frac{r_{if} - 1}{M_f - 1}
\]
Cosine Similarity

A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

<table>
<thead>
<tr>
<th>Document</th>
<th>team</th>
<th>coach</th>
<th>hockey</th>
<th>baseball</th>
<th>soccer</th>
<th>penalty</th>
<th>score</th>
<th>win</th>
<th>loss</th>
<th>season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Document2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Document3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Document4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Other vector objects: gene features in micro-arrays, ...

Applications: information retrieval, biologic taxonomy, gene feature mapping, ...

Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$
\cos(d_1, d_2) = \frac{d_1 \cdot d_2}{||d_1|| \cdot ||d_2||},
$$

where \cdot indicates vector dot product, $||d||$: the length of vector d
Example: Cosine Similarity

\[
\cos(d_1, d_2) = \frac{(d_1 \cdot d_2)}{|d_1| \cdot |d_2|}, \\
\text{where} \; \cdot \; \text{indicates vector dot product,} \; |d|: \text{the length of vector} \; d
\]

Ex: Find the similarity between documents 1 and 2.

\[
d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) \\
d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)
\]

\[
d_1 \cdot d_2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 \\
||d_1|| = (5^2+0^2+3^2+2^2+0^2+2^2+0^2+0^2+0^2+0^2+0^2)^{0.5} = (42)^{0.5} = 6.481 \\
||d_2|| = (3^2+0^2+2^2+0^2+1^2+1^2+1^2+0^2+1^2+0^*0+1*1)^{0.5} = (17)^{0.5} = 4.12 \\
\cos(d_1, d_2) = 0.94
\]
Summary

Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled

Many types of data sets, e.g., numerical, text, graph, Web, image.

Gain insight into the data by:
- Basic statistical data description: central tendency, dispersion, graphical displays
- Data visualization: map data onto graphical primitives
- Measure data similarity

Above steps are the beginning of data preprocessing

Many methods have been developed but still an active area of research
References

W. Cleveland, Visualizing Data, Hobart Press, 1993

U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001

D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999

S. Santini and R. Jain,” Similarity measures”, IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999

C. Yu et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009