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Abstract

Research on information visualization has reached the
point where a number of successful point designs have been
proposed and a variety of techniques of been discovered.  It
is now appropriate to describe and analyze portions of the
design space so as to understand the differences among
designs and to suggest new possibilities.  This paper
proposes an organization of the information visualization
literature and illustrates it with a series of examples.  The
result is a framework for designing new visualizations and
augmenting existing designs.
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1. Introduction

In recent years, information visualization, the computer-
assisted use of visual processing to gain understanding, has
become a topic of significant development and research.
Advances in this area are spurred on by increases in the
power and availability of graphically agile computers and
by advances in communications, particularly the growth of
the World-Wide Web, which increases the amount of data
available to a worker by orders of magnitude.

This new field has grown to a series of point designs that
exploit the new graphical capabilities. It is typical for
technologies to proceed at this point from point designs to
abstractions that organize regions on the design space.  In
this paper, we propose such a framework and illustrate it
with examples from the literature.  Our analysis builds on
recent attempts to understand parts of the design space.
Keller[1] lists techniques used in scientific visualization.
Chuah and Roth[2] taxonomizes the tasks of information
visualization.  Shneiderman[3] proposes a “data type by
task” matrix.  Our analysis is closest in spirit to Tweedie’s
[4], who also starts from Bertin.  Our analysis starts from an
expanded version of Bertin’s [5, 6] and Mackinlay’s [7]
analysis of the semiotics of graphics.

2. Semiology of Graphical Data Communication

Graphics, according to Bertin[5], have at least two
distinct uses, which should not be confused: first, as the
means of communicating some information (in which case

a person already understands the information) and second,
for graphical processing (in which case a person uses the
manipulation and perception of graphical objects to
understand the information).  As Bertin puts this latter use:

Graphics is the visual means of resolving logical
problems [5, p. 16].

It is this visual processing use with which we are mostly
concerned in information visualization, but interactive
visual processing depends on a series of visual
communication acts by the machine.  These communicative
acts map data and intent into visualization.

Data.  Information visualization starts with information
in the form of data.  There are many forms that this data
could take, from spreadsheets to the text of novels, but
much of it can be represented as “cases by variables” arrays
or can be transformed (perhaps with loss of information)
into this form.  Text, for example, can be used to compute
document vectors, which are normalized vectors in a space
with dimensionality as large as the number of words.  Each
document becomes a case and the direction of the vector
becomes a variable.  The different data types are important
in their own right; text has its own characteristic operations,
in fact the subcategories of patent text or financial report
text have their own unique characteristics and potential
unique operations on them.  However, in this paper, we start
with what can eventually be represented as the set of values
taken on by a set of variables.

The major distinction we make for data is whether their
values are

Nominal (are only = or ≠ to other values),
Ordered (obeys a < relation), or are
Quantitative (can do arithmetic on them).

We denote these as N, O, and Q respectively.  In a more
detailed analysis, we would also note the cardinality of a
variable, since one of the points of information visualization
is to allow visual processing in regions of high cardinality.
We distinguish subtypes of Q for intrinsically spatial
variables Qxy and spatial variables that are actually
geophysical coordinates Qlon.  We also distinguish between
data D that is in the original dataset from data D’ that has
been selected from this set and possibly transformed by
some filter or recoding function F.

Visualizations. Human visual processing involves two
levels: automatic and controlled processing[8].  Automatic



processing works on visual properties such as position and
color.  It is highly parallel, but limited in power.  Controlled
processing works on abstract encodings such as text.  It has
powerful operations, but is limited in capacity.  The
distinction between these two types of capacity is important
for visual design.

Visualizations are basically made from marks and their
graphical properties [7].  There are a limited set of marks
and properties, identified by Bertin [6], expanded by
Mackinlay [7], and expanded further here.  An elementary
visual presentation consists of a set of marks (such as
Points, Lines, Areas, Surfaces, or Volumes), their retinal
properties (such as Color and Size), and their position in
space and time (such as the XY plane in classical graphics
and XYZT or 3D space plus time in information
visualization).  We also include, following [7], the
properties of Connection (denoted “—”) and Enclosure
(denoted “[]”).  Thus, visualizations are composed from the
following visual vocabulary:

Marks: (Point, Line, Area, Surface, Volume)
Controlled Processing Graphical Features
Automatically Processed Graphical Properties

Retinal encodings: (Color, Size, Shape, Gray-level,
Orientation, Texture, Connection,
Enclosure)

Position: (X, Y, Z, T)
A key feature of visualizations is that they use the

mappings between data and visual vocabulary to provide
interactive access to the data.  We focus here on two
interactive techniques: View techniques (such as
focus+context), which distort the space-time of the
visualization, and Widget techniques, which add user
interface objects (such as buttons) to the visualization.

To make comparisons easy, we use a common table
format to describe visualizations:

Data Controlled Automatic Interaction

The table is conceptually structured with the data on the left
and the user to the right.  The vertical bold line in the table
separates the data from the visualization vocabulary. The
double lines indicate the major visual sections of Controlled
Processing, Automatic Processing, and Interaction.  The
following summarizes the notation we use in the table
(which we develop in context):

Symbol Meaning

D Data Type ::= N (Nominal),
O (Ordinal),
Q (Quantitative).
QX (Intrinsically spatial),
Qlon (Geographical)
NxN (Set mapped to itself - graphs)

F Function for recoding data ::= f (unspecified)
> (filter)
s (sorting)
mds (multidimensional scaling)
↑ (interactive input to a function)

D’ Recoded Data Type (see D)
CP Control Processing tx (text)
M Mark types ::= P (Point), L (Line),

S (Surface), A (Area), V (Volume)
R Retinal properties ::= C (Color), S (Size),

— (Connection), [] (Enclosure)
XYZT Position in space time ::= N, O, Q,

* (non-semantic use of space-time)
V View transformation ::=hb(hyperbolic mapping)
W Widget ::= sl(slider) rb(radio buttons)

Using these distinctions, we can see the major types of
visualizations that have emerged.

3. Scientific Visualization

Scientific visualization generally starts from data whose
variables are intrinsically spatial.  An example is Treinish’s
animated and very beautiful map of the earth’s ozone
layer[9] (see Figure 1).  Because spatial and geographical
variables are so frequent, we adopt the special notation of
QX and QY for Q (Quantitative) variables that are
intrinsically spatial and Qlon and Qlat for Q variables that are
earth coordinates.   Scientific visualizations, then, usually
have mappings

QX�X (i.e., a spatial quantitative variable is
mapped into a position in X)

QY�Y,
and often

QZ� Z
as in Table 1 (We ignore for now the distinction between
Cartesian and radial coordinates). Ozone concentration is
mapped into the Retinal variable Color.

Figure 1. Ozone concentration[9]Variable D F D’ CP M R X Y Z T V W

Variable Name of case or variable dimension



Table 1.  Ozone visualization  (See Fig. 1)
Variable D F D’ CP M R X Y Z T V W
Samples N P

Ozone Q f O C
Lon. Qlon Q
Lat. Qlat Q

Height Q Q
Date Q Q

Table 1 describes the mapping between the ozone data
and the graphical vocabulary that is used in Figure 1.  The
rows of the table describe the variables with the case
variable (“Samples”) at the top and the value variables
below.  The nominal (N) set of Samples is mapped to point
marks (P in column M), which have their retinal property of
color (C in column R) mapped to the Ozone variable.  The
ozone mapping includes a function (f) that converts the
quantitative (Q) ozone measurements to an ordinal (O) set
that can be easily mapped to a set of colors. The
quantitative (Q) variables of Longitude, Latitude, and
Height are mapped to the positions X, Y, and Z, which
determine the position of the point marks.  The Date
variable is mapped to time (T), which creates an animated
visualization.  Table 1 makes it clear that Figure 1 is a 3D
animated visualization involving colored points.

4. GIS

GIS-based visualizations are similar to other general
scientific visualizations, but more specialized.  In GIS
visualizations, intrinsically geo-coordinate variables are
mapped onto X and Y:

Qlon�X,
Qlat �Y.

In Figure 2, an example from Visible Decisions, the free Z-
axis is used for another variable, Profit:

Q � Z.
Table 2 describes the map part of Figure 2. The Offices

variable is mapped to line marks (L).  The Profit variable is
mapped to the size of these lines (Sz in the R column).
Profits are also mapped to the Z-axis and via a function (f)
to a nominal set indicating the sign of the profits.  This
nominal set is mapped to the color of the lines (C in the R
column). Table 2 clearly reveals that multiple graphical
techniques are used to describe the Profit variable in order
to enhance the perception of this important data variable.

Table 2. Visible Decisions (See Fig. 2)
Variable D F D’ CP M R X Y Z T V W
Offices L

Lon. Qlon Q
Lat. Qlat Q

Profit Q Sz Q
f N C

Figure 2.  Profit Landscape (Visible Decisions)

5. Multi-dimensional Plots

Multi-dimensional plots take variables that are not
intrinsically spatial and map them onto X and Y, e.g.,

Q � X,
Q � Y.

When point marks are positioned on these axes, the result is
the conventional scatterplot that is often used in statistical
graphics.

The FilmFinder [11], shown in Figure 3 is a scatterplot
that has been turned into an interactive visualization by
using sliders (sl) and radio buttons (rb) to control a filter
function (>) that determines which Films are shown on the
scatterplot.  Table 3 uses a “↑” in the F column to indicate
which variables control the filter. Double lines between the
rows indicate that these widgets are separate, visual
presentations (not all variables are shown).  Both interaction
columns of the table are used.  The Widget (W) column is
used to indicate the interaction widgets and the View (V)
column is used to indicate that the user can zoom and pan
their view of the scatterplot.  Table 3 clearly reveals that the
users must switch their attention between the scatterplot and
the widgets.

The essence of the dynamic queries technique, of which
the FilmFinder is an example, is that changes in the sliders
have instantaneous effect on the items in the Scatterplot.  In
this way, the  effect of  many  variables with a large number

Table 3. FilmFinder  (See Fig. 3)
Variable D F D’ CP M R X Y Z T V W

Film N > N’ P
Year Q Q Q’

Quality Q Q Q’
Type N C

↑ P C N rb

Title O ↑ P Q sl

Rating N ↑ P C N rb



Figure 3.  FilmFinder [11]

of values can be taken into account without being coded or
recoded as Retinal variables, keeping the display simple and
easily interpretable.  The Q’ in the V indicate that the view
is zoomed and panned.

Feiner’s Worlds-Within-Worlds technique is another
way of showing higher dimensional data (Figure 4).  Three
variables are mapped to the spatial dimensions:

Q1 -->X
Q2 -->Y, and
Q3 --> Z.

This coordinate system is then used to interpret the meaning
of additional coordinate systems (for only a few points at a
time) allowing an overloaded mapping of the space:

Q4 -->X
Q5 -->Y, and
Q6 --> Z.

Table 4 clearly shows this overloading with two values
in the XYZ columns The overlapped coordinate space is a
kind of details-on-demand display at the cost of occlusions
in the original coordinate system.  The view (V) column
indicates which variables are clipped to reduce the impact
of these occlusions.  Overloading is a powerful visualization
technique that must be used with care to make sure the
users can perceive how the spatial dimensions are being
used.  As in the dynamic queries technique, allowing the
user to move rapidly in time through the first three variables
also increases the amount of the variable space that can be
examined with a simple display.

Table 4.  Worlds Within Worlds (Fig. 4)
Variable D F D’ CP M R X Y Z T V W

X1 Q Q Q’
X2 Q S Q Q’
X3 Q Q Q’
X6 Q Q
X5 Q Q
X4 Q Q

Figure 4. World within worlds[12]

6. Multi-dimensional Tables

Another interesting visualization for multidimensional
data is to start with a matrix or table and to add visual
properties to it directly as in the Table Lens [13].  The
mixing of data and visualization makes it possible to drill
down in place.  This hybrid visualization, shown in Figure
5, produces an analysis quite different from our previous
examples.  Table 5 shows the cases (Players) mapped to the
Y-axis and the variables mapped to the X-axis (only a few
variables are shown).  The ?s in the function column
indicates that the Players can be sorted on one of the
variables.  The V column indicates that the view can be
distorted to provide extra room for some of the rows and
columns.  The ?tx in the Control Processing column
indicates that text labels can be placed in this extra room.

This example indicates that the V column can be used for
a  more  sophisticated  distortion  than  just a pan and zoom.

Figure 5. Table Lens [13]

Table 5.  Table Lens (Fig. 5)
Case/Var D F D’ CP M R X Y Z T V W

Players N ?s ?O ?tx ?O O’
Avg Q ↑ ?tx L Sz Q Q’

Team O ↑ ?tx P C O O’



Fig. 6. New York Stock Exch. (Visible Decisions)

Table 6.  New York Stock Exchange (Fig. 6)
Variable D F D’ CP M R X Y Z T V W

Stock N tx L
Kiosk O O

Lon. Qlon Q
Lat. Qlat Q

Volume Q Sz * *

The key point revealed by Table 5 is that users must be able
to perceive the original visualization through the distortion
so that they can invert the mapping from the visualization to
the data set.

7. Information Landscapes and Spaces

Landscapes lay information out on a surface, typically
the XY plane.  Landscapes may be of several sorts: real
geographical coordinates, real spatial variables, or
completely abstract mappings

{Qlon or QX, or Q} � X
{Qlat or QY or Q}� Y.

If the mapping extends to
Q--> Z,

we call it an information space.
In Figure 6, the actual physical trading room of the New

York Stock exchange is mapped into an information space.
The stock names on the kiosks are Ordinal variables
mapped onto the Z-axis (as in the physical room).  But the
visualization overloads stock volume, mapping it onto line
sizes placed radially from the center of each.  Table 6 uses a
“*” to indicate that the bar does not use the X and Y
dimensions semantically.

Figure 7. Internet traffic [14]

Table 7.  World-Wide Internet traffic (See Fig. 7)
Variable D F D’ CP M R X Y Z T V W

Site NxN L — *
Lon. Qlon Q
Lat. Qlat Q

Volume O C

8. Node and Link

Node and link diagrams allow the encoding of linkage
information between entities.  They can be thought of as a
mapping from a Nominal set to itself {NxN}.  These are
then mapped into XY.

One type of node and link diagram uses points that
comes from physical space, then links them.  Cox and
Eick’s mapping of Internet traffic [14] is an example of this
type.  As in landscapes, longitude and latitude of the site are
mapped onto XY (really onto a sphere).  The links are
mapped onto Connection Lines, which are shown as a
special kind of retinal property in Table 7.  The * indicates
that these lines do not have any special meaning in Z
(although it might be argued that they are proportional to
the distance between the computers).

9. Trees

The nodes for graphs also do not have to be anchored in
any spatial variable and the plane can be used merely as a
substrate to keep the visual identities of the nodes distinct.

An especially interesting visualization of this sort is the
Hyperbolic Browser [15] shown in Figure 8.  Since
hyperbolic space expands exponentially, it is a good place
to  lay  out  exponentially  expanding  graphs,  such as trees.



Figure 8. Hyperbolic browser [15]

Table 8.  Hyperbolic Browser  (See Fig. 8)
Variable D F D’ CP M R X Y Z T V W

Page NxN tree Qxy P — * * hb

.
Table 8 indicates there is a tree function that converts NxN
set into a set of XY positions (Qxy ). The * indicates that
these positions do not use the X and Y semantically.  The V
column is used to indicate the hyperbolic distortion of the
tree layout.  Again, such distortions are only as effective as
the user’s ability to perceive the undistorted graphical
vocabulary mapped to the data.

Trees can also be visualized as nested enclosures.
Shneiderman and colleagues [16] have done a space-filling
form of enclosure tree called Tree-Maps.  At one level in a
tree, the children of a node divide up the X dimension of the
visualization, at the next level they divide up the Y
dimension of the node in which they are enclosed.  The
division proceeds alternating between X and Y until the
leaves of the tree are reached.  This method uses all of the
space.  An example showing the use of space by the Mac
filing system is shown in Figure 9.  The problem is that the
same variable is mapped onto two different position
presentations, each half of the time

Q � X (half time)
Q � Y (half time)

giving an inconsistent mapping and prohibiting the user
from forming an easy image.  What the user should be able
to take from the image is essentially Retinal: Size coding,
but the same Size can have many different visual
manifestations, each with a different aspect ratio.  Thus the
space-filling property of the visualization comes at a
perceptual cost, which is clearly shown in Table 9.

Figure 9. Tree-Map [16]

Table 9.  Tree-Map  (See Fig. 9)
Variable D F D’ CP M R X Y Z T V W

Files NxN tree QQ A [] * *
Size Q Sz Q⇔Q
Type N C

Cone-trees address the problem that trees are large in
width by increasing this dimension as a function of depth.
The cone tree solution is to wrap the width around in a
circle, then use time to allow the user to make the relevant
part of the circle come forward. This visualization uses
space to establish position in the tree.  It thereby has a more
consistent mapping than the Tree-Map, but at the cost of
spending space to establish the structure.  The Tree-Map
spends almost all of its space on content.

Figure 10. Cone tree[17]

Table 10.  Cone-tree (See Fig. 10)
Variable D F D’ M R X Y Z T V W

File NxN tree Qxyz P * * *



10. Special Data Transforms: Text

We have discussed some of the main classes of
visualizations.  But an important point to make is that much
of the power of visualization comes from the techniques for
transforming data types into the data forms that can be
mapped into these visualizations.    For example, text itself
can, of course, be visualized directly.

Q --> CP.
But this does not work for a large text datasets and the text
has to be processed with Controlled instead of Automatic
processing [8].  One approach to visualizing large amounts
of text is to map it line by line onto long strips

Q --> X,
as Eick and colleagues have done for English text and
program code in SeeSoft [18].  By means of a slider, those
lines of text having certain properties can be turned off or
on as with the dynamic queries work.  For example, Figure
11 shows the entire text of the Jungle Book.  Lines
mentioning different characters are rendered in different
colors.  Various combinations of characters can be rendered
together by means of the slider.

Another mapping of text is represented in Themescapes
[19].  The text for each document (for example, a news
story) is transformed into a document vector.  Document
vectors are compared giving rise to a matrix of similarities.
The matrix is mapped onto a 2D landscape with multi-
dimensional scaling. This gives a 2D map of “themes”.  The

Figure 11. SeeSoft[18]

Table 11. SeeSoft (See Fig. 11)
Variable D F D’ CP M R X Y Z T V W

Line tx f Q L Sz Q
Line# Q Q
Type O C

Figure 12. Themescapes[19]

Table 12. Themescapes (See Fig. 12)
Variable D F D’ CP M R X Y Z T V W
Content A mds Qxy S Q Q

Frequency Q C Q

frequency with which the various themes occur is mapped
onto Z in the form of a surface. The result is shown in
Figure 12, which depicts  themes from CNN news.  Thus in
text, as in other specialized data areas, the transformations
from the raw data type to a visualizable data type can be as
important as the actual visualization.

11. Summary

In this paper we have sketched part of a scheme for
mapping the morphology of the design space of
visualizations.  Because of space limitations, we have only
sampled from the set of visualization techniques.  Two
levels of analysis not addressed in this short paper are the
larger organizational structure of information spaces and the
organization of user tasks.  With respect to the larger
organizational structure, we have previously suggested in
the text area an analysis into information space, workspace,
sensemaking tools, and documents and surveyed systems in
each of these areas [20].  For user’s tasks, we have
previously suggested notions of “knowledge
crystallization”, comprising in part “information foraging”
[21] and “sensemaking”[22].  These notions have been
applied to the analysis of users of information visualization
[23, 24] but considerable work remains to be done before a
characterization of parts of the design space is possible.
Our present analytical scheme does not express all of the
important distinctions that could be made relative to these
issues.  This is partially because a more elaborate notation
would require a much longer paper with more examples,



and partially because too complex a notation reduces its
practical use—our main object.

Besides helping to organize the literature, our present
analysis suggests regions of new visualizations because it
concentrates on the mappings between data and
presentation.  The table notation, in particular, organizes
these mappings in a way that reveals when a data set is
mapped to a graphical property in isolation, with
overloading, or via distortion.  The key issue for effective
visualization is that users must be able to invert this
mapping and perceive the data in the visualization.

During the next several years we believe that information
visualization will enter mainstream use and that much
information will be learned to guide new designs or apply
established techniques.  As for any technology area, it is
necessary to develop abstractions that rise above particular
point designs in order to allow this codification of art into
technology to occur.
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