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Abstract

Today’s high-end massively parallel processing (MPP)
machines have thousands to tens of thousands of proces-
sors, with next-generation systems planned to have in ex-
cess of one hundred thousand processors. For systems of
such scale, efficient I/O is a significant challenge that can-
not be solved using traditional approaches. In particular,
general purpose parallel file systems that limit applications
to standard interfaces and access policies do not scale and
will likely be a performance bottleneck for many scientific
applications.

In this paper, we investigate the use of a “lightweight”
approach to I/O that requires the application or I/O-library
developer to extend a core set of critical I/O functionality
with the minimum set of features and services required by
its target applications. We argue that this approach allows
the development of I/O libraries that are both scalable and
secure. We support our claims with preliminary results for a
lightweight checkpoint operation on a development cluster
at Sandia.

1 Introduction

Efficient I/O is sometimes referred to as the “Achilles’
heel” of massively-parallel processing (MPP) comput-
ing [4]. While part of the blame can be placed on the in-
ability of the hardware advances for I/O systems to keep
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pace with advances in CPU, memory, and networks [16],
we believe the real problem is in the I/O system software.
Today’s parallel file systems are unable to meet the specific
needs of many data-intensive MPP applications. Current
parallel file systems and I/O libraries limit applications to
a standard, predefined set of access interfaces and policies.
However, data-intensive applications have a wide variety of
needs and often do not perform well using general-purpose
solutions. In addition, data-intensive applications show
significant performance benefits when using application-
specific interfaces that enable advanced parallel-I/O tech-
niques. Examples include collective I/O, prefetching, and
data sieving [24]; tailoring prefetching and caching poli-
cies to match an application’s access patterns, reducing la-
tency and avoiding unnecessary data requests [26]; intelli-
gent application-control of data consistency and synchro-
nization virtually eliminating the need for file locking [9];
and matching data-distribution policies to the application’s
access patterns in order to optimize parallel access to dis-
tributed disks [33].

This paper describes the Lightweight File System
(LWFS) project, a collaboration between Sandia National
Laboratories and the University of New Mexico investigat-
ing the applicability of “lightweight” approaches for I/O
on MPP systems. Lightweight designs identify the essen-
tial functionality needed to meet basic operation require-
ments. The design of Catamount (the lightweight OS for
Sandia’s Red Storm machine) focused on the need to sup-
port MPI style programs on a space-shared system, i.e., a
system in which nodes in the compute partition are allo-
cated to different applications. Because compute nodes are
the unit of allocation, the lightweight kernel needs to insure
that applications running on different nodes cannot interfere
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with one another, but does not need to address issues re-
lated to competition for resources within a single compute
node. Once this essential functionality has been defined and
implemented, additional functionality is relegated to the li-
braries and the application itself. The Compute Node Ker-
nel (CNK) [29] developed for BlueGene/L follows a sim-
ilar strategy. The advantages of the lightweight approach
are that underlying services do not implement functionality
that might degrade the scalability of an application and ap-
plications are free to implement the functionality they need
in a way that is optimal for the application. The clear disad-
vantage is that many needed services must be implemented
either in libraries or in some cases within an application it-
self.

While the benefits of the lightweight approach have
been demonstrated in the context of operating systems for
MPP architectures, this approach has not been applied to
the design of other system services. LWFS represents a
lightweight approach to I/O in which the core system con-
sists of a small set of critical functionality that the I/O li-
brary or file system developer extends to provide custom
services, features, and optimizations required by the target
applications.

2 Background and Requirements

Today’s high-end MPP machines have tens of thousands
of nodes. For example, “Red Storm”, the Cray XT3 ma-
chine at Sandia National Laboratories [6] has over ten thou-
sand nodes, and the IBM BlueGene/L [29] installed at
Lawrence Livermore National Laboratory, has over sixty-
four thousand compute nodes. Both machines are expected
to be used for large scale applications. For example, 80%
of the node-hours of Red Storm are allocated to applications
that use a minimum of 40% of the nodes.

The scale of current and next-generation MPP machines
and their supported applications presents significant chal-
lenges for designers of system software for these machines.
In this section, we discuss the accepted solution for MPP
system architecture, and we present the general design re-
quirements for I/O systems on such architectures.

2.1 System Architecture

To address scaling issues, both Red Storm and Blue-
Gene/L have adopted a “partitioned architecture” [14].
The compute nodes in a partitioned architecture use a
“lightweight kernel” [21, 29] operating system with no sup-
port for threading, multi-tasking, or memory management.
I/O and service nodes use a more “heavyweight” operating
system (e.g., Linux) to provide shared services.

The number of nodes used for computation in an MPP
is typically one to two orders of magnitude greater than

Table 1. Compute and I/O nodes for MPPs at
the DOE laboratories.

Computer Compute Nodes I/O Nodes Ratio
Intel Paragon (1990s) 1840 32 58:1

ASCI Red (1990s) 4510 73 62:1
Cray Red Storm (2004) 10,368 256 41:1

BlueGene/L (2005) 65,536 1024 64:1

the number of nodes used for I/O. For example, Table 1
shows the compute- and I/O-node configurations for four
MPP MPP systems. Unlike most clusters, compute nodes
in MPPs are diskless. This means that all I/O traffic must
traverse the communication network, competing with non-
I/O traffic for the available bandwidth.

2.2 I/O System Scalability

The disparity in the number of I/O and compute nodes,
coupled with the fact that compute nodes are diskless, puts a
significant burden on the communication network between
the compute nodes and the I/O nodes. To reduce this bur-
den, the I/O system should minimize the number of system-
imposed communications and allow the clients direct access
to the storage devices.

I/O for scientific applications is often “bursty” in na-
ture. Since there are many more compute nodes than I/O
nodes, an I/O node may receive tens of thousands of near-
simultaneous I/O requests. To handle such surges in load,
bulk data-movement for I/O requests should be controlled
by the server [17]: the server should “pull” data from the
client for writes and “push” data to the client for reads. We
describe our approach in Section 3.2.

2.3 Application Scalability

Perhaps the most important requirement for an MPP I/O
system is that it does not hinder the scalability of applica-
tions. That is, it should not impose unnecessary functional-
ity that adds overhead on compute nodes. This is a funda-
mental motivation behind using a lightweight approach for
I/O. To address this concern we designed the core architec-
ture of the lightweight file system based on the following
rules (where n is the number of compute nodes and m is
the number of I/O nodes):

1. Prohibit system-imposed operations that require O(n)
operations.

2. Prohibit system-imposed data structures of size O(n).
This implies that the I/O system may not use



connection-based mechanisms for communications or
security.

3. Make operations with O(m) messages between I/O
nodes as rare as possible.

2.4 Access Control

Security is a critical concern for I/O systems in general.
However, the DOE Laboratories have particular require-
ments that impose a significant challenge on I/O system de-
sign. In particular, we need scalable mechanisms for au-
thentication and authorization as well as “immediate” revo-
cation of access permissions when access policies change.

With respect to scalability, we need authentication and
authorization mechanisms that minimize the number of re-
quired communications to centralized control points like a
metadata server. In traditional file systems, access requests
go through a centralized metadata server that authenticates
the user and authorizes the request before passing the re-
quest on to the storage system (i.e., the I/O nodes). As
applications scale to use thousands of nodes, the metadata
server becomes a severe bottleneck for data access. In a par-
titioned architecture, we need an authorization model that
allows for centralized definitions of access-control policies,
but distributed enforcement of those policies. In the ideal
case, every access request could be independently authenti-
cated at an I/O node without communicating with a central-
ized “authorization server”.

We consider it necessary and beneficial to integrate au-
thentication and authorization into the I/O system archi-
tecture. However, the controlled environment of a DOE
laboratory allows us to make a different choice with re-
spect to network security (privacy of the information car-
ried over the wire). For our purposes, the I/O system can as-
sume a trusted transport mechanism that does not allow “re-
play” attacks, “man-in-the-middle” attacks, or eavesdrop-
ping. From the application-interface level, it is safe for the
application and other system components to transmit private
data in clear text. The assumption of a secure transport al-
lows for a more efficient design of the security infrastructure
because the I/O system does not need to encrypt data on the
wire, a potentially costly operation. For environments that
already have a secure and reliable network, adding these
features to the I/O system is redundant and adds unneces-
sary overheads. For environments that are not secure, the
I/O system should use a transport mechanism that provides
encryption internally. In either case, provision of a secure
and reliable transport is not an issue for the I/O system.

To provide the level of access control required by our se-
curity model, the system must allow for the “immediate”
revocation of access privileges should the access-control
policies change. Because of the distributed nature of our
target I/O system, and the need for distributed enforcement

of access-control policies, immediate revocation presents a
scalability challenge that is not easily solved. We discuss
our proposed solution in Section 3.1.4.

3 The LWFS-Core

The primary challenge associated with designing the
fixed core of a lightweight file system (called the LWFS-
core) is choosing which functionality is required (i.e. will
be provided by the LWFS-core) and which is optional (al-
lowing applications to implement it in different ways). Gen-
eral design guidelines for the LWFS-core are:

1. The LWFS-core should provide the infrastructure
needed to provide controlled access to data distributed
across multiple storage servers.

2. The LWFS-core should be a thin layer above the hard-
ware that presents an accurate reflection of costs asso-
ciated with resource usage.

3. The LWFS-core should expose the parallelism of the
storage servers to clients to allow for efficient data ac-
cess and control over data distribution.

4. The LWFS-core should provide an “open architecture”
for optional functionality that allows the client imple-
mentation to accept, reject, replace, or create addi-
tional functionality.

In short, the LWFS-core consists of the minimal set of
functionality required by all I/O systems. Based on our
guidelines and the requirements expressed in Section 2, we
defined the LWFS-core to include mechanisms for security
(i.e., authentication and authorization), efficient data move-
ment, direct access to data, and support for distributed trans-
actions.

3.1 Security

Our security design builds on traditional capability-
based systems to provide scalable mechanisms for authen-
tication and access control, with near-immediate revocation
when access policies change.

3.1.1 Coarse-Grained Access Control

Unlike many file systems that provide fine-grained access
control at the byte level, the LWFS-core provides coarse-
grained access control to containers of objects. Every ob-
ject belongs to a single container, and all objects in the
same container are subject to the same access control pol-
icy. LWFS knows nothing about the organization of objects
in a container; higher-level libraries are responsible for im-
plementing and interpreting container organization. Since



LWFS does not constrain object organization, library pro-
grammers may experiment with data distribution and redis-
tribution schemes that efficiently match the access patterns
of different applications.

3.1.2 Credentials and Capabilities

The LWFS-core uses capability-like [20] data structures
for authentication and authorization. For authentication,
a credential provides the LWFS system components with
proof of user authentication from a trusted external mech-
anism (e.g., Kerberos, GSS-API, SASL). Credentials are
fully transferable. Once obtained, the application may dis-
tribute the credential to other processes that act on behalf of
the principal. Such functionality is useful, for example, in
distributed applications that want each process composing
the distributed application to share a single identity. The
contents of a credential are opaque to the user and contain a
cryptographically strong hash computed over the credential
itself to minimize the likelihood of unknown users correctly
forging valid credentials. LWFS credentials are tied to both
the identity of the user and the ID of the process that re-
quested the credential (i.e., the “Application Launcher” in
Figure 1). When the process dies, all authorizations based
on the credential are revoked.

In the same way that credentials provide proof of au-
thentication, a capability provides proof of authorization.
A capability is a data structure that entitles the holder to
perform a specific operation on a container of objects. For
example, a capability could allow the holder to read from
the objects belonging to a container. Like credentials, ca-
pabilities are transient — limited in life to the current, issu-
ing instance of the authorization service as well as bounded
by the authentication service in use. Capabilities are also
fully-transferable. Once acquired, an application may trans-
fer a capability to any process, including processes in other
applications–allowing the delegation of access rights.

Having fully-transferable credentials and capabilities
limits the number of wire calls to the authentication or au-
thorization server and makes the distribution of credentials
or capabilities the responsibility of the client. Figures 1-
a and 1-b show the protocols for acquiring credentials and
capabilities. In both protocols, a single client process sends
a request to the appropriate server, receives the data struc-
ture, then uses a logarithmic “broadcast” function to dis-
tribute the credential or capability to other client processes.
We provide a more detailed description of the security pro-
tocols in [22].

Figure 1-c shows the protocol for reading data from an
LWFS storage server. The process starts when a client sends
an access request along with a capability (labeled cap) to a
storage server. If the storage server does not have the cap
in its cache of valid capabilities, it sends a “verify” request

to the authorization server. The authorization server then
verifies the request and sends a response back to the stor-
age server. To support revocation (see Section 3.1.4), the
authorization server keeps track of clients that are caching
valid capabilities. If the cap is valid, the storage server
saves the capability in its cache and initiates the transport
of data between the client and the storage server along a
high-throughput data channel.

The capabilities (and credentials) used in the LWFS-core
are different from traditional capability-based storage ar-
chitectures because LWFS capabilities can only be veri-
fied by the entity that generated them. In a true capabil-
ity system [20], any entity can verify the authenticity and
integrity of the capability. For example, NASD [12] and
Panasas [25] use a symmetric-key scheme in which a se-
cret key is shared between the authorization service and the
storage service. The same key is used to generate and ver-
ify capabilities. This is also the recommonded approach
given by the T10 standards document for object-based stor-
age devices [31]. The problem with this approach is that the
authorization server has to trust the storage server to only
use that key to verify existing capabilities (not generate new
ones). Our caching scheme only allows the storage server
to verify previously authorized capabilities, thus eliminat-
ing the need for the authorization server to trust the storage
server. Our scheme, however, requires explicit communica-
tion between the storage server and the authorization server
that creates additional overheads. However, an analysis
of this approach [22] proves that given the computing envi-
ronment for MPPs, the amortized cost of this operation is
constant and will have little impact on the performance of
data-access operations.

3.1.3 Trust Relationships

Figure 2 illustrates the trust relationships between the dif-
ferent LWFS components. Each circle represents a single
component and encompasses all of the components it trusts.
Applications are not trusted by any components, but appli-
cations trust the storage service to allow access to entities
with proper authorization (i.e., capabilities). The storage
service trusts the authorization service to grant capabilities
to authorized users, and the authorization service trusts the
authentication service to properly identify users. These trust
relationships are not reciprocal.

3.1.4 Revocation of Capabilities and Credentials

In order to provide the level of access control required
by our security model, credentials and capabilities may be
revoked by the authentication or authorization service at
any time. We need “immediate” revocation of credentials
when an application terminates or for security-related rea-
sons (e.g., system compromise). Revocation of capabilities



(a) Get credentials. (b) Get capabilities.

(c) Get data.

Figure 1. LWFS protocols for acquiring credentials, acquiring capabilities, and accessing data.



Figure 2. Trust relationships between the
LWFS components. A component trusts ev-
erything within its circle, but trusts nothing
outside of the circle.

is needed, for instance, when an application changes the
access-policy of a previously authorized operation.

Revocation is a challenge for true capability-based sys-
tems because capabilities need to be independently verifi-
able and fully transferable. These requirements make it dif-
ficult for the system to track down and invalidate capabili-
ties in a scalable way.

The LWFS scheme uses a combination of the two com-
monly used methods for capability revocation: secure keys
and back pointers. LWFS credentials and capabilities con-
tain a secure hash key, but, the hash can only be verified
by the entity that generated the hash (i.e., the authorization
service). We added an optimization to allow a trusted entity
(e.g., a storage server) to cache results from the authoriza-
tion service so that subsequent requests using previously
verified capabilities do not require additional communica-
tion with the authorization service. These optimizations re-
quire back pointers (method 2) so that when the authoriza-
tion service revokes a capability, the system can invalidate
the cached entries on each of the storage servers.

One of the nice features of the LWFS capability model
is that the system can revoke partial access to a container
of objects. Consider an application that has two capabili-
ties on a container: one that enables writing, and another to
enable reading. Our authorization service can revoke one
capability without revoking the other. For example, if a
user decides to remove write access to the container (via a
“chmod”), the storage servers (after being contacted by the
authorization service) can invalidate the capability that al-
lows writing without invalidating the capability that allows
reading.

3.2 Data Movement

One of the principal challenges for parallel file systems
on MPP systems is dealing with device contention created
by having tens of thousands of compute nodes competing
for the I/O resources of hundreds of I/O servers. At any

point in time, hundreds, or even thousands, of compute
nodes may be competing for the same I/O server. Without
control of the movement of data to the I/O server, a “burst”
of large I/O requests can quickly overwhelm the resources
of an I/O server causing bottlenecks that affect the perfor-
mance and reliability of every competing application and
the system as a whole.

To illustrate the problem, consider the hardware config-
uration of the Cray Red Storm system at Sandia, generally
considered a “well-balanced” system. Based on the speci-
fications presented in [4], an I/O node can receive 6 GB/s
from the network, but only output 400 MB/s to the RAID
storage. Requests that arrive but cannot be processed are
either buffered on the I/O node or rejected if the I/O node
buffer is full. Rejecting buffers causes the compute nodes
to actively re-send the data at some later time based on the
flow-control mechanism implemented by the I/O system or
the network transport layer. The re-sending of I/O requests
creates overhead on the compute nodes that hinders the scal-
ability of the application and consumes valuable network
resources.

Well-designed applications avoid resource conflicts by
coordinating access among application processors either
explicitly [10] or by using collective parallel I/O inter-
faces [30]; however, their solutions do not solve the problem
of multiple applications competing for I/O servers.

We address this problem by using a server-directed ap-
proach [17] in which the server controls the transfer of bulk
data to/from the client.

For more details and a performance analysis of the
LWFS data-movement scheme, see [23].

3.3 Object-Based Data Access

The LWFS-core storage service follows a recent trend to
utilize intelligent, object-based storage devices [12]. The
object-based storage architecture is more scalable than the
traditional server-attached disk (SAD) architecture because
it separates policy decisions from policy enforcement. In
traditional SAD architectures the file server manages the
block layout of files and decides on and enforces the access-
control policy for every access request. Object-based stor-
age architectures move the block layout decisions and pol-
icy enforcement to the storage device, reducing the number
of calls to the metadata server and allowing clients direct
access to storage devices.

3.4 Transactional Semantics

LWFS provides two mechanisms for implementing
ACID-compliant transactions: journals and locks. Jour-
nals provide a mechanism to ensure atomicity and durability
for transactions. A two-phase commit protocol (part of the



LWFS API) helps the client to preserve the atomicity prop-
erty because it requires all participating servers to agree on
the final state of the system before changes become perma-
nent. Durability exists because a journal exists as a per-
sistent object on the storage system. Locks enable consis-
tency and isolation for concurrent transactions by allowing
the client to synchronize access to portions of the code that
require protection or which must complete in a particular
order based on the consistency semantics of the application.

4 Case Study: Checkpointing

Checkpointing application state to stable storage is the
most common way for large, long-running applications to
avoid loss of work in the event of a system failure. On MPP
systems, checkpoints are highly I/O intensive and account
for nearly 80% of the total I/O usage in some instances [27].
In this section, we describe how to implement a checkpoint
operation using the core features of LWFS and we compare
the performance of a preliminary implementation to two al-
ternative approaches using traditional parallel file systems.

In order to maximize MPP application throughput,
checkpoint processing should proceed as quickly as possi-
ble with as little interference as possible from the I/O sys-
tem. However, checkpointing is an example of a logically
simple operation that is made unneccesarily complex by the
functionality imposed by traditional file systems. For exam-
ple, checkpointing requires no synchronization because all
writes are non-overlapping. Checkpointing also has min-
imal requirements for data consistency among the partici-
pating clients and servers. A checkpoint operation needs a
naming service to reference the checkpoint “data set”, but it
should not have to register a name for every object created
by each client.

Figure 3 shows pseudocode of the steps required to im-
plement a checkpoint operation using the LWFS core ser-
vices. The first step is to create a container and acquire the
capabilities required to create and write to objects into that
container (lines 2 and 3 of the MAIN() function). Since
we can create multiple checkpoint files using the same con-
tainer ID, it is only necessary to perform this step once. At
application-defined intervals, the application pauses com-
putation to perform a CHECKPOINT() operation. In our im-
plementation, the client processors independently, in par-
allel, create and dump process state to individual storage
objects. After completing the writes, a single process gath-
ers and creates sufficient metadata to describe the check-
point objects as a coherent dataset. That process then writes
the metadata to a single storage object, creates a name in
the naming service, and associates the metadata object with
that name. Since the checkpoint operation involves a num-
ber of of distributed tasks to different servers, we execute
each task inside a distributed transaction.

We illustrate the benefits of the lightweight checkpoint
operation by comparing it with two commonly used imple-
mentations that access storage through a traditional parallel
file system. In the first alternative, the application creates a
single parallel file shared by all application processors. The
second alternative is for the application to create a single
parallel file per process.

In both implementations, limitations inherent in the par-
allel file system introduce significant performance bottle-
necks. These bottlenecks are shown in Figures 4 and 5.
The plots show measured throughput and bandwidth of the
lightweight checkpoint and the two alternative implementa-
tions running on an I/O-development cluster at Sandia. The
cluster is comprised of 40 2-way SMP 2.0 GHz Opteron
nodes with a Myrinet interconnect. We used 1 node for the
metadata/authorization server, 8 as storage servers, and we
used the remaining 31 compute nodes. For the larger runs,
some of the compute nodes host multiple client processes.

For the two implementations that uses a traditional PFS,
each storage-server node hosted two Lustre object-storage
targets (OSTs), each mounted to an ext3 file system using
an LSI MetaStor 4400 fibre channel RAID with 1GB/s fibre
channel links. For the LWFS implementation, we disabled
the Lustre OSTs on each storage node and configured two
LWFS storage servers to use the same RAIDs. In every ex-
periment, each node writes 512 MB of data and measures
the time to open, write, sync, and close the file (or object).
The application reports the maximum time over all partici-
pating processes. All plots show the average and standard
deviation over a minimum of 5 trials.

In the shared-file case, even though the processors write
their process state to a non-overlapping regions, the file sys-
tem’s consistency and synchronization semantics get in the
way, severely limiting the throughput of the checkpoint op-
eration. In fact, as shown in Figure 4, the throughput of the
shared-file case is roughly half that of the file-per-process
and the lightweight checkpoint implementations.

In the file-per-process implementation, the bandwidth
scales well, but the limiting factor is the time to create
the checkpoint files. Since every file-create request goes
through the centralized metadata server, the performance is
always limited to the throughput in operations/second of the
metadata server. In contrast, the lightweight checkpoint op-
eration creates the checkpoint objects in parallel. The per-
formance comparison in Figure 5 reflects these differences.

For small systems, the overhead of file creation may be
small relative to the time it takes to actually dump the file;
however, operations to a centralized metadata server are in-
herently unscalable and as the system grows, this “file cre-
ation” overhead becomes a serious problem. For example,
if we make conservative approximations to scale the results
from our development cluster to a theoretical petaflop sys-
tem with 100,000 compute nodes and 2000 I/O nodes, cre-



MAIN()
1: cred← GETCREDS()
2: cid← CREATECONTAINER(cred)
3: caps← GETCAPS(cid)
4: while not done do
5: state← COMPUTE()
6: CHECKPOINT(state, path, caps)
7: end while

CHECKPOINT(state, path, caps)

1: txnid← BEGINTXN()
2: obj ← CREATEOBJ(txnid, caps)
3: DUMPSTATE(txnid, state, obj, caps)
4: if rank = 0 then
5: mdobj ← CREATEOBJ(txnid, caps)
6: end if
7: GATHERMETADATA(mdobj, 0)
8: if rank = 0 then
9: CREATENAME(txnid, path, mdobj)

10: end if
11: ENDTXN(txnid)

Figure 3. Pseudocode for checkpointing application state using the LWFS.

ating the files will require multiple minutes to complete–
roughly 10% of the total time for the checkpoint operation.

5 Related Work

Our lightweight approach to I/O-system design is moti-
vated by the success of microkernel architectures [1, 3], es-
pecially for MPPs [5, 32], and is a direct extension of previ-
ous work on “stackable” file systems [15, 18, 34]; however,
because of space limitations, we focus this section on other
efforts to develop scalable I/O systems.

There are several existing parallel file systems designed
for large-scale clusters or MPPs. Of these, Lustre [8],
PVFS2 [19, 28], and NASD [11, 12] (and the commercial
version Panasas [25]) are the most widely used. LWFS dis-
tinguishes itself from these other file systems in two areas:
how services are partitioned, and the trust relationship be-
tween components.

Lustre, NASD, and PVFS all use a similar architecture
that consists of client processors, metadata servers, and stor-
age servers. For each of these systems, the metadata server
provides namespace management (including metadata con-
sistency), access-control policy, and some control of data
distribution for parallel files. Although they may provide
some flexibility with respect to data-distribution policies,
the client may not dynamically extend those policies or cre-
ate new ones. In contrast, LWFS separates the functional-
ity of traditional metadata servers to allow for a variety of
schemes and implementations.

Unlike LWFS, Lustre and PVFS extend the trust domain
all the way to the client. In Lustre, the client-side services
exist entirely in a trusted kernel. The PVFS client code
runs in user space, but trusts the client to perform opera-
tions that were authorized when the client opened the file.
While trusting the client eliminates the need to authenticate
every access operation, it complicates the development pro-
cess by tying development of the operating system to the
file system. The file system must support each version of

the operating-system kernel. Systems like PVFS that trust
a client running outside a trusted kernel are inherently inse-
cure because they allow potentially unauthorized operations
to access data.

Of the three file systems, NASD is most similar to
LWFS. Both LWFS and NASD use capabilities that the
system verifies before allowing object access; however,
NASD capabilities are different in several ways. In con-
trast to LWFS capabilities that provide coarse-grained ac-
cess control to containers, Panasas capabilities enable “fine-
grained” access control to objects. While there are some
benefits with respect to data consistency and security asso-
ciated with fine-grained access-control, a NASD client may
have to acquire more capabilities to access a file. NASD
does have “indirection objects” [13] that group objects into
the same access-control domain, but the client still has
the ability to change the access-control policy of the sub-
objects, invalidating the usefulness of the indirection object.
NASD and LWFS also differ in how they invalidate capabil-
ities (i.e., revocation). NASD updates a version attribute on
an object, which causes subsequent capability-verification
attempts to fail–forcing the client to re-acquire all capabili-
ties for that object. In contrast, LWFS can revoke a subset of
capabilities for a container by only removing cache entries
(see Section 3.1.4) for a particular operation. For example,
LWFS can revoke write capabilities without revoking read
capabilities.

There are other differences between LWFS and NASD.
NASD (designed primarily for clusters) assumes an un-
trusted network. For the reasons expressed in Section 2.4,
we chose to trust the network. Also, NASD does not au-
tomatically refresh expired capabilities. After a capability
expires, the client has to re-acquire capabilities (possibly
an O(n) operation). NASD staggers expiry times in an ef-
fort to reduce the impact of expiring capabilities, but for
operations like a checkpoint, with large gaps between file
accesses, the cost of re-acquiring expired capabilities is still
a problem.
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Figure 4. These figures show the throughput
in MB/sec as a function of the number of pro-
cessors of the Lustre file-per-process, Lustre
shared file, and LWFS object-per-process im-
plementations of the checkpoint operation.
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Figure 5. The top figure shows a logplot com-
parison of the throughput of creating Lustre
files for the file-per-process implementation
compared to the throughput creating objects
for the LWFS implementation. The bottom
two figures show more detail for the individ-
ual implementations.



There is also an effort to standardize the interface to
object-based storage devices (OSD) [31]. We look forward
to integrating vendor-supplied devices using this interface
into LWFS, but as we mentioned in Section 3.1.2, we use a
different approach to verify capabilities. It would be helpful
if the T10 standard provided some flexibility in this regard.

6 Future Work

Although our experiments provide insight to the scalabil-
ity of our approach on MPP systems, our development clus-
ter is clearly insufficient for true scalability experiments.
The next logical step is to acquire more compelling evi-
dence by running experiments on Sandia’s large production
machines. This effort is underway and we expect to have
opportunities for exclusive access to these machines in the
near term.

LWFS has potential as both a vehicle for I/O research
and a framework for developing production-ready file sys-
tems. In the short term, we plan to implement two tradi-
tional parallel file systems: one that provides POSIX se-
mantics and standard distribution policies, and another (like
the PVFS [7]) with relaxed synchronization semantics that
make the client responsible for data consistency. We also
plan to implement commonly used I/O libraries like MPI-
I/O, HDF-5, and PnetCDF directly on top of the LWFS core.
In current implementations, these libraries are layered on
top of low-level libraries, which are in-turn layered on top
of a general-purpose parallel file system. We believe that
commonly used high-level libraries can make better use of
the underlying hardware and take advantage of application-
specific synchronization and consistency policies if they by-
pass the intermediate layers and interact directly with the
LWFS core components. The effort to implement standard
libraries on top of LWFS will allow us to run well-known
benchmarks that will provide a more fair comparison be-
tween existing approaches and the LWFS.

With respect to research, we are actively investigating
how to apply the lightweight file system approach to numer-
ous other research areas including scalable namespace man-
agement, application-specific distribution policies, client-
coordinated synchronization and data consistency, I/O li-
braries that incorporate remote processing (e.g., remote fil-
tering) [2], and many others.

7 Summary

In this paper, we present a lightweight approach to I/O
for MPP computing that allows data-intensive operations to
bypass features of traditional parallel file systems that hin-
der the scalability of the application. In addition to being
scalable, our design is both secure and extensible, allowing

library, I/O systems, and applications to implement func-
tionality specific to their needs.

Our implementation of a lightweight checkpoint opera-
tion provides an example that illustrates the simplicity and
performance benefits of a lightweight approach, but we be-
lieve there are number of other areas that will also bene-
fit. For example, lightweight implementations of common
I/O libraries like MPI-IO, HDF-5, netCDF, and others, can
avoid the overheads and loss of dataset-specific semantics
caused by the I/O abstraction layers that typically sit be-
tween the high-level library and the I/O-system hardware.
In addition, application-specific I/O libraries can benefit
from control over data distribution and a flexible data con-
sistency and synchronization model that allows client pro-
cessors to coordinate access to shared devices.

LWFS is still in a relatively early stage of development.
Performance results from experiments on our development
machine are encouraging and provide insight as to how
well LWFS will scale to larger machines. We look forward
to demonstrating the benefits of the lightweight approach
using larger scale scenarios, production applications, and
well-known I/O benchmarks. These efforts are underway
and we expect to have significantly more compelling results
in the near future.
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