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Today’s Outline

• Review

• NP-Hardness and three more reductions
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Classes of Problems

We can characterize many problems into three classes:

• P is the set of yes/no problems that can be solved in poly-

nomial time. Intuitively P is the set of problems that can be

solved “quickly”

• NP is the set of yes/no problems with the following property:

If the answer is yes, then there is a proof of this fact that

can be checked in polynomial time

• co-NP is the set of yes/no problems with the following prop-

erty: If the answer is no, then there is a proof of this fact

that can be checked in polynomial time
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NP-Hard

• A problem Π is NP-hard if a polynomial-time algorithm for

Π would imply a polynomial-time algorithm for every problem

in NP

• In other words: Π is NP-hard iff If Π can be solved in

polynomial time, then P=NP

• In other words: if we can solve one particular NP-hard prob-

lem quickly, then we can quickly solve any problem whose

solution is quick to check (using the solution to that one

special problem as a subroutine)

• If you tell your boss that a problem is NP-hard, it’s like saying:

“Not only can’t I find an efficient solution to this problem

but neither can all these other very famous people.” (you

could then seek to find an approximation algorithm for your

problem)
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NP-Complete

• A problem is NP-Easy if it is in NP

• A problem is NP-Complete if it is NP-Hard and NP-Easy

• In other words, a problem is NP-Complete if it is in NP but

is at least as hard as all other problems in NP.

• If anyone finds a polynomial-time algorithm for even one NP-

complete problem, then that would imply a polynomial-time

algorithm for every NP-Complete problem

• Thousands of problems have been shown to be NP-Complete,

so a polynomial-time algorithm for one (i.e. all) of them is

incredibly unlikely
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Example

Conjectures

• We conjecture that P!=NP and that NP!=co-NP

• Here’s a picture of what we think the world looks like:

P

NPco−NP
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Example

P

co−NP

NP−hard

NP
NP−complete

A more detailed picture of what we think the world looks like.
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A detailed picture of what we think the world looks like.
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Independent Set

• Independent Set is the following problem: “Does there exist

a set of k vertices in a graph G with no edges between them?”

• In the hw, you’ll show that independent set is NP-Hard by a

reduction from CLIQUE

• Thus we can now use Independent Set to show that other

problems are NP-Hard
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Vertex Cover

• A vertex cover of a graph is a set of vertices that touches

every edge in the graph

• The problem Vertex Cover is: “Does there exist a vertex

cover of size k in a graph G?”

• We can prove this problem is NP-Hard by an easy reduction

from Independent Set
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Key Observation

• Key Observation: If I is an independent set in a graph G =

(V, E), then V − I is a vertex cover.

• Thus, there is an independent set of size k iff there is a vertex

cover of size |V | − k.

• For the reduction, we want to show that a polynomial time

algorithm for Vertex Cover can give a polynomial time algo-

rithm for Independent Set
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The Reduction

• We are given a graph G = (V, E) and a value k and we must

determine if there is an independent set of size k in G.

• To do this, we ask if there is a vertex cover of size |V | − k in

G.

• If so then we return that there is an independent set of size

k in G

• If not, we return that there is not an independent set of size

k in G
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The Reduction

graph G = (V, E), k
trivial
−−−→ graph G = (V, E), |V | − kwww� VertexCover

True or False
O(1)
←−−− True or False
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Graph Coloring

• A c-coloring of a graph G is a map C : V → {1,2, . . . , c} that

assigns one of c “colors” to each vertex so that every edge

has two different colors at its endpoints

• The graph coloring problem is: “Does there exist a c-coloring

for the graph G?”

• Even when c = 3, this problem is hard. We call this problem

3Colorable i.e. “Does there exist a 3-coloring for the graph

G?”
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3Colorable

• To show that 3Colorable is NP-hard, we will reduce from

3Sat

• This means that we want to show that a polynomial time al-

gorithm for 3Colorable can give a polynomial time algorithm

for 3Sat

• Recall that the 3-SAT problem is just: “Is there any assign-

ment of variables to a 3CNF formula that makes the formula

evaluate to true?”

• And a 3CNF formula is just a conjunct of a bunch of clauses,

each of which contains exactly 3 variables e.g.

clause︷ ︸︸ ︷
(a ∨ b ∨ c) ∧ (b ∨ c̄ ∨ d̄) ∧ (ā ∨ c ∨ d) ∧ (a ∨ b̄ ∨ d)
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Reduction

• We are given a 3-CNF formula, F , and we must determine

if it has a satisfying assignment

• To do this, we produce a graph as follows

• The graph contains one truth gadget, one variable gadget

for each variable in the formula, and one clause gadget for

each clause in the formula
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The Truth Gadget

• The truth gadget is just a triangle with three vertices T , F

and X, which intuitively stand for True, False, and other

• Since these vertices are all connected, they must have differ-

ent colors in any 3-coloring

• For the sake of convenience, we will name those colors True,

False, and Other

• Thus when we say a node is colored “True”, we just mean

that it’s colored the same color as the node T
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The Variable Gadgets

• The variable gadget for a variable a is also a triangle joining
two new nodes labeled a and a to node X in the truth gadget

• Node a must be colored either “True” or “False”, and so
node a must be colored either “False” or “True”, respec-
tively.

X

a a

• The variable gadget ensures that each of the literals is colored
either “True” or “False”

15
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The Clause Gadgets

• Each clause gadget joins three literal nodes to node T in the

truth gadget using five new unlabelled nodes and ten edges

(as in the figure)

• This clause gadget ensures that at least one of the three

literal nodes in each clause is colored “True”

The Clause Gadgets

• Each clause gadget joins three literal nodes to node T in the
truth gadget using five new unlabelled nodes and ten edges
(as in the figure)

• This clause gadget ensures that at least one of the three
literal nodes in each clause is colored “True”

a

b

c

T
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Example

Consider the formula (a∨ b∨ c)∧ (b∨ c̄∨ d̄)∧ (ā∨ c∨d)∧ (a∨ b̄∨ d̄).
Following is the graph created by the reduction:

d

X

ca b

T

a b c d

F
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Example

• Note that the 3-coloring of this example graph corresponds
to a satisfying assignment of the formula

• Namely, a = c = True, b = d = False.
• Note that the final graph contains only one node T , only one

node F , only one node ā for each variable a and so on
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Correctness

• The proof of correctness for this reduction is direct
• If the graph is 3-colorable, then we can extract a satisfying

assignment from any 3-coloring, since at least one of the
three literal nodes in every clause gadget is colored “True”

• Conversely, if the formula is satisfiable, then we can color
the graph according to any satisfying assignment

19
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Reduction Picture

3CNF formula
O(n)
−−−→ graphwww� 3Colorable

True or False
trivial
←−−− True or False
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Wrap Up

• We’ve just shown that if 3Colorable can be solved in poly-

nomial time then 3-SAT can be solved in polynomial time

• This shows that 3Colorable is NP-Hard

• To show that 3Colorable is in NP, we just need to note that

we can easily verify that a graph has been correctly 3-colored

in linear time: just compare the endpoints of every edge

• Thus, 3Coloring is NP-Complete.

• This implies that the more general graph coloring problem is

also NP-Complete
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In-Class Exercise

Consider the problem 4Colorable: “Does there exist a 4-coloring

for a graph G?”

• Q1: Show this problem is in NP by showing that there exists

an efficiently verifiable proof of the fact that a graph is 4

colorable.

• Q2: Show the problem is NP-Hard by a reduction from the

problem 3Colorable. In particular, show the following:

– Given a graph G, you can create a graph G′ such that G′

is 4-colorable iff G is 3-colorable.

– Creating G′ from G takes polynomial time

Note: You’ve now shown that 4Colorable is NP-Complete!
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Hamiltonian Cycle

• A Hamiltonian Cycle in a graph is a cycle that visits every

vertex exactly once (note that this is very different from an

Eulerian cycle which visits every edge exactly once)

• The Hamiltonian Cycle problem is to determine if a given

graph G has a Hamiltonian Cycle

• We will show that this problem is NP-Hard by a reduction

from the vertex cover problem.
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The Reduction

• To do the reduction, we need to show that we can solve

Vertex Cover in polynomial time if we have a polynomial

time solution to Hamiltonian Cycle.

• Given a graph G and an integer k, we will create another

graph G′ such that G′ has a Hamiltonian cycle iff G has a

vertex cover of size k

• As for the last reduction, our transformation will consist of

putting together several “gadgets”

24

Edge Gadget and Cover Vertices

• For each edge (u, v) in G, we have an edge gadget in G′

consisting of twelve vertices and fourteen edges, as shown

below
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Edge Gadget and Cover Vertices

• For each edge (u, v) in G, we have an edge gadget in G′
consisting of twelve vertices and fourteen edges, as shown
below

(u,v,1) (u,v,6)(u,v,2) (u,v,3) (u,v,4) (u,v,5)

(v,u,1) (v,u,2) (v,u,3) (v,u,4) (v,u,5) (v,u,6)

An edge gadget for (u, v) and the only possible Hamiltonian paths
through it.
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Edge Gadget

• The four corner vertices (u, v,1), (u, v,6), (v, u,1), and (v, u,6)
each have an edge leaving the gadget

• A Hamiltonian cycle can only pass through an edge gadget
in one of the three ways shown in the figure

• These paths through the edge gadget will correspond to one
or both of the vertices u and v being in the vertex cover.
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Cover Vertices

• G′ also contains k cover vertices, simply numbered 1 through
k
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Vertex Chains

• For each vertex u in G, we string together all the edge gad-

gets for edges (u, v) into a single vertex chain and then con-

nect the ends of the chain to all the cover vertices

• Specifically, suppose u has d neighbors v1, v2, . . . , vd. Then G′

has the following edges:

– d − 1 edges between (u, vi,6) and (u, vi+1,1) (for all i

between 1 and d− 1)

– k edges between the cover vertices and (u, v1,1)

– k edges between the cover vertices and (u, vd,6)
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The Reduction

• It’s not hard to prove that if {v1, v2, . . . , vk} is a vertex cover

of G, then G′ has a Hamiltonian cycle

• To get this Hamiltonian cycle, we start at cover vertex 1,

traverse through the vertex chain for v1, then visit cover

vertex 2, then traverse the vertex chain for v2 and so forth,

until we eventually return to cover vertex 1

• Conversely, one can prove that any Hamiltonian cycle in G′

alternates between cover vertices and vertex chains, and that

the vertex chains correspond to the k vertices in a vertex

cover of G

Thus, G has a vertex cover of size k iff G′ has a Hamiltonian

cycle
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The Reduction

• The transformation from G to G′ takes at most O(|V |2) time,

so the Hamiltonian cycle problem is NP-Hard

• Moreover we can easily verify a Hamiltonian cycle in linear

time, thus Hamiltonian cycle is also in NP

• Thus Hamiltonian Cycle is NP-Complete

30
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Example

1

2

u v

w x

(v,x)

(x,v)

(u,v)

(v,u)

(u,w)

(w,u)

(v,w)

(w,v)

(x,w)

(w,x)

The original graph G with vertex cover {v, w}, and the transformed graph G′
with a corresponding Hamiltonian cycle (bold edges).

Vertex chains are colored to match their corresponding vertices.
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The original graph G with vertex cover {v, w}, and the transformed graph G′

with a corresponding Hamiltonian cycle (bold edges).
Vertex chains are colored to match their corresponding vertices.
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The Reduction

graph G = (V, E), k
O(|V |2)
−−−→ graph G′www� Hamiltonian Cycle

True or False
O(1)
←−−− True or False
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Traveling Sales Person

• A problem closely related to Hamiltonian cycles is the famous

Traveling Salesperson Problem(TSP)

• The TSP problem is: “Given a weighted graph G, find the

shortest cycle that visits every vertex.

• Finding the shortest cycle is obviously harder than deter-

mining if a cycle exists at all, so since Hamiltonian Path is

NP-hard, TSP is also NP-hard!
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NP-Hard Games

• In 1999, Richard Kaye proved that the solitaire game Minesweeper

is NP-Hard, using a reduction from Circuit Satifiability.

• Also in the last few years, Eric Demaine, et. al., proved that

the game Tetris is NP-Hard
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Challenge Problem

• Consider the optimization version of, say, the graph coloring

problem: “Given a graph G, what is the smallest number

of colors needed to color the graph?” (Note that unlike the

decision version of this problem, this is not a yes/no question)

• Show that the optimization version of graph coloring is also

NP-Hard by a reduction from the decision version of graph

coloring.

• Is the optimization version of graph coloring also NP-Complete?
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Challenge Problem

• Consider the problem 4Sat which is: “Is there any assign-

ment of variables to a 4CNF formula that makes the formula

evaluate to true?”

• Is this problem NP-Hard? If so, give a reduction from 3Sat

that shows this. If not, give a polynomial time algorithm

which solves it.
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Challenge Problem

• Consider the following problem: “Does there exist a clique

of size 5 in some input graph G?”

• Is this problem NP-Hard? If so, prove it by giving a reduction

from some known NP-Hard problem. If not, give a polynomial

time algorithm which solves it.
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