CS 362, HW 1

Prof. Jared Saia, University of New Mexico

Remember: you are encouraged to work on the homework in groups, but please observe the "Star Trek" rule from the syllabus.

- 1. Prove that $\log n! = \Theta(n \log n)$ and that $n! = \omega(2^n)$ and $n! = o(n^n)$
- 2. Assume you have functions f and g, such that f(n) is O(g(n)). For each of the following statements, decide whether you think it is true or false and give either a proof or a counterexample
 - (a) $\log_2 f(n)$ is $O(\log_2 g(n))$
 - (b) $2^{f(n)}$ is $O(2^{g(n)})$
 - (c) $f(n)^2$ is $O(g(n)^2)$
- 3. A c-tree is a tree with each node colored either red, green or silver that obeys the following rules:
 - Each red node has two children, exactly one of which is green.
 - Each green node has exactly one child, which is not green
 - Silver nodes have no children.

Let R and S respectively denote the number of red and silver nodes, and n be the total number of nodes. Prove by induction that in any c-tree with $n \ge 1$, S = R + 1.

4. Write and solve a recurrence relation giving the number of strings of n digits containing at least one 3. For example, if n = 5, then 02309 would be one such string.
In particular, let f(n) be the number of strings of n digits with at

In particular, let f(n) be the number of brings of n angles with at least one 3. First, write an equation f(n) = * * *, where the *** part contains smaller sub-problems, i.e. the f(j) terms all have j < n. Then give a base case for the recurrence. Finally, use guess and check to solve the recurrence to within $\Theta()$ bounds. Hint: you may find the Master method useful for getting a good guess.