CS 362, HW 1

Prof. Jared Saia, University of New Mexico

Remember: you are encouraged to work on the homework in groups, but please observe the "Star Trek" rule from the syllabus.

1. Prove that $\log n!=\Theta(n \log n)$ and that $n!=\omega\left(2^{n}\right)$ and $n!=o\left(n^{n}\right)$
2. Assume you have functions f and g, such that $f(n)$ is $O(g(n))$. For each of the following statements, decide whether you think it is true or false and give either a proof or a counterexample
(a) $\log _{2} f(n)$ is $O\left(\log _{2} g(n)\right)$
(b) $2^{f(n)}$ is $O\left(2^{g(n)}\right)$
(c) $f(n)^{2}$ is $O\left(g(n)^{2}\right)$
3. A c-tree is a tree with each node colored either red, green or silver that obeys the following rules:

- Each red node has two children, exactly one of which is green.
- Each green node has exactly one child, which is not green
- Silver nodes have no children.

Let R and S respectively denote the number of red and silver nodes, and n be the total number of nodes. Prove by induction that in any c-tree with $n \geq 1, S=R+1$.
4. Write and solve a recurrence relation giving the number of strings of n digits containing at least one 3 . For example, if $n=5$, then 02309 would be one such string.
In particular, let $f(n)$ be the number of strings of n digits with at least one 3. First, write an equation $f(n)=* * *$, where the ${ }^{* * *}$ part contains smaller sub-problems, i.e. the $f(j)$ terms all have $j<n$. Then give a base case for the recurrence. Finally, use guess and check to solve the recurrence to within $\Theta()$ bounds. Hint: you may find the Master method useful for getting a good guess.

