CS 362, HW 12

Prof. Jared Saia, University of New Mexico

1. Prove via induction that any graph with maximum degree 3 can be colored with at most 4 colors. Recall that a coloring of a graph G is an assignment of a color to each node in G such that the endpoints of each edge in G are assigned different colors. Don't forget to include BC, IH and IS in your proof.
Hint: Perform induction on, n, the number of nodes in G. In the IS, think about how to make G smaller, so that you can use the IH.
2. The Subgraph Isomorphism problem takes as input two undirected graphs G_{1} and G_{2} and returns TRUE iff G_{1} is isomorphic to a subgraph of G_{2}. Prove that the Subgraph Isomorphism problem is NPComplete.
3. Show that the next problem is NP-Hard via a reduction from one of the following problems: 3-SAT, VERTEX-COVER, INDEPENDENTSET, 3-COLORABLE, HAMILTONIAN-CYCLE, or CLIQUE.
WEIGHTED-ITEM-COVER: You are given (1) a set S of weighted items; (2) a set T of subsets of items; and (3) a number W. You are asked: can you choose a subset S^{\prime} of items in S with total weight of items in S^{\prime} no more than W, such that every subset in T contains at least one item in S^{\prime} ? As an example, let $S=\{a, b, c, d\}, w(a)=$ $w(b)=w(c)=1$ and $w(d)=2 ; T=\{\{a, b, d\},\{c, d\},\{b, d\},\{a, c\}\} ;$ and $W=3$. Then the answer is YES since we can set $S^{\prime}=\{a, d\}$, which has total weight 3 and also ensures that every set in T contains at least one item from S^{\prime}.
4. Imagine someone gives you a polynomial time algorithm to solve 3SAT. Describe how you could use this to efficiently find a satisfying assignment for any given 3-CNF formula if that formula is satisfiable.
