# CS 362, HW4 

Prof. Jared Saia, University of New Mexico

1. Your boss asks you to decide which of two algorithms to use in a new software system. The runtimes of the two algorithms are given by the following recurrences (remember that when the base case of a recurrence is not given, assume $T(c)=\Theta(1)$ for any constant $c$ ):

- Algorithm 1: $T(n)=5 T(n / 2)+n$
- Algorithm 2: $T(n)=3 T(n / 2)+n^{2}$

Which algorithm has the better asymptotic cost? Justify your answer by solving both recurrences (using recursion trees) and comparing the solutions.
2. A frog is jumping across a line of lily pads. It starts at lily pad 1. When the frog is at lily pad $i$ for any $i \geq 1$, it jumps to lily pad $i+1$ with probability $1 / 2$ and to lily pad $i+2$ with probability $1 / 2$.
(a) Let $p(i)$ be the probability that the frog ever visits lily pad $i$, for any $i \geq 1$. Write a recurrence relation for $p(i)$. Don't forget the base case(s).
(b) Use annihilators to solve for a general solution to your recurrence relation.
(c) Use the base case(s) of your recurrence to solve for an exact solution.
(d) Now, let $X$ be a random variable giving the number of lily pads between lily pad 1 and $n$ that the frog visits, for some fixed number $n$. Compute $E(X)$ by using: linearity of expectation, indicator random variables, and your solution to the recurrence $p(i)$ that you found above.
3. Silly-Sort Consider the following sorting algorithm

```
Silly-Sort(A,i,j)
    if A[i] > A[j]
        then exchange A[i] and A[j];
    if i+1 >= j
        then return;
    k = floor((j-i+1)/3);
    Silly-Sort(A,i,j-k);
    Silly-Sort(A,i+k,j);
    Silly-Sort(A,i,j-k);
```

(a) Argue (by induction) that if $n$ is the length of $A$, then SillySort(A,1,n) correctly sorts the input array A[1...n]
(b) Give a recurrence relation for the worst-case run time of Silly-Sort and a tight bound on the worst-case run time
(c) Compare this worst-case runtime with that of insertion sort, merge sort, heapsort and quicksort.
4. Note: In this problem, you'll be writing - but not solving - a recurrence relation over a data structure. When we get to dynamic programming in class, we'll see how to solve these types of recurrences.

Consider a rooted binary tree with nodes are labelled as follows. The root node is labelled with the empty string. Then, any node that is a left child of a node with name $\sigma$ receives the name $\sigma L$ and any node that is the right child of that node receives the name $\sigma R$.

Give a recurrence relation returning the number of $R$ 's in all labels of all nodes. For example, the following tree has 10 R's.


Hint: For a node $v$, let $f(v)$ be the number of R 's in the tree rooted at $v$, if the naming started at $v$. Also, let $\ell(v)$ (resp. $r(v))$ be the left
(resp. right) child of $v$ if it exists or NULL otherwise. Finally, let $s(v)$ be the number of nodes in the subtree rooted at $v$ and assume this value is stored at each node. Now write a recurrence relation for $f(v)$. Don't forget to include the base case and to test it on some examples.

