
CS 362, HW 8

Prof. Jared Saia, University of New Mexico

1. Consider the following alternative greedy algorithms for the activity
selection problem discussed in class. For each algorithm, either prove
or disprove that it constructs an optimal schedule.

(a) Choose an activity with shortest duration, discard all conflicting
activities and recurse

(b) Choose an activity that starts first, discard all conflicting activi-
ties and recurse

(c) Choose an activity that ends latest, discard all conflicting activ-
ities and recurse

(d) Choose an activity that conflicts with the fewest other activities,
discard all conflicting activities and recurse

2. Now consider a weighted version of the activity selection problem.
Imagine that each activity, ai has a weight, w(ai), and weights are
totally unrelated to activity duration. Your goal is now to choose a
set of non-conflicting activities that give you the largest possible sum
of weights, given an array of start times, end times, and values as
input.

(a) Prove that the greedy algorithm described in class - Choose the
activity that ends first and recurse - does not always return an
optimal schedule for this problem

(b) Describe an algorithm to compute the optimal schedule in O(n2)
time. Hint: 1) Sort the activities by finish times. 2) Let m(j) be
the maximum weight achievable from activities a1, a2, . . . , aj . 3)
Come up with a recursive formulation for m(j) and use dynamic
programming. Hint 2: In the recursion in step 3, it’ll help if you
precompute for each job j, the value xj which is the largest index
i less than j such that job i is compatible with job j. Then when
computing m(j), consider that the optimal schedule could either
include job j or not include job j.

1



3. Consider the following problem.
INPUT: Positive integers r1, . . . , rn and c1, . . . , cn.
OUTPUT: An n by n matrix A with 0/1 entries such that for all i the
sum of the ith row in A is ri and the sum of the ith column in A is ci,
if such a matrix exists.
Think of the problem this way. You want to put pawns on an n by n
chessboard so that the ith row has ri pawns and the ith column has
ci pawns. Consider the following greedy algorithm that constructs A
row by row. Assume that the first i − 1 rows have been constructed.
Let aj be the number of 1s in the jth column in the first i − 1 rows.
Now the ri columns with maximum cj − aj are assigned 1s in row i,
and the rest of the columns are assigned 0’s. That is, the columns
that still needs the most 1’s are given 1’s. Formally prove that this
algorithm is correct using an exchange argument.

4. Walt is making a device for his friend Hector that counts how many
times Hector rings a bell. The software for the device requires a binary
counter data structure with INCREMENT and RESET operators.

In class we discussed an INCREMENT algorithm for incrementing a
binary counter in O(1) amortized time. Now we want to include a
RESET algorithm that sets all the bits in the counter to 0. Below are
the algorithms for INCREMENT and RESET. They use an array B
of bits and an integer m giving the largest index in B set to 1.

Algorithm 1 INCREMENT(B,m)

1: i ← 0
2: while B[i] = 1 do
3: B[i] ← 0
4: i ← i+ 1
5: end while
6: B[i] ← 1
7: if i > m then
8: m ← i
9: end if

Algorithm 2 RESET(B,m)

1: for i ← 0 to m do
2: B[i] ← 0
3: end for

Let n be the number of operations on this binary counter. Give the
following costs as a function of n.

(a) What is the worst-case run time of INCREMENT?

2



(b) What is the worst-case run time of RESET?

(c) Prove that in an arbitrary sequence of calls to INCREMENT
and RESET, each call has amortized cost O(1). Hint: Use the
accounting method and save up dollars during INCREMENT for
future calls to RESET.

3


