— Formal Defn of Big-O _____

CS 362, Lecture 1

Jared Saia University of New Mexico

- Recall the formal definition of Big-O notation:
- A function f(n) is O(g(n)) if there exist positive constants c and n₀ such that f(n) ≤ cg(n) for all n ≥ n₀

Today's Outline _____ Example _____

- Administrative Info
- Asymptotic Analysis Review
- Recurrence Relation Review

- Let's show that f(n) = 10n + 100 is O(g(n)) where g(n) = n
- We need to give constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$
- \bullet In other words, we need constants c and n_0 such that 10 $n+100 \leq cn$ for all $n \geq n_0$

2

_ Relatives of big-O _____

• We can solve for appropriate constants:

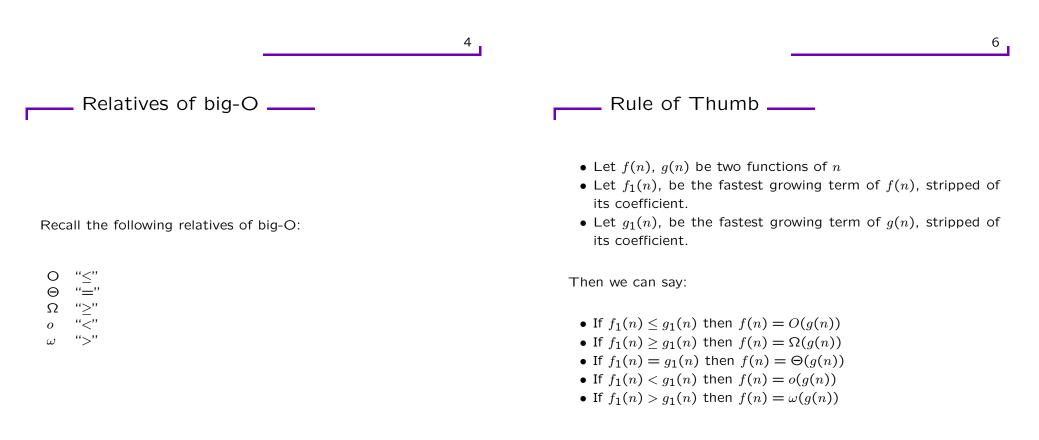
$$10n + 100 \leq cn \tag{1}$$

$$10 + 100/n \leq c$$
 (2)

- So if n > 1, then c should be greater than 110.
- In other words, for all n > 1, $10n + 100 \le 110n$
- So 10n + 100 is O(n)

When would you use each of these? Examples:

- O " \leq " This algorithm is $O(n^2)$ (i.e. worst case is $\Theta(n^2)$)
- Θ "=" This algorithm is $\Theta(n)$ (best and worst case are $\Theta(n)$)
- Ω " \geq " Any comparison-based algorithm for sorting is $\Omega(n \log n)$
- o "<" Can you write an algorithm for sorting that is $o(n^2)$?
- ω ">" This algorithm is not linear, it can take time $\omega(n)$

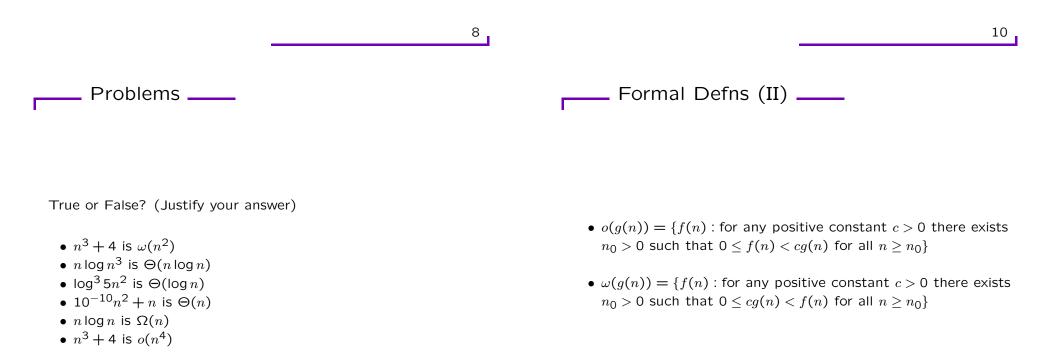


___ Formal Defns _____

The following are all true statements:

- $\sum_{i=1}^{n} i^2$ is $O(n^3)$, $\Omega(n^3)$ and $\Theta(n^3)$
- $\log n$ is $o(\sqrt{n})$
- $\log n$ is $o(\log^2 n)$
- $10,000n^2 + 25n$ is $\Theta(n^2)$

- $O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$
- $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$
- $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0\}$



Another Example _____

- Let $f(n) = 10 \log^2 n + \log n$, $g(n) = \log^2 n$. Let's show that $f(n) = \Theta(g(n))$.
- We want positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

$$0 \le c_1 \log^2 n \le 10 \log^2 n + \log n \le c_2 \log^2 n$$

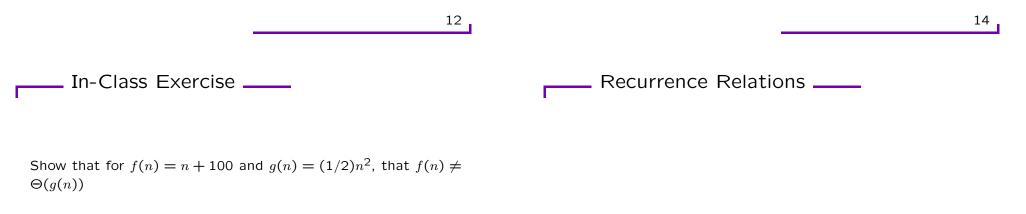
Dividing by $\log^2 n$, we get:

$$0 \le c_1 \le 10 + 1/\log n \le c_2$$

• If we choose $c_1 = 1$, $c_2 = 11$ and $n_0 = 2$, then the above inequality will hold for all $n \ge n_0$

"Oh how should I not lust after eternity and after the nuptial ring of rings, the ring of recurrence" - Friedrich Nietzsche, Thus Spoke Zarathustra

- T(n) = 2 * T(n/2) + n is an example of a *recurrence* relation
- A *Recurrence Relation* is any equation for a function *T*, where *T* appears on both the left and right sides of the equation.
- We always want to "solve" these recurrence relation by getting an equation for *T*, where *T* appears on just the left side of the equation



- What statement would be true if $f(n) = \Theta(g(n))$?
- Show that this statement can not be true.

- Whenever we analyze the run time of a recursive algorithm, we will first get a recurrence relation
- To get the actual run time, we need to solve the recurrence relation

Substitution Method _____

"guess and check"

____ Proof _____

• We prove this by induction, By I.H.: $T(n/2) \leq cn/2\log(n/2)$

$$T(n) = 2T(n/2) + n$$
 (3)

$$\leq 2(cn/2\log(n/2)) + n \tag{4}$$

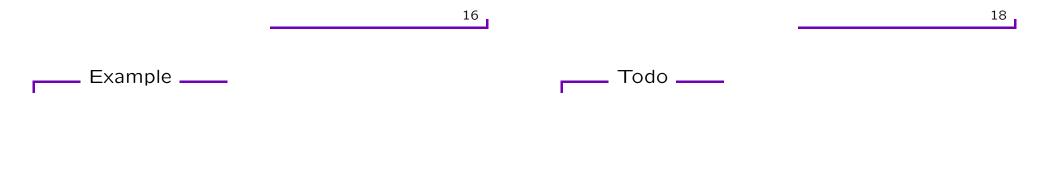
$$= cn \log(n/2) + n \tag{5}$$

$$= cn(\log n - \log 2) + n \tag{6}$$

$$= cn \log n - cn + n \tag{7}$$

$$\leq cn \log n$$
 (8)

last step holds for all n > 0 if $c \ge 1$



• Let's guess that the solution to T(n) = 2 * T(n/2) + n is $T(n) = O(n \log n)$

• One way to solve recurrences is the substitution method aka

• What we do is make a good guess for the solution to T(n), and then try to prove this is the solution by induction

- In other words, $T(n) \leq cn \log n$ for all $n \geq n_0$, for some positive constants c, n_0
- We can prove that $T(n) \leq cn \log n$ is true by plugging back into the recurrence

- Read Syllabus
- Visit the class web page: www.cs.unm.edu/~saia/362/
- Sign up for the class mailing list (cs362)
- Read Chapter 3 and 4 in the text