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Today’s Outline

• Administrative Info

• Asymptotic Analysis Review

• Recurrence Relation Review
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Formal Defn of Big-O

• Recall the formal definition of Big-O notation:

• A function f(n) is O(g(n)) if there exist positive constants c

and n0 such that f(n) ≤ cg(n) for all n ≥ n0
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Example

• Let’s show that f(n) = 10n+100 is O(g(n)) where g(n) = n

• We need to give constants c and n0 such that f(n) ≤ cg(n)

for all n ≥ n0

• In other words, we need constants c and n0 such that 10n +

100 ≤ cn for all n ≥ n0
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Example

• We can solve for appropriate constants:

10n + 100 ≤ cn (1)

10 + 100/n ≤ c (2)

• So if n > 1, then c should be greater than 110.

• In other words, for all n > 1, 10n + 100 ≤ 110n

• So 10n + 100 is O(n)
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Relatives of big-O

Recall the following relatives of big-O:

O “≤”
Θ “=”
Ω “≥”
o “<”
ω “>”
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Relatives of big-O

When would you use each of these? Examples:

O “≤” This algorithm is O(n2) (i.e. worst case is Θ(n2))
Θ “=” This algorithm is Θ(n) (best and worst case are Θ(n))
Ω “≥” Any comparison-based algorithm for sorting is Ω(n logn)

o “<” Can you write an algorithm for sorting that is o(n2)?
ω “>” This algorithm is not linear, it can take time ω(n)
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Rule of Thumb

• Let f(n), g(n) be two functions of n

• Let f1(n), be the fastest growing term of f(n), stripped of

its coefficient.

• Let g1(n), be the fastest growing term of g(n), stripped of

its coefficient.

Then we can say:

• If f1(n) ≤ g1(n) then f(n) = O(g(n))

• If f1(n) ≥ g1(n) then f(n) = Ω(g(n))

• If f1(n) = g1(n) then f(n) = Θ(g(n))

• If f1(n) < g1(n) then f(n) = o(g(n))

• If f1(n) > g1(n) then f(n) = ω(g(n))
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More Examples

The following are all true statements:

• ∑n
i=1 i2 is O(n3), Ω(n3) and Θ(n3)

• logn is o(
√

n)

• logn is o(log2 n)

• 10,000n2 + 25n is Θ(n2)
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Problems

True or False? (Justify your answer)

• n3 + 4 is ω(n2)

• n logn3 is Θ(n logn)

• log3 5n2 is Θ(logn)

• 10−10n2 + n is Θ(n)

• n logn is Ω(n)

• n3 + 4 is o(n4)
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Formal Defns

• O(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

• Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

• Ω(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}
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Formal Defns (II)

• o(g(n)) = {f(n) : for any positive constant c > 0 there exists

n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0}

• ω(g(n)) = {f(n) : for any positive constant c > 0 there exists

n0 > 0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0}
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Another Example

• Let f(n) = 10 log2 n + logn, g(n) = log2 n. Let’s show that

f(n) = Θ(g(n)).

• We want positive constants c1, c2 and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

0 ≤ c1 log2 n ≤ 10 log2 n + logn ≤ c2 log2 n

Dividing by log2 n, we get:

0 ≤ c1 ≤ 10 + 1/ logn ≤ c2

• If we choose c1 = 1, c2 = 11 and n0 = 2, then the above

inequality will hold for all n ≥ n0
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In-Class Exercise

Show that for f(n) = n + 100 and g(n) = (1/2)n2, that f(n) 6=
Θ(g(n))

• What statement would be true if f(n) = Θ(g(n)) ?

• Show that this statement can not be true.
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Recurrence Relation Review

“Oh how should I not lust after eternity and after the nuptial

ring of rings, the ring of recurrence” - Friedrich Nietzsche, Thus

Spoke Zarathustra

• T (n) = 2 ∗ T (n/2)+ n is an example of a recurrence relation

• A Recurrence Relation is any equation for a function T , where

T appears on both the left and right sides of the equation.

• We always want to “solve” these recurrence relation by get-

ting an equation for T , where T appears on just the left side

of the equation
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Recurrence Relations

• Whenever we analyze the run time of a recursive algorithm,

we will first get a recurrence relation

• To get the actual run time, we need to solve the recurrence

relation
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Substitution Method

• One way to solve recurrences is the substitution method aka

“guess and check”

• What we do is make a good guess for the solution to T (n),

and then try to prove this is the solution by induction
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Example

• Let’s guess that the solution to T (n) = 2 ∗ T (n/2) + n is

T (n) = O(n logn)

• In other words, T (n) ≤ cn logn for all n ≥ n0, for some

positive constants c, n0

• We can prove that T (n) ≤ cn logn is true by plugging back

into the recurrence
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Proof

• We prove this by induction, By I.H.: T (n/2) ≤ cn/2 log(n/2)

T (n) = 2T (n/2) + n (3)

≤ 2(cn/2 log(n/2)) + n (4)

= cn log(n/2) + n (5)

= cn(logn − log 2) + n (6)

= cn logn − cn + n (7)

≤ cn logn (8)

last step holds for all n > 0 if c ≥ 1
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Todo

• Read Syllabus

• Visit the class web page: www.cs.unm.edu/~saia/362/

• Sign up for the class mailing list (cs362)

• Read Chapter 3 and 4 in the text
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