\qquad

CS 362, Lecture 23

Jared Saia
University of New Mexico

Today's Outline

- Review
- NP-Hardness and three more reductions
\qquad

We can characterize many problems into three classes:

- \mathbf{P} is the set of yes/no problems that can be solved in polynomial time. Intuitively P is the set of problems that can be solved "quickly"
- NP is the set of yes/no problems with the following property: If the answer is yes, then there is a proof of this fact that can be checked in polynomial time
- co-NP is the set of yes/no problems with the following property: If the answer is no, then there is a proof of this fact that can be checked in polynomial time
- NP-Hardness and three more reductions

NP-Hard
 \qquad

- A problem Π is NP-hard if a polynomial-time algorithm for Π would imply a polynomial-time algorithm for every problem in NP
- In other words: Π is NP-hard iff If Π can be solved in polynomial time, then $\mathrm{P}=\mathrm{NP}$
- In other words: if we can solve one particular NP-hard problem quickly, then we can quickly solve any problem whose solution is quick to check (using the solution to that one special problem as a subroutine)
- If you tell your boss that a problem is NP-hard, it's like saying: "Not only can't I find an efficient solution to this problem but neither can all these other very famous people." (you could then seek to find an approximation algorithm for your problem)
\qquad
- A problem is NP-Easy if it is in NP
- A problem is NP-Complete if it is NP-Hard and NP-Easy
- In other words, a problem is NP-Complete if it is in NP but is at least as hard as all other problems in NP.
- If anyone finds a polynomial-time algorithm for even one NPcomplete problem, then that would imply a polynomial-time algorithm for every NP-Complete problem
- Thousands of problems have been shown to be NP-Complete, so a polynomial-time algorithm for one (i.e. all) of them is incredibly unlikely
- Independent Set is the following problem: "Does there exist a set of k vertices in a graph G with no edges between them?"
- In the hw, you'll show that independent set is NP-Hard by a reduction from CLIQUE
- Thus we can now use Independent Set to show that other problems are NP-Hard

Example

\qquad

A detailed picture of what we think the world looks like.

- A vertex cover of a graph is a set of vertices that touches every edge in the graph
- The problem Vertex Cover is: "Does there exist a vertex cover of size k in a graph G ?"
- We can prove this problem is NP-Hard by an easy reduction from Independent Set
\qquad
- Key Observation: If I is an independent set in a graph $G=$ (V, E), then $V-I$ is a vertex cover.
- Thus, there is an independent set of size k iff there is a vertex cover of size $|V|-k$.
- For the reduction, we want to show that a polynomial time algorithm for Vertex Cover can give a polynomial time algorithm for Independent Set
\qquad
- We are given a graph $G=(V, E)$ and a value k and we must determine if there is an independent set of size k in G.
- To do this, we ask if there is a vertex cover of size $|V|-k$ in G.
- If so then we return that there is an independent set of size k in G
- If not, we return that there is not an independent set of size k in G

A c-coloring of a graph G is a map $C: V \rightarrow\{1,2, \ldots, c\}$ that assigns one of c "colors" to each vertex so that every edge has two different colors at its endpoints

- The graph coloring problem is: "Does there exist a c-coloring for the graph G ?"
- Even when $c=3$, this problem is hard. We call this problem 3Colorable i.e. "Does there exist a 3-coloring for the graph G?"
\qquad
- To show that 3Colorable is NP-hard, we will reduce from 3Sat
- This means that we want to show that a polynomial time algorithm for 3Colorable can give a polynomial time algorithm for 3Sat
- Recall that the 3-SAT problem is just: "Is there any assignment of variables to a 3CNF formula that makes the formula evaluate to true?"
- And a 3CNF formula is just a conjunct of a bunch of clauses, each of which contains exactly 3 variables e.g.

$$
\overbrace{(a \vee b \vee c)}^{\text {clause }} \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee d)
$$

- The truth gadget is just a triangle with three vertices T, F and X, which intuitively stand for True, False, and other
- Since these vertices are all connected, they must have different colors in any 3-coloring
- For the sake of convenience, we will name those colors True, False, and Other
- Thus when we say a node is colored "True", we just mean that it's colored the same color as the node T

- We are given a 3-CNF formula, F, and we must determine if it has a satisfying assignment
- To do this, we produce a graph as follows
- The graph contains one truth gadget, one variable gadget for each variable in the formula, and one clause gadget for each clause in the formula

The Variable Gadgets

- The variable gadget for a variable a is also a triangle joining two new nodes labeled a and \bar{a} to node X in the truth gadget
- Node a must be colored either "True" or "False", and so node \bar{a} must be colored either "False" or "True", respectively.

- The variable gadget ensures that each of the literals is colored either "True" or "False"
\qquad
\qquad
- Each clause gadget joins three literal nodes to node T in the truth gadget using five new unlabelled nodes and ten edges (as in the figure)
- This clause gadget ensures that at least one of the three literal nodes in each clause is colored "True"

- Note that the 3-coloring of this example graph corresponds to a satisfying assignment of the formula
- Namely, $a=c=$ True, $b=d=$ False.
- Note that the final graph contains only one node T, only one node F, only one node \bar{a} for each variable a and so on

Example

\qquad

Consider the formula $(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$.
Following is the graph created by the reduction:

- The proof of correctness for this reduction is direct
- If the graph is 3 -colorable, then we can extract a satisfying assignment from any 3-coloring, since at least one of the three literal nodes in every clause gadget is colored "True"
- Conversely, if the formula is satisfiable, then we can color the graph according to any satisfying assignment
\qquad
\qquad

Consider the problem 4Colorable: "Does there exist a 4-coloring for a graph G ?"

- Q1: Show this problem is in NP by showing that there exists an efficiently verifiable proof of the fact that a graph is 4 colorable.
- Q2: Show the problem is NP-Hard by a reduction from the problem 3Colorable. In particular, show the following:
- Given a graph G, you can create a graph G^{\prime} such that G^{\prime} is 4-colorable iff G is 3-colorable.
- Creating G^{\prime} from G takes polynomial time

Note: You've now shown that 4Colorable is NP-Complete!

Wrap Up

- We've just shown that if 3Colorable can be solved in polynomial time then 3-SAT can be solved in polynomial time
- This shows that 3Colorable is NP-Hard
- To show that 3Colorable is in NP, we just need to note that we can easily verify that a graph has been correctly 3-colored in linear time: just compare the endpoints of every edge
- Thus, 3Coloring is NP-Complete.
- This implies that the more general graph coloring problem is also NP-Complete

Hamiltonian Cycle

\qquad

- A Hamiltonian Cycle in a graph is a cycle that visits every vertex exactly once (note that this is very different from an Eulerian cycle which visits every edge exactly once)
- The Hamiltonian Cycle problem is to determine if a given graph G has a Hamiltonian Cycle
- We will show that this problem is NP-Hard by a reduction from the vertex cover problem.
\qquad
- To do the reduction, we need to show that we can solve Vertex Cover in polynomial time if we have a polynomial time solution to Hamiltonian Cycle.
- Given a graph G and an integer k, we will create another graph G^{\prime} such that G^{\prime} has a Hamiltonian cycle iff G has a vertex cover of size k
- As for the last reduction, our transformation will consist of putting together several "gadgets"

Edge Gadget and Cover Vertices

\qquad

- For each edge (u, v) in G, we have an edge gadget in G^{\prime} consisting of twelve vertices and fourteen edges, as shown below

An edge gadget for (u, v) and the only possible Hamiltonian paths through it.

- The four corner vertices $(u, v, 1),(u, v, 6),(v, u, 1)$, and $(v, u, 6)$ each have an edge leaving the gadget
- A Hamiltonian cycle can only pass through an edge gadget in one of the three ways shown in the figure
- These paths through the edge gadget will correspond to one or both of the vertices u and v being in the vertex cover.
\qquad
\qquad
- For each vertex u in G, we string together all the edge gadgets for edges (u, v) into a single vertex chain and then connect the ends of the chain to all the cover vertices
- Specifically, suppose u has d neighbors $v_{1}, v_{2}, \ldots, v_{d}$. Then G^{\prime} has the following edges:
$-d-1$ edges between $\left(u, v_{i}, 6\right)$ and $\left(u, v_{i+1}, 1\right)$ (for all i between 1 and $d-1$)
$-k$ edges between the cover vertices and ($u, v_{1}, 1$)
$-k$ edges between the cover vertices and $\left(u, v_{d}, 6\right)$
- The transformation from G to G^{\prime} takes at most $O\left(|V|^{2}\right)$ time, so the Hamiltonian cycle problem is NP-Hard
- Moreover we can easily verify a Hamiltonian cycle in linear time, thus Hamiltonian cycle is also in NP
- Thus Hamiltonian Cycle is NP-Complete

The Reduction

\qquad

- It's not hard to prove that if $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a vertex cover of G, then G^{\prime} has a Hamiltonian cycle
- To get this Hamiltonian cycle, we start at cover vertex 1 , traverse through the vertex chain for v_{1}, then visit cover vertex 2 , then traverse the vertex chain for v_{2} and so forth, until we eventually return to cover vertex 1
- Conversely, one can prove that any Hamiltonian cycle in G^{\prime} alternates between cover vertices and vertex chains, and that the vertex chains correspond to the k vertices in a vertex cover of G

Thus, G has a vertex cover of size k iff G^{\prime} has a Hamiltonian cycle

Example \qquad

The original graph G with vertex cover $\{v, w\}$, and the transformed graph G^{\prime} with a corresponding Hamiltonian cycle (bold edges).
Vertex chains are colored to match their corresponding vertices.
\qquad
\qquad

Traveling Sales Person

\qquad

- A problem closely related to Hamiltonian cycles is the famous Traveling Salesperson Problem(TSP)
- The TSP problem is: "Given a weighted graph G, find the shortest cycle that visits every vertex.
- Finding the shortest cycle is obviously harder than determining if a cycle exists at all, so since Hamiltonian Path is NP-hard, TSP is also NP-hard!
- In 1999, Richard Kaye proved that the solitaire game Minesweeper is NP-Hard, using a reduction from Circuit Satifiability.
- Also in the last few years, Eric Demaine, et. al., proved that the game Tetris is NP-Hard

Challenge Problem \qquad

- Consider the optimization version of, say, the graph coloring problem: "Given a graph G, what is the smallest number of colors needed to color the graph?" (Note that unlike the decision version of this problem, this is not a yes/no question)
- Show that the optimization version of graph coloring is also NP-Hard by a reduction from the decision version of graph coloring.
- Is the optimization version of graph coloring also NP-Complete?

Challenge Problem

- Consider the problem 4Sat which is: "Is there any assignment of variables to a 4CNF formula that makes the formula evaluate to true?"
- Is this problem NP-Hard? If so, give a reduction from 3Sat that shows this. If not, give a polynomial time algorithm which solves it.
- Consider the following problem: "Does there exist a clique of size 5 in some input graph G ?"
- Is this problem NP-Hard? If so, prove it by giving a reduction from some known NP-Hard problem. If not, give a polynomial time algorithm which solves it.

