
Everything I ever needed 
to know about life I 

learned by making crepes



Valid Crepe Recipes
• Convex hull: Finds a convex space that contains 

all recipe data points 

• Connections to many other fundamental 
geometric problems (Voronoi D. & Delaunay Tr.) 

• Can reduce to O(1/ε) points in the hull if can 
tolerate distance errors of ε 

• Can compute dynamically; O(n log n) time to add 
n points



Neighbors & Clusters

• Each known recipe is a point in Rⁿ.  

• Voronoi Diagram: Enables quickly finding 
nearest neighbor in old recipes of a new recipe 

• Delaunay Triangulation: Enables clustering of 
crepe recipes.  Clustering = maximize minimum 
distance between clusters



Duality
• Convex Hull and Voronoi Diagram/Delaunay 

Triangulation problems are connected via 
duality

• Duality is a transformation between points and 
lines   

• Duality can also help solve other problems 
quickly: finding a linear classifier; finding a line 
that passes through 3 points, etc. 



Crepes on the Cheap
• Linear Programming: Finds a “valid” (i.e. in the 

feasible convex space) crepe recipe with 
minimum cost 

• For n constraints and O(1) variables, can solve 
LP in O(n) expected time.   

• Can solve general LP to within ε factor using 
MWU.  Works even when constraints are 
concave instead of linear!



Learning crepes

• Crepe recipes are either good are bad 

• Winnow: Learns a “perfect” linear classifier 

• SVM: Learns a linear classifier with some 
misclassifications

• Adaboost: Non-linear learning via ensembles of 
“weak” linear classifiers

Winnow and Adaboost use MWU; SVM uses 
gradient descent



Rock, Scissors, Crepe

• Assume two competitors (on Iron chef?) can 
prepare one of x different recipes; and there is a 
known zero-sum payoff matrix 

• MWU and fictitious play will converge to the 
Nash equilibrium for this game



Gradient Descent



Offline Crepes

• Convex search space of valid crepe recipes 

• One convex function to minimize (or concave 
function to maximize) 

• Gradient descent converges to the minimum 

• Convergence time depends on diameter of 
search space and max norm of gradient.



Online Convex Optimization 

• Say that each day, you prepare a recipe for a 
new friend 

• Convex functions are: - crepe rating 

• In day i, there is a new convex function fᵢ



Online Crepes
• Convex search space of valid crepe recipes 

• Many convex functions to minimize, one in each 
round 

• Online gradient descent finds points with cost 
“close” to the best single offline point 

• Regret (our cost - best offline cost) depends on 
diameter of search space and max norm of 
gradient



Stochastic Crepes

• Say that each day, you prepare a recipe for a 
new crowd 

• Convex functions are: - average crepe rating 

• Suffices to sample gradient just based on the 
rating of a single person in the crowd; Improves 
efficiency of gradient descent; This is called 
stochastic gradient descent



Rounding Crepes
• Say your convex space is given by an LP that 

assigns probabilities to certain variables 

• Each day, there is a convex cost as a function of 
these probabilities 

• Online gradient descent can minimize expected 
regret of the randomized rounding of these 
variables 

• Examples: shortest paths, set cover, SAT, etc.



Projections onto low 
dimensional subspaces



Compressing Crepes
• Goal: Project recipes from high (n) dimensional space to low 

• Johnson-Lindenstrauss

• Preserves pair-wise distances (and angles) of polynomial 
points up to ε multiplicative error; O(log n/ε²) dimensions 

• Can compute online 

• Singular Value Decomposition:

• Minimizes average distance with original points 

• Must compute offline



Compressing Crepes
• Johnson-Lindenstrauss: 1) Learning; 2) 

Reducing state (data streaming) 

• Singular Value Decomposition

• Data: Compression; Reducing noise 

• Functions: Best linear fit (smallest eigenvector) 

• Graphs: Finding “dense” subgraphs (between 
recipes and items?)



Questions?


