
CS 506 Lecture: Johnson Lindestrauss Projections

Note: These lecture notes are closely based on lecture notes by Sanjeev Arora [1] and Matt
Weinberg [3].

1 Curse and Blessing of Dimensionality

High dimensional vectors are common in data mining and machine learning (e.g. items purchased
by a Amazon customer, gene expression data). The phrase “curse of dimensionality” refers to the
fact that algorithms are frequently harder to design in high-dimensional space - we’ve seen this with
the convex hull algorithm. But, there is sometimes a flip side called “blessing of dimensionality”,
wherein high-dimensional spaces can sometimes make life easier to analyze. For example, we can
pack vectors more tightly in high-dimensional space, it is easier to route around obstacles there,
and many random samples are more likely to be tightly clustered around a mean (e.g. via Chernoff
bounds).

The fact is that high dimensional spaces behave differently than our intuition suggests (living
as we are in 3-dimensional space). Following are some examples, but first some notation.

For a vector x ∈ Rd, its ℓ2-norm is |x|2 = (


i x
2
i )

1/2 and ℓ1-norm is |x|1 = (


i |xi|). For any
two vectors x, y, their Euclidean distance is |x− y|2 and their Manhattan distance is |x− y|1.

Some generalizations of geometric objects to higher dimensions:

• The n-cube in Rd: {(x1, . . . xd : 0 ≤ xi ≤ 1}. In R4, if you are looking at one of the faces, say
where x1 = 1, then you are looking at a cube in R3. The volume of the n-cube is 1.

• The unit n-ball in Rd: Bd = {(x1, . . . xd :


i x
2
i ≤ 1}. In R4, if you slice through it with a

hyperplane, say x1 = 1/2, then this slice is a ball in R3 with radius of


1− 1/22 =
√
3/2.

Every parallel slice also gives a ball. The volume of Bd is πd/2

(d/2)! (assuming d even). This is
1

dΘ(d)

1.1 Near Orthogonal Vectors

How many “almost orthogonal” unit vectors can we have such that all pairwise angles lie between
say 89 and 91 degrees? In R2, the answer is 2. In R3, it is 3. In Rd, it is ecd for some constant
c > 0. Intuitively, to see this note that to get the angle close to 90, we just need to get the dot
product of all vector pairs “close” to 0. When there are many entries in the vector, this is much
easier to do.

1.1.1 Unit Ball

What is the ratio of the unit ball to its circumscribing cube (cube of side length 2)? In R2, it is π/4
or about .78. In R3 it is π/6 or about .52. In d dimensions, it is 1

dΘ(d) /2
d = d−cd for some constant

c > 0.

2 Some Probability

Some tools from probability will be surprisingly useful to both get intuition about high dimensional
geometry and also to do our projections to lower dimensional spaces. To start recall that a random
variable (rv), X is informally a variable whose value depends on the outcome of some random
phenomena. Typically, random variables have a finite number of possible values in the real numbers,
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and we let X also refer to the set of possible outcomes. In this case, the expectation of a random
variable, E(X), is defined as E(X) =


x∈X xPr(X = x).

First we prove linearity of expectation. Note that in the following lemma and proof, the random
variables do not need to be independent. This makes the result extremely powerful.

Lemma 1. (Linearity of Expectation) Given a set of random variables X1, . . . Xn, E(
n

i=1Xi) =n
i=1E(Xi).

Proof: We first prove this for two random variables X and Y .

E(X + Y ) =


x∈X



y∈Y
(x+ y)Pr(X = x, Y = y)

=


x∈X



y∈Y
x · Pr(X = x, Y = y) +



y∈Y



x∈X
y · Pr(X = x, Y = y)

=


x∈X
x · Pr(X = x) +



y∈Y
y · Pr(Y = y)

= E(X) + E(Y )

The general result for n random variables now follows by induction. □

Lemma 2. (Markov’s Inequality) Let X be a random variable that only takes on nonnegative
values (i.e. X ≥ 0 always). Then for any λ > 0,

Pr(X ≥ λ) ≤ E(X)

λ
.

Proof: Assume not. Then for some value λ > 0, Pr(X ≥ λ) > E(X)
λ . If this is true, then the

expected value of X can be bounded as:

E(X) ≥


i≥λ

iPr(X = i)

≥


i≥λ

λPr(X = i)

= λPr(X ≥ λ)

> λ
E(X)

λ
= E(X)

But this sequence of inequalities implies that E(X) > E(X), which is clearly a contradiction. □

A related inequality, which is related to the central limit theorem, is the Bernstein inequality
below. (From https://www.cs.princeton.edu/∼smattw/Teaching/Fa19Lectures/lec3/lec3.pdf and
http://cseweb.ucsd.edu/∼klevchen/techniques/chernoff.pdf. The following is closely based on the
original proof due to Van Vu at UCSD, local copy available at https://www.cs.unm.edu/∼saia/
classes/506-s20/lec/bernstein.pdf)

Theorem 1. (Bernstein Inequality) Let X1, . . . Xn be discrete, independent random variables with
E(Xi) = 0 and |Xi| ≤ 1 for all i ∈ [1, n]. Let X =


i∈[1,n]Xi, σ

2
i = E(X2

i ) − (E(Xi))
2 and

σ2 =


i∈[1,n] σ
2
i . Then, ∀λ ∈ [0,σ/2]:
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Pr(|X| ≥ λσ) ≤ 2e−λ2/4

Equivalently, ∀t ∈ [0,σ2/2]:

Pr(|X| ≥ t) ≤ 2e−t2/(4σ2)

Proof: We’ll show
Pr(X ≥ λσ) ≤ e−λ2/4.

The argument is symmetric for Pr(−X ≥ λσ). Let t be a real number between 0 and 1 that we’ll
tune later. Then:

Pr(X ≥ λσ) = Pr(tX ≥ tλσ)

= Pr(etX ≥ etλσ)

≤ E(etX)

etλσ

where the last step follows by Markov’s inequality.
Next we bound E(etZ) for −1 ≤ Z ≤ 1, and E(Z) = 0, and t ≤ 1. In the following, let zj

for j ∈ [1,m] be the values in the sample space for Z and let pj = Pr(Z = zj). By definition of
expectation and using the Taylor expansion of ex,

E(etZ) =


j∈[1,m]

pje
tzj

=


j∈[1,m]

pj


1 + tzj +

1

2!
(tzj)

2 +
1

3!
(tzj)

3 + . . .



=


j∈[1,m]

pj + t


j∈[1,m]

pjzj +


j∈[1,m]

pj


1

2!
(tzj)

2 +
1

3!
(tzj)

3 + . . .



= 1 + E(Z) +


j∈[1,m]

pj


1

2!
(tzj)

2 +
1

3!
(tzj)

3 + . . .



≤ 1 +


j∈[1,m]

pj(tzj)
2






i∈[2,∞]

1

i!





≤ 1 +


j∈[1,m]

pj(tzj)
2

≤ 1 + t2Var(Z)
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Above, the fifth line holds since E(Z) = 0. Returning to our claim:

E(etX) = E(et


i∈[1,n] Xi)

= E(


i∈[1,n]
etXi)

=


i∈[1,n]
E(etXi) Independence of Xi

=


i∈[1,n]
1 + t2Var(Xi)

≤


i∈[1,n]
et

2Var(Xi) Since 1 + α ≤ eα for α > 0

≤ et
2σ2

By independence of Xi

Plugging this back into our initial bound, we get

Pr(X ≥ λσ) ≤ E(etX)

etλσ

≤ et
2σ2

etλσ

≤ etσ(tσ−λ)

≤ e−λ2/4 Optimizing t to t = λ/(2σ)

□

What does this tell us about high-dimensional geometry? Let X be the sum of the coordinates of
a point chosen uniformly at random on a n dimensional hypercube of length 1 that touches the
origin and where the coordinates of all vertices are non-negative. In particular, each coordinate of
the random point is chosen independently and uniformly in the range [0, 1]. We can use Bernstein’s
inequality on the sum of the differences between each coordinate and the value 1/2. Then σ2 = n/6,
and Bernstein’s inequality tells us that the sum of all coordinates will be n/2 + O(

√
n lg n) with

high probability, by setting λ = log n.
What does this mean? If we think in terms of L1 distances, it means that almost all of the

volume of the hypercube is in a ball centered at the origin with radius n/2 + O(
√
n lg n). This is

true even though a vertex of the hypercube is at distance of Θ(n) from the origin. We can get a
similar result in terms of L2 distances: almost all of the volume of the cube is in a ball centered at
the origin with radius (1 + o(1))


n/2.

2.1 Union Bounds

The following tool is simple to prove but surprisingly useful.

Lemma 3. (Union Bounds) Consider n events ξ1, . . . ξn. Then we have that

Pr(∪iξi) ≤
n

i=1

Pr(ξi)
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Proof: We’ll show this for two events, the lemma statement then holds by an inductive argument.
Let ξ1 and ξ2 be any two events. Then we have that

Pr(ξ1 ∪ ξ2) = Pr(ξ1) + Pr(ξ2)− Pr(ξ1 ∩ ξ2)

≤ Pr(ξ1) + Pr(ξ2)

□

3 Number of Almost Orthogonal Vectors

One of the benefits of high-dimensional spaces are that they are very “roomy”. For example, we
now show that there are Θ(ed) vectors in Rd that are “almost” orthogonal. Recall that the angle,
φ, between two vectors can be found via the identity cos(φ) = x·y

|x||y| , where | · | is the 2-norm.

Lemma 4. Let a be a unit vector in Rn. Let x = (x1, . . . xn) be a unit vector in Rn created by
choosing each xi independently and uniformly in {−1√

n
, 1√

n
}. Let X = a · x =


i∈[1,n] aixi. Then

for all λ > 0,
Pr(|X| > λ) < 2e−nλ2/4.

Proof: Note that E(X) = E(


i∈[1,n] aixi) = 0. This is true since E(aixi) =
1
2(ai

−1√
n
)+ 1

2(ai
1√
n
) =

0. Since σ2 = E(X2)− (E(X))2 = E(X2), we have:

σ2 = E






n

i=1

aixi

2




= E






1≤i,j≤n

aiajxixj





=


1≤i,j≤n

aiajE(xixj)

=


1≤i≤n

a2iE(x2i ) +


1≤i ∕=j≤n

aiajE(xixj)

=


1≤i≤n

a2i (1/n)

= 1/n.

For the second to last step, note that if i ∕= j, E(xixj) = 1
2 · 1

n + 1
2 · −1

n = 0, and if i = j,
E(x2i ) = 1/n. Thus, using Bernstein’s inequality, we get:

Pr(|X| > t) < 2e−(t/σ)2/4 ≤ 2e−nt2/4

□

From the above, the dot product of any unit vector x ∈ Rn with a “randomly chosen” vector
is “small” with high probability. Since the cosine of two unit vectors x and y equals x · y, we have
the following:
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Lemma 5. Let  > 0 be a fixed constant. Consider a set S of e
2n/10 vectors in Rn, where each

entry is independently and uniformly chosen in {−1√
n
, 1√

n
}. For any pair of vectors x, y ∈ S, let φx,y

be the angle between x and y. Then for all x, y ∈ S,

Pr(| cosφx,y| > ) ≤ e−2n/21

Proof: Consider some fixed pair of vectors x, y ∈ S. Let ξx,y be the event that x · y > . Note that
Pr(| cos θx,y| > ) = Pr(|x · y| > ) Thus, by Lemma 4,

Pr(| cosφx,y| > ) < 2e−2n/4

Now let ξ be the event that any pair of vertices violates the bound. In particular, ξ = ∪x,y∈S ξx,y.
Then by a Union bound, we have:

Pr(ξ) ≤


x ∕=y∈S
Pr(ξx,y)

≤ |S|22e−2n/4

≤ 2e
2n/5e−2n/4

≤ 2e−2n/20

≤ e−2n/21

where the last step holds for n sufficiently large. □

4 Dimension Reduction

We’re given n points v1, . . . vn ∈ Rd and a fixed  > 0. We want to find a function f : Rd → Rm,
where m << d such that for all i and j:

|f(vi)− f(vj)| ∈ (1± )|vi − vj |

In other words, the distances between points are (approximately) preserved.
Note that many naive ideas fail to achieve this such as: (1) taking a random sample of m

coordinates out of d; and (2) partition coordinates into m subsets and add up the values in each
subset.

Idea 1 fails for the case where we have vector x = (0, 0, . . . , 1) and y = (1, 0, 0 . . . , 0). Note that
|x− y| = 1, but any random sample of coordinates is unlikely to find the 1 entry in either of these
vectors. Idea 2 fails for the case that x = (0, 1, 0, 1, . . .) and y = (1, 0, 1, 0, . . .). Note that |x− y| is
large but these sums would be very close.

4.1 Johnson-Lindenstrauss Projection

Let G be a m by d matrix where each entry is a normal random variable, i.e. Gi,j ∼ N (0, 1). Let
Π = 1√

m
G and let

f(x) = Πx.

So each entry in f(v) equals v ·g for some vector g filled with scaled Normal random variables (note
that Gaussian and Normal are synonmous). Other (simpler) approaches also work (See Section 4.4
below).
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4.2 Reduction to Norm Preservation

Distance Preservation: To prove distance preservation, we note that by the linearity of f = Π,

|Π(x)−Π(y)| = |Π(x− y)|

So with probability 1− δ, we preserve the distance of one pair by Theorem 2. Then we’ll do a
union bound over all pairs, which will increase the error probability by


n
2


.

4.3 JL Theorem

Theorem 2. Let x be any fixed vector in Rn, 0 < δ ≤ 1/256, and  > 0. Then, for m =
9 ln(1/δ)/2, with probability 1− δ:

(1− )|x| ≤ |Πx| ≤ (1 + )|x|

Proof: Let w = Πx. Then,

|w|2 = |Πx|2 = | 1√
m
Gx|2 = 1

m

m

i=1

w2
i ,

where

wi =

d

j=1

xjgj ;

and each gj ∼ N (0, 1).

So E(wi) =
d

j=1 xjE(gj) = 0. Recall var(X) = E(X2)− E2(X). Thus,

Var(wi) = E(w2
i ) =

d

j=1

Var(xjgj) =

d

j=1

x2jVar(gj) =

d

j=1

x2j = |x|2.

The above follows since for independent random variablesX and Y , Var(X+Y ) = Var(X)+Var(Y ).
Thus,

E(|w|2) = E


1

m

m

i=1

w2
i


=

1

m

m

i=1

E(w2
i ) =

1

m

m

i=1

|x|2 = |x|2

Now we make use of the following fact about normal random variables:

Fact 1: If X and Y are independent and X ∼ N (0, a2) and Y ∼ N (0, b2), then X + Y ∼
N (0, a2 + b2). The property that the sum of Normal distributions remains normal is known as
stability.

By this fact, wi ∼ N (0, |x|2). It follows that w2
i is a χ2 (chi-squared) random variable, and

that |w|2 = 1
m

m
i=1w

2
i is a chi-squared random variable with m degrees of freedom. These random

variables are very well studied and they concentrate around their mean essentially as well as a
Normal random variable1 . In particular, if X = 1

m

m
i=1w

2
i , then for any positive : P (|X −

E(X)| ≥ E(X)) ≤ 2e−m2/8. For us, that gives:

P (|X − E(X)| ≥ |x|2) ≤ 2e−m2/8

1See, e.g., https://www.stat.berkeley.edu/∼mjwain/stat210b/Chap2 TailBounds Jan22 2015.pdf
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If we let m = 9 log(1/δ)/2, we get:

P (|X − E(X)| ≥ |x|2) ≤ 2e−(9 ln(1/δ)/2)(2/8)

= 2e−((9/8) ln(1/δ))

= 2(δ)9/8

≤ δ

where the last step holds for δ sufficiently small. In particular, we want 2δ9/8 ≤ δ. Dividing
both sides by δ, we see that this holds when 2δ1/8 ≤ 1 or δ1/8 ≤ 1/2 or δ ≤ (1/2)8 or δ < 1/256.

Hence, we have
(1− )|x|2 ≤ |Πx|2 ≤ (1 + )|x|2

Taking square roots of the above inequality, we have:


(1− )|x| ≤ |Πx| ≤


(1 + )|x|

Assuming  ∈ (0, 1), we have
√
1−  ≤ 1−  and also

√
1 +  ≤ 1 + . Thus:

(1− )|x| ≤ |Πx| ≤ (1 + )|x|

□

The main theorem now holds essentially by union bounds as follows.

Theorem 3. Assume we are given n points v1, . . . vn ∈ Rd and a fixed  > 0. Let m = (27 log n)/2

and set f = Π, where Π is a m by d matrix of independent N (0, 1) random variables. Then, with
probability 1− 1/n, for any i and j, 1 ≤ i < j ≤ n:

(1− )|vi − vj | ≤ |f(vi)− f(vj)| ≤ (1 + )|vi − vj |

Proof: Set δ = 1/n3 and m = (27 log n)/2. For any fixed pair of points vi and vj, let ξi,j be the
(bad) event that the following does not hold:

(1− )|vi − vj | ≤ |f(vi)− f(vj)| ≤ (1 + )|vi − vj |

Then by Theorem 2, Pr(ξi,j) ≤ 1/n3. Let ξ be the event that ξi,j occurs for any vi and vj .
Then, by a Union bound, we know that

Pr(ξ) ≤


i,j

Pr(ξi,j)

=


n

2


1

n3

≤ 1/n.

□

Interestingly, this bound is tight. There are point sets that can’t be embedded in less than
O(log n/2) dimensions if we want to approximately preserve pairwise distances [2].
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4.4 Simpler Johnson-Lidenstrauss

Here is a simpler Johnson-Lindenstrauss projection that also works.

1. x1, . . . xm ← vectors in Rm chosen as follows. Each coordinate is chosen independently and

randomly from


1
m ,−


1
m



2. ui[j] ← xi · ui for all i : 1 ≤ i ≤ n and j : 1 ≤ j ≤ m

In other words, ui = (zi ·x1, . . . zi ·xm) for i = 1, . . .m. Note that we can think of this as a linear

transformation u = Az where A is a matrix with random and independent entries in


1
m ,−


1
m


.

4.5 Analysis

We now do a “sketch” of the analysis. The following lemma shows that things work out well in
expectation.

Lemma 6. For any 1 ≤ i < j ≤ n, E(|ui − uj |2) = |zi − zj |2

Proof: According to the projection, we have the following for any 1 ≤ i < j ≤ n:

|ui − uj |2 =
m

k=1


n

ℓ=1

(zi[ℓ]− zj [ℓ])xk[ℓ]

2

Fix i and j. Let z = zi − zj and let u = ui − uj . Then for any 1 ≤ k ≤ m, we have

E(|u · xk|2) = E






n

ℓ=1

(z[ℓ]xk[ℓ]

2




=


ℓ



ℓ′

E

z[ℓ]xk[ℓ]z[ℓ

′]xk[ℓ
′]


=

n

ℓ=1

E

(z[ℓ]xk[ℓ])

2


=
1

m
|z|2

Hence, by linearity of expectation E(|u|2)) = |z|2. □

The rest of the analysis follows similar to that in Theorem 3. First, one establishes a (harder)
tail-bound around this expectation and then does a union bound over all pairs of points. In this
way, we can get the same result as Theorem 3.

5 Applications of JL Projection

• Approximate all-pairs distances in O(n2 log n+ nd) vs O(n2d) time

• Approximate distance-based clustering

• Approximate support vector machine (SVM) classification
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• Approximate Linear Regression

Note: For some of these Machine Learning type applications, we need it to be the case that
distances are approximately preserved across all (infinite) vectors in the vector space. Thus, a
simple union bound won’t work and instead we need to make use of a technique called -nets. We
discuss this technique below.

6 Linear Regression and -Nets

The following is the classic least-squares regression problem.

Given: n data vectors a1, . . . an ∈ Rd, and n response values y1, . . . , yn ∈ R. Let A be a n × d
matrix with rows a1, . . . , an; let y be a length n vector with entries y1, . . . , yn.

Goal: Find x ∈ Rd to minimize

n

i=1

(ai · x− yi)
2 = |Ax− y|2

Usually, this problem requires O(nd2) time to solve (for example, by using singular value de-
composition). We now show how to speed it up by reducing n using Johnson-Lidenstrauss.2

Let Π be chosen from the family of matrices from Theorem 3. To obtain an approximate
solution, we solve the “sketched” problem where we find x ∈ Rd to minimize:

|Π(Ax− y)|2.

This can be solved in O(md2) time (once ΠA and Πy are computed - we haven’t discussed this
but there are JL transforms which are also fast, since they are sparse). We want to prove that a
solution to this smaller problem is a good approximation to the big problem. In particular, we’d
like the following inequality to hold for any input vector x.

(1− )|Ax− y|2 ≤ |Π(Ax− y)|2 ≤ (1 + )|Ax− y|2 (1)

In particular, let x∗ be the optimal solution for the original problem, and let x̃∗ be the solution
for the sketched problem. Then if equation 1 holds, we have:

|Ax̃∗ − y|2 ≤ 1

1− 
|Π(Ax̃∗ − y)|2 ≤ 1

1− 
|Π(Ax∗ − y)|2 ≤ 1 + 

1− 
|Ax∗ − y|2.

In the above the first and last inequalities hold via equation 1, and the middle inequality holds
by noting that x̃∗ minimizes |Π(Ax− y)| over all vectors x.

If  ≤ 1/4, then 1+
1− ≤ 1 + 3, so we can get an approximation to the original regression

problem. Q: Why do we need a bound for all x above??? The main problem is that x̃∗ depends on
the projection Π, and so it’s not fixed ahead of time. How do we extend equation 1 to all x? We
can’t use union bounds since there are an infinite number of possible vectors x.

2Note that we are reducing n (number of vectors) and not d (dimension). Since we only care about the matrix A,
you could think of n as the dimension and d as the number of vectors.
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U v

Rn

Figure 1. JL approximately preserves distances over any subspace U of dimension d contained in Rn

7 Beyond Union Bounds

We need an approach that works for all vectors in certain subspace.

7.1 Subspace Embeddings

We will prove a more general statement that implies equation 1 for all the vectors we need, and is
useful in other applications.

Theorem 4. Let U be any d-dimensional linear subspace in Rn, 0 < δ ≤ 1/256, 0 <  ≤ 2/5,
m = (36d/2) ln


8
δ


, and Π be the matrix defined above for dimensions m by n. Then, with

probability 1− δ, for all v ∈ U :

(1− )|v| ≤ |Πv| ≤ (1 + )|v| (2)

(Note that it’s possible to prove a slightly tighter bound of m = O(d+log(1/δ)
2

) that we won’t
discuss here.)

How does this theorem imply equation 1? We can apply it to the d + 1 dimensional subspace
spanned by the d columns of A and the vector y. Every vector formed by inputting some vector
x into the linear equation Ax − y lies in this d + 1 dimensional subspace. In particular, we can
approximately solve linear regression over n >> d examples for the same amount of work as O(d)
examples, for fixed .

7.2 Reduction to a Sphere

We first note that Theorem 4 holds so long as equation 2 holds for all points on the unit sphere in
U . This is a consequence of linearity of the Euclidean norm. In particular, denote the sphere SU as

SU = {v | v ∈ U and |v| = 1}.

Now any point v ∈ U can be written as cx for some scalar c and some point x ∈ SU . Then, if
|Πx| ∈ (1± )|x|, then c|Πx| ∈ c(1± )|x| and so |Πcx| ∈ (1± )|cx|. The last inequality holds since

|cx| =


i(cx)
2
i = c


i x

2
i = c|x|, since x was on the unit sphere.
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Figure 2. An -net N for a sphere in a 2-dimensional subspace of U

7.3 Constructing a Net

We prove Theorem 4 by showing that there is a large, but finite set of points N ⊂ SU such that
if equation 2 holds for all v ∈ N, then it holds for all vectors v. The set N is called an -net. In
particular, we show:

Lemma 7. For any positive  ≤ 2, there exists a set N ⊂ SU with |N| ≤

4


d
such that ∀v ∈ SU ,

min
x∈N

|v − x| ≤ .

Proof: We use the following greedy procedure to construct N; this construction is just for proof
of existence, our algorithms do not need to implement this.

1. N ← {}

2. While there is a point v ∈ SU with distance greater than  from any point in N, add v to N.

After running this procedure, we have |N| points such that minx∈N |v − x| ≤  for all v ∈ SU .
So we just need to bound |N|.

To do so, we first lower bound the volume taken up by balls around points inN = {x1, x2, . . . , x|N|}.
In particular, note that for all i ∕= j, |xi − xj | ≥ . If not, then either xi or xj would not have been
added to N by our greedy algorithm. So if we place balls of radius /2 around each xi:

B(x1, /2) . . . B(x|N|, /2)

then for all i ∕= j, B(xi, /2) does not intersect B(xj , /2).
So how do we now set up an inequality to bound |N|??? The volume of a d dimensional ball

of radius r is crd for some fixed constant c. Thus, the amount of space taken up by all the balls
surrounding points in N is c|N|(/2)d.

Next, the amount of space that these balls can exist in is at most the volume of a d dimensional
sphere with radius 1 + /2. This volume is c(1 + /2)d. Thus, we have that

|N|c(/2)d ≤ c(1 + /2)d

Solving for |N|:

|N| ≤
(1 + /2)d

(/2)d

≤

4



d

The last line holds assuming 0 <  ≤ 2. □
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7.4 Proving Theorem 4

We can now prove Theorem 4, by using the -net.

Proof: Let ′ = /3. We first choose m sufficiently large so that Equation 2 holds with value  ← ′

for all the at most

4
′
d

vectors in N′ . Theorem 2 and a union bound tell us this works if we choose

δ′ = δ

′

4

d
in m = 9 ln(1/δ′)/′2. Plugging in gives m = 9 ln


4
′
d

/δ

/′2 = (9d/′2) ln


4
δ′


=

(81d/(′)2) ln

12
δ′



Now consider any v ∈ SU . We claim that for some sequence x0, x1, x2, . . . ∈ N′ that we can
write v as:

v = x0 + c1x1 + c2x2 + . . .

for constants c0 = 1, c1, c2, . . . where |ci| ≤ i. To see this, note that there is some point x0 within
distance ′ of v. Next, we need to represent v−x0, which has norm at most ′. So, we can write the
point v−x0

|v−x0| , which has norm 1 and multiply the resulting coefficients by ′. Again there is some
point x1 within distance  of this point. Continuing this process ad infinitum gives the claim. This
sequence can possibly be infinite and possibly have repeats. Let I be the set of (possibly infinite)
indices in this sequence.

Now, we consider |Πv| and use the triangle inequality to get:

|Πv| =

Π



i∈I
cixi



≤


i∈I
|Π(cixi)|

≤


i∈I
(1 + ′)ci|xi|

≤ (1 + ′)
∞

i=0

(′)i

=
1 + ′

1− ′

≤ 1 + 

In the above, the second step follows by the triangle inequality. The third step follows by the fact
that each xi ∈ N ′

, and so Equation 2 holds for each of them. The last step holds since 1+′

1−′ ≤ 1+ ,
when 1 + ′ ≤ (1 + )(1− ′) or ′ ≤ 

2+ , which always since  ≤ 2/5 and ′ ≤ /3.

13
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The other direction of the proof is symmetric, and is included below for completeness.

|Πv| =

Π



i∈I
cixi



≥ |Π(c0x0)|−


i∈I/{0}
|Π(cixi)|

≥ |Πx0|−


i∈I/{0}
(′)i|Πxi|

≥ (1− ′)− (1 + ′)
∞

i=1

(′)i

≥ (1− ′)− (1 + ′)
′

1− ′

≥ (1− ′)− 5

4
(′ + (′)2) For ′ ≤ 1/5

≥ 1− ′ − (5/4)′ − (1/4)′

≥ 1−  For ′ ≤ (1/3)

The first step holds since by the triangle inequality, |y| + |x − y| ≥ |y + x − y| = |x|; moving
the |y| term gives |x − y| ≥ |x| − |y|. Finally, plugging in y = −y′ gives |x + y′| ≥ |x| − |y′| for all
vectors x and y′. □

7.5 Other Applications of JL

Speed up Machine Learning algorithms by projecting “training data”? Depends. If
classifier is linear then yes. If classifier is low dimensional polynomial, probably.

Approximate solutions to System of Linear equations? Sometimes

Finding an -approximate convex hull? Sometimes

8 Appendix

This appendix discusses Chernoff bounds, which are related to Bernstein’s inequality but are less
general, and so sometime tighter.

8.1 Chernoff Bounds

The following important bound only works for independent random variables. We prove it for
0/1-valued random variables, which only take on the values 0 or 1, and we prove an upper bound.
The lemma generalizes easily to also bound the probability of deviation below the mean.

Lemma 8. (Chernoff bounds) Let X1, . . . , Xn be independent 0/1-valued random variables and
let pi = E(Xi), where 0 ≤ pi < 1 for all i. Then the sum X =


iXi, which has mean µ = E(X) =

i pi satisfies
Pr(X ≥ (1 + δ)µ) ≤ (cδ)

µ,

where cδ =
eδ

(1+δ)1+δ .
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Proof: Consider an arbitrary positive constant t, to be set later, and consider the random variable
etX . (If X = 2, say, this rv is e2t.). A nice property of this random variable is the following:

E(etX) = E(et


i Xi)

= E(


i∈[1,n
etXi)

=


i∈[1,n]
E(etXi)

The last inequality holds since the Xi random variables are independent, and hence so are the etXi

random variables; and since E(XY ) = E(X)E(Y ) if X and Y are independent. Note that

E(etXi) = (1− pi) + pie
t.

Thus, we have:



i∈[1,n]
E(etXi) =



i∈[1,n]
[1 + pi(e

t − 1)]

≤


i∈[1,n]
epi(e

t−1)

≤ eµ(e
t−1)

In the above, the second step holds by the inequality 1 + x ≤ ex (via Taylor expansion of e.
Recall that ex = 1 + x + x2/2! + x3/3! + . . .). Now, we apply Markov’s inequality to the random
etX to get:

Pr(X ≥ (1 + δ)µ) = Pr(etX ≥ et(1+δ)µ)

≤ eµ(e
t−1)

et(1+δ)µ

≤ eµ((e
t−1)−t(1+δ))

Recall that Markov’s inequality says that for any positive random variable Y , and any λ > 0,

Pr(Y ≥ λ) ≤ E(Y )/λ.

We let Y = etX , and note that E(Y ) ≤ eµ(e
t−1); and we let λ = et(1+δ)µ.

This holds for any positive t, and is minimized when t = ln(1 + δ) (to see this, differentiate to
get the minimum). This gives the lemma statement. □

Using a symmetric argument, we can bound the probability of deviation below the mean.
Combining the results and using some approximations gives the following extremely useful lemma.

Lemma 9. LetX1, . . . Xn be independent Poisson trials such that P (Xi = 1) = pi. LetX =


iXi

and µ = E(X). Then for 0 ≤ δ ≤ 1,

Pr(|X − µ| ≤ δµ) ≤ 2e−µδ2/3
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8.2 Using Chernoff Bounds

Assume we flip a fair coin n times and let X be the number of heads. Note that E(X) = n/2.
Then by Chernoff bounds, we have that:

Pr(|X − n/2| ≤ δn/2) ≤ 2e−nδ2/6

Q: What is the smallest value of δ that still ensures that we have polynomially small probability?
A: To ensure this, need 2e−nδ2/6 ≤ n−1, which means that −nδ2/6 ≤ − lnn.
How about δ = 1: we get −n1/6 ≤ − lnn which works
How about δ = 1/

√
n: we get −n(1/n)/6 = Θ(1)

How about δ =


(lnn)/n: we get −n(lnn)/n/6 = Θ(− lnn). That works!
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