
CS 506 Lecture: Multiplicative Weights

1 Multiplicative Weights (MW)

Note: These lecture notes are closely based on those of Aaron Roth [1].

1.1 MultiplicativeWeights

The Problem. Imagine that we have N experts and we are operating in the following regime

• In rounds 1, . . . , T , the algorithm chooses some expert i(t)

• In round t, each expert i experiences a loss ℓ
(t)
i ∈ [0, 1]. The algorithm experiences the loss

of the expert it chooses ℓ
(t)
A = ℓ

(t)

i(t)

The total loss of expert i is L
(T )
i =

T
t=1 ℓ

(t)
i . The total loss of the algorithm is LT

A =
T

t=1 ℓ
t
A.

The goal of the algorithm is to obtain loss not much worse than the best expert: mini L
(T )
i .

The Algorithm. The following algorithm solves the problem. It sets η =


lnN
T .

procedure MultiplicativeWeights

Set weights w
(1)
i ← 1 for all experts i

for t = 1 to T do
W (t) ←

N
i=1w

(t)
i

Choose expert i with probability w
(t)
i /W (t)

For each i, w
(t+1)
i ← w

(t)
i (1− ηℓ

(t)
i )

end for
end procedure

Analysis. The following theorem shows MultiplicativeWeights does quite well.

Theorem 1. Let L
(T )
A be the loss of the MultiplicativeWeights algorithm, and k be any expert.

Then:
1

T
E(L

(T )
A ) ≤ 1

T
L
(T )
k + 2


lnN

T
;

which we get by setting η =


lnN
T .

Proof: Let F (t) be the expected loss of MultiplicativeWeights in round t. By linearity of expecta-

tion, we know E(L
(T )
MW ) =

T
t=1 F

(t). We also know that

F (t) =

N
i=1w

(t)
i ℓ

(t)
i

W (t)

So what is W (t)? We know that W (1) = N and by the algorithm:

W (t+1) = W (t) −
N

i=1

ηw
(t)
i ℓ

(t)
i = W (t)(1− ηF (t)).
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Solving this recurrence, we get

W (T+1) = N

T

t=1

(1− ηF (t)).

Taking the log, and using the fact that ln(1− x) ≤ −x, we get:

lnW (T+1) = lnN +

T

t=1

ln(1− ηF (t))

≤ lnN − η

T

t=1

F (t)

= lnN − ηE(L
(T )
A )

We next use the fact that W (T+1) ≥ w
(T+1)
k . And also the inequality ln(1 − x) ≥ −x − x2,

which holds for x ∈ [0, 1/2). To see this, note 1
1−t = 1 + t + t2 + t3 + . . . for |t| < 1. Then

− ln(1 − x) =
 x
0

1
1−tdt. So integrating the geometric sum equation above, we get ln(1 − x) =

−x− x2

2 − x3

3 − x4

4 + . . ., from which the inequality follows when x ∈ [0, 1/2).
Using these two fact, we get for every k:

lnW (T+1) ≥ lnw
(T+1)
k

=

T

t=1

ln(1− ηℓ
(t)
k )

≥ −
T

t=1

ηℓ
(t)
k −

T

t=1

(ηℓ
(t)
k )2

≥ −ηL
(t)
k − η2T

Combining these two bounds, we get:

−ηL
(t)
k − η2T ≤ lnN − ηE(L

(T )
A )

Isolating E(L
(T )
A ) we get:

E(L
(T )
A ) ≤ −L

(t)
k − ηT + (lnN)/η

Dividing by T and setting η =


lnN
T gives the promised result. □

1.2 MWVectorBounded

The Algorithm. The following algorithm is competitive with any convex combination of experts.

procedure MWVectorBounded

Set weights w
(1)
i ← 1 for all experts i

for t = 1 to T do
W (t) ←

N
i=1w

(t)
i

Play vector w(t), where w(t)[i] = w
(t)
i /W (t) for i ∈ [1, N ]

For each i, w
(t+1)
i ← w

(t)
i (1− ηℓ

(t)
i )

end for
end procedure
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The Analysis. Recall that ∆(N) is the set of all length N vectors having all entries non-negative
and summing to 1. We have the following.

Theorem 2. Setting η =


lnN
T , for any sequence of losses ℓ(t) ∈ [0, 1]N , MWVectorBounded gets:

1

T

T

t=1

〈w(t), ℓ(t)〉 ≤ min
w∗∈∆(N)

1

T

T

t=1

〈w∗, ℓ(t)〉+ 2


lnN

T

Proof: The left hand side is exactly the expected loss of MultiplicativeWeights. Similarly, the
“loss of expert i” corresponds to

T
t=1〈ei, ℓ(t)〉, where ei is the standard basis vector with a 1 in

position i and 0’s elsewhere. Finally, observe that for every sequence of possible losses:

min
w∗∈∆(N)

T

t=1

〈w∗, ℓ(t)〉 =
T

t=1

〈ei∗ , ℓ(t)〉

where i∗ = argmini∈[1,N ]

T
t=1 ℓ

(T )
i . So minimizing regret to the best basis vector ei∗, i.e. the best

expert, minimizes regret to the best vector w∗ ∈ ∆(N). Thus, the result follows by Theorem 1. □

1.3 Arbitrary Losses and Vector Sums

Let BN (R1) be the set of n dimensional vectors with nonnegative entries that sum up to at most
R1. Below are changes we make to MWVector in order to compete with vectors in BN (R1) and

handle losses in the range [−R2/2, R2/2]. Again we will set η =


lnN
T .

procedure MWVector (R1, R2)

Add a N + 1 expert, with ℓ
(t)
N+1 = 0 for all t.

Set u
(1)
i ← 1 for all experts i

for t = 1 to T do
U (t) ←


i=1 u

(t)
i

Play the vector w(t), where w(t)[i] = R1u
(t)
i /U (t) for all i

For each i, u
(t+1)
i ← u

(t)
i (1− η(ℓ

(t)
i +R2/2)/R2))

end for
end procedure

The algorithm makes the following changes compared to MWVectorBounded

• Weights: A N + 1 expert is added that always has loss of 0. The algorithm uses “internal”
weights ui and outputs “external” weights wi that are now scaled by R1.

• Losses: We first add R2/2 to every loss value, and then divide the new loss value by R2.
This gives normalized loss values all in [0, 1].

Theorem 3. MWVector ensures for any w∗ ∈ BN (R1) that:

1

T

T

t=1

〈w(t), ℓ(t)〉 ≤ min
w∗∈BN (R1)

1

T

T

t=1

〈w∗, ℓ(t)〉+ 2R1R2


lnN

T
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Proof: First, note that the N + 1 expert allows for the normalized, “internal” weight values,

u
(t)
i /U (t), to sum to anything in the range [0, 1]. When we scale these values by R1, we thus obtain

any vector with positive entries that sum to anything less than R1. Second, note that adding R2/2
to each of the losses does not change the “regret”, i.e. the value


w(t), ℓ(t)


−


w∗, ℓ(t)


.

Finally, if we divide the coordinates of wt by R1 and the coordinates of ℓt by R2, we get, by
Theorem 2, that:

1

T

T

t=1


w(t)

R1
,
ℓ(t)

R2


≤ min

w∗∈BN (R1)

1

T

T

t=1


w∗

R1
,
ℓ(t)

R2


+ 2


lnN

T
.

Multiplying the above inequality by R1R2 gives the promised inequality. □

2 Winnow

2.1 Problem

Assume we are given feature vectors, a1, . . . , am, each having a classification of either −1 or +1.
We want to find a hyperplane that correctly separates the points.

For simplicity, we can define aj to be sjaj , where sj ∈ {−1,+1} is the classification of example
j. Then, we want to find vector x, such that for each attribute vector i, x · ai ≥ 0. Without loss of
generality, we can assume that x is in ∆(n) where n is length of each attribute vector. 1

Example. We are given three feature vectors: (2,−1), class −1; (−4, 1), class 1, (−10, 1), classs
−1. Multiplying each vector by its class gives: (−2, 1), (−4, 1), (10,−1). Then, we see that
x = (1/10, 9/10) is one vector that correctly classifies all of these.

2.2 Algorithm.

Let N be the number of attributes in each feature vector, i.e. the length of each feature vector.
Let M be the maximum value of any entry in any feature vector.

procedure Winnow
Run MWVector (R1 = 1, R2 = 2M) with the following settings:
Experts: Associate an expert with each of the N attributes.

Losses: In round t, find some aj , where 〈w(t), aj〉 < 0. Then set ℓ
(t)
i ← −aj [i].

When 〈w(t), aj〉 ≥ 0 for all aj , terminate.
end procedure

2.3 Analysis

Suppose there is a vector v∗ ∈ BN (1) such that for all j, 〈v∗, aj〉 ≥ , for some fixed  > 0. Then,
we have the following result.

Theorem 4. Winnow terminates in at most 16M2 lnN
2

rounds.

1Why? We can simulate negative values in x by adding in attributes that are the negative of all the old attributes;
this only doubles the number of attributes.
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Proof: Let T be the round in which Winnow terminates. Then, for all t < T , 〈w(t), ℓ(t)〉 > 0.
Thus, we have

0 <

T

t=1

〈w(t), ℓ(t)〉

≤
T

t=1

〈w∗, ℓ(t)〉+ 4M
√
T lnN

≤ −T + 4M
√
T lnN

In the above, the second step holds by Theorem 3. The third step holds by noting thatT
t=1〈w∗, ℓ(t)〉 ≤

T
t=1〈v∗, ℓ(t)〉 ≤ . Isolating T in the above inequality gives:

T ≤ 16M2 lnN

2

□

3 Minimax Theorem

3.1 Game Theory

Two-players, Min and Max, are playing a game characterized by a m by n matrix C. Player Min
chooses an action from the set A1 = {1, . . . ,m}, and player Max chooses an action from the set
A2 = {1, . . . , n}. The cost of the game is given by the function C: A1 ×A2 → R.2

A mixed strategy for Min is a probability distribution over A1: p ∈ ∆(m); a mixed strategy for
Max is a a probability distribution over A2: q ∈ ∆(n). Then the expected cost of the game is

C(p, q) =

m

i=1

n

j=1

C[i, j]piqj = qTCp.

One of the players may play a pure strategy - i.e. does not randomize. For example, Max might
always play strategy y ∈ [n]. Then we write:

C(p, y) =

m

i=1

C[i, y]pi = (ey)
TCp.

Example. A example (zero-sum) game is given by the following 3 by 3 payoff matrix C.

Rock Paper Scissors

Rock 0 -1 1

Paper -1 0 1

Scissors 1 -1 0

2This type of game where the costs of both players are given by a single matrix is called zero-sum
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MaxMin and MinMax. Normally, games are played simultaneously, but what if Min has to
announce her (mixed) strategy to Max first? Or vice versa? We can calculate the cost of the game
in each case as follows:

maxmin(C) = max
q∈∆(n)

min
x∈[m]

n

j=1

qiC[x, i]

minmax(C) = min
p∈∆(m)

max
y∈[n]

m

i=1

piC[i, y]

Note that the player who plays second always just chooses a single action - their best response
- since there’s no need to randomize if you already know your opponents probability distribution.

3.2 Minimax Theorem

It turns out that it doesn’t matter which player goes first. In particular, we will show that
minmax(C) = maxmin(C) for all matrices C. We will eventually show this using our Multi-
plicative Weights algorithm, but first a definition.
Vectors p ∈ ∆(m) and q ∈ ∆(n) form an -approximate minimax equilibrium for a game C iff:

max
y∈[n]

C(p, y)−  ≤ C(p, q) ≤ min
x∈[m]

C(x, q) + 

The following algorithm will help us obtain such an -approximate equilibrium over an m by n
matrix C, where all entries in C are normalized to be in the range [0, 1]

procedure ComputeEQ (C, )
T ← 4 logm

2

Initialize a copy of MWVectorBounded to run over w(t) ∈ ∆(m)
for t = 1 to T do

y(t) ← argmaxy∈[n]C(w(t), y)

ℓ
(t)
i ← C[i, y(t)] for all i ∈ [m]
Pass ℓ(t) to the MWVectorBounded algorithm

end for
Return: (x̄, ȳ) ←


1
T

T
t=1w

(t), 1
T

T
t=1 ey(t)



end procedure

Theorem 5. For any  > 0 and any game C, ComputeEQ returns vectors (x̄, ȳ) that are an
-approximate minimax equilibrium.

Proof: First, observe that for any x ∈ ∆(m),

1

T

T

t=1

C(x, y(t)) = C


x,

1

T

T

t=1

ey(t)



= C(x, ȳ)

Similarly, for any y ∈ ∆(n), 1
T

T
t=1C(w(t), y) = C(x̄, y). These are both true since linearity of

the C function allows to push sums and scalars inside it.
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Let x∗ = argminxC(x, ȳ) and y∗ = argmaxy C(x̄, y). Then, MWVectorBounded ensures, by
Theorem 2:

1

T

T

t=1

C(w(t), y(t)) ≤ 1

T

T

t=1

C(x∗, y(t)) +


4 logm

T

= C(x∗, ȳ) +


4 logm

T

Also, by choice of y(t) in algorithm ComputeEQ:

1

T

T

t=1

C(w(t), y(t)) ≥ 1

T

T

t=1

C(w(t), y∗)

= C(x̄, y∗)

Putting these two inequalities together, we get that:

C(x̄, y∗) ≤ C(x∗, ȳ) +


4 logm

T

Adding and subtracting C(x̄, ȳ) and rearranging, we get:

(C(x̄, ȳ)− C(x∗, ȳ)) + (C(x̄, y∗)− C(x̄, ȳ)) ≤


4 logm

T

By definition of x∗ and y∗, both terms on the LHS are non-negative. Hence, both:

C(x̄, ȳ)− C(x∗, ȳ) ≤


4 logm

T
C(x̄, y∗)− C(x̄, ȳ) ≤


4 logm

T

This implies that (x̄, ȳ) forms a


4 logm
T -approximate minimax equilibrium. By our choice of

T ,


4 logm
T ≤ . □

Now, Von Neumann’s minimax theorem follows as a corollary.

Theorem 6. (Von Neumann Minimax) For any zero-sum game C,

minmax(C) = maxmin(C)

Proof: By Theorem 5, for any game C and  > 0, we can find x̄, ȳ such that:

minmax(C)−  ≤ max
y∈[n]

C(x̄, y)−  ≤ C(x̄, ȳ) ≤ min
x∈[m]

C(x, ȳ) +  ≤ maxmin(C) + 

Thus, minmax(C) ≤ maxmin(C) + 2 for all  > 0, so minmax(C) ≤ maxmin(C). Since
player Min can only do worse when she releases her strategy first, we also know that minmax(C) ≥
maxmin(C). Thus, the two quantities are equal! □
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4 Boosting

Define a labelled datapoint to be a pair (x, y) ∈ X × Y , where X is some space of features and Y
is some space of labels. Frequently, X = Rd and Y = {0, 1}. A data set is a collection of labelled
datapoints.

Our goal is to find a function f : X → Y for predicting labels from features with high accuracy.
In particular, given a predictor f : X → Y , the accuracy of f on a data set D of n items is:

acc(f,D) =
1

n

n

i=1

I(f(xi) = yi)

We can also define weighted prediction accuracy for any weighting w ∈ ∆(n) of the n points:

acc(f,D,w) =
1

n

n

i=1

wiI(f(xi) = yi)

In the above I(p) is an indicator function which is 1 if the predicate p is true and 0 otherwise

Hypothesis, Learners, and Weak and Strong Learners A hypothesis class H is a collection
of hypothesis h that map from X to Y . A weighted learning algorithm A with range H is a mapping
from datasets and weight vectors to hypothesis in H.

A is a weak learning algorithm for D if for every distribution w ∈ ∆(n), A(D,w) = h such that:

acc(h,D,w) ≥ .51

A is a strong learning algorithm for D if A(D) = h such that:

acc(h,D) = 1

4.1 Weak Learner to Strong Learner

Remarkably, we can use a weak learning algorithm for a dataset D to obtain a strong learning
algorithm.

Theorem 7. For any dataset D, if there exists a polytime weak learning algorithm for D, then
there exists a polytime strong learning algorithm for D.

Proof: Our approach will use game theory. Let H be the hypothesis class used by the weak
learning algorithm A. Define a zero-sum game as follows:

• The action space for the Min player (”DATA”) is the set of data points: A1 = D.

• The action space for the Max player (”LEARNER”) is the A2 = H

• The cost function is defined as: C((xi, yi), h) = I(h(xi) = yi))

Since A is a weak learner for D, we can compute the minmax value of the game. In particular,
this is how well the player LEARNER can do if the player DATA must go first:

8
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minmax(C) = min
w∈∆(n)

max
h∈H

n

i=1

wiC((xi, yi), h)

= min
w∈∆(n)

max
h∈H

n

i=1

wiI((h(xi) = yi)

= min
w∈∆(n)

max
h∈H

n

i=1

acc(h,D,w)

≥ .51

The last line holds since the player LEARNER can use the weak learner algorithm A. But,
then we also know:

minmax(C) = maxmin(C)

= max
p∈∆(|H|)

min
i∈[n]



h∈H
phI(h(xi) = yi)

≥ .51

The first step follows by the minimax theorem (Theorem 6), since we know player LEARNER can
do just as well if she goes second. In the second step, the value p chosen in ∆(H) is the mixed
strategy for player LEARNER. The third step follows by our lowerbound on minmax above.

Thus, there is some fixed distribution p∗ over hypothesis h ∈ H such that at least .51 of the
hypothesis weighted by p correctly label every point (xi, yi). Consider the following “weighted
majority vote” classifier:

fp∗(x) = argmax
y∈Y



h∈H
p∗I(h(x) = y)

From our minimax calculations above, we know that for any (xi, yi) ∈ D, we have:



h∈H
phI(h(xi) = yi) =



h∈H:h(xi)=yi

p∗h ≥ .51

Thus, by construction, fp∗(xi) = yi. □

4.2 Some Details and Resource Analysis

Note that algorithm ComputeEQ can only compute an -equilibrium, not an exact one. But that’s
not a problem so long as we set  small enough so that payoff of the game is still > .5. For example,
 = .001 works fine since .51− .001 > .5 holds.

4.2.1 Algorithm

So what does the final algorithm look like if we “inline” the call to ComputeEQ? A direct version of
our algorithm Boost, for dataset D, and weak-learning algorithm A is given below. Recall that the
weak-learning algorithm A can, for any weighting w of data set D, always find a hypothesis h ∈ H
that correctly classifies at least a .51 weighted fraction of the items in D. Finally, let n = |D| and
m = |H|.

In the following algorithm, the weight vector, w(t), gives the strategy for player DATA, and the
(weighted) h(t) values give the strategy for the player LEARNER.

9
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procedure Boost (D,A)
T ← 4 logn

2

Initialize a copy of MWVectorBounded to run over w(t) ∈ ∆(n)
for t = 1 to T do

h(t) ← A(D,w(t))

ℓ
(t)
i ← I(h(t)(xi) = yi) for all i ∈ [m]
Pass ℓ(t) to the MWVectorBounded algorithm

end for
p̄ ← 1

T

T
t=1 eh(t)

Return: fp̄(x), where fp̄(x) = argmaxy∈Y


h∈H p̄hI(h(x) = y)
end procedure

4.2.2 Analysis

How long does our algorithm Boost run for? Since  is a constant, on a dataset of size n, it runs for
O(log n) iterations. In each round, it makes a single call to the weak learning algorithm A. Then
it updates the weight distributions over the n data points in D, which takes O(n).

Note that the function fp̄(x) is concisely representable since p̄ has support over only the T =
O(log n) hypothesis, h(t), chosen at the start of each iteration.

Finally, note that if the weak learner returns “simple” functions such as linear classifiers or
depth-2 decision trees, then the function fp̄(x) will also not be too complex. In particular, it can
be described as the average of no more than O(log n) of these simple functions. This simplicity is
a positive indication that fp̄(x) will generalize well, performing well not just on the training data,
but also on the test data.

5 Linear Programming

Let’s end with a “simple” application of MW to linear programming. Imagine we have a linear
program of the form:

Maximize:
n

i=1 cixi

Subject to each constraint j ∈ [d]:

n

i=1

ai,jxi ≤ bj

We can solve this using MW, provided that we can find violated constraints whenever they
exist. Note that there could even be an exponential number of constraints, provided we can find a
violated constraint quickly, if any constraint is violated!

Our approach is first to convert our linear program into a linear feasible problem, where there
is no maximize function. Instead, if we know the solution has value OPT, we put in the constraint:

n

i=1

−cixi ≤ −OPT

Since we don’t know OPT in practice, we can find it via binary search. Henceforth, we focus
only on linear feasible LPs.
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5.1 The Algorithm

The idea is to run MW where the “experts” are the n variables in the LP, and the weights will
eventually give settings of the variables that approximately satisfy all d constraints. In particular,
the algorithm will be given a parameter α > 0, and we will require the output values must violate
each constraint by no more than α.

procedure SolveLP ({a, b}j∈[d], R1, R2, α)
Initialize MWVector to produce vectors w ∈ Bn(R1)

while there is a constraint j(t) such that
n

i=1 ai,jw
(t)
i ≥ bj + α do

ℓ
(t)
i ← ai,j(t) for all i ∈ [n]

Pass ℓ(t) to MWVector
t ← t+ 1 and w(t) is the updated weight vector.

end while
Output: x = w(t)

end procedure

5.2 Analysis

We first give a definition, and then our main theorem.

Definition 1. Given a linear feasibility problem: ({a, b}j∈[d], vector x is an α- feasible solution if
for all j ∈ [d],

n

i=1

ai,jxi ≤ bj + α

Theorem 8. Let ({a, b}j∈[d] be a linear feasibility problem with a feasible solution x∗ ∈ Bn(R1),
and such that maxi∈[n],j∈[d] |ai,j | ≤ R2/2. Then, SolveLP when run on that LP problem returns an
α-feasible solution in a number of iterations at most:

T ≤ 4R2
1R

2
2 lnn

α2

Proof: If the algorithm terminates, it outputs a α-feasible solution by definition. How many
iterations before it terminates? Let x∗ be the feasible solution. By definition of x∗, in iteration t, we

know
n

i=1 x
∗
i ℓ

(t)
i ≤ bj(t) . By definition of the algorithm, in iteration t, we know

n
i=1 x

(t)
i ℓ

(t)
i ≤ bj(t)

Hence, the regret of the algorithm is at least:

1

T

T

t=1

〈w(t), ℓ(t)〉 − 1

T

T

t=1

〈w(∗), ℓ(t) ≥ 1

T

T

t=1

bj(t) + α− bj(t) ≥ α.

But, by Theorem 3,

1

T

T

t=1

〈w(t), ℓ(t)〉 − 1

T

T

t=1

〈w(∗), ℓ(t) ≤ 2R1R2


lnn

T

Hence, we must have:

2R1R2


lnn

T
≥ α

Solving for T gives the theorem. □
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