
CS 506 Lecture: Singular Value Decomposition

Note: These lecture notes are closely based on lecture notes by Sanjeev Arora [1].

1 View 1: Best projection for a dataset

Assume we have a set of n vectors, v1, v2, . . . vn in Rm, where m and n are both large. As before,
we want to represent these vectors using fewer dimensions, say k.

We’ve seen that Johnson-Lindenstrauss can be very useful if we care about preserving pairwise
ℓ2 distances among the vectors. JL works for any data set - in fact, it doesn’t even pay attention
to the data set when determining the subspace that we project onto. But this is potentially a
disadvantage, since there may be many data sets where there is a natural low dimensional subspace
inherent in the dat.

Our goal in this lecture is to find a low-dimensional subspace that is “inherent” to the data set.
More formally, this means that we want to find a small set of vectors u1, u2, . . . uk ∈ Rm such that
every vi is close to the span of u1, u2, . . . uk. Recall that a vector v is in the span of u1, u2, . . . uk if
v =

k
i=1 αiui for some set of real numbers α1, . . .αk. For many data sets, we can find very small

k since the data set has intrinsically small dimensionality.
Let’s formalize the problem a bit more. Mathematically, we want to find a set of vectors

u1, u2, . . . uk (the basis of the low dimensional space), such that every vector in our data set is
“close” to the span of these k vectors. It makes sense for “close” to be defined in terms of the
Euclidean distance (i.e. 2-norm) between each vector vi and the span of u1, u2, . . . uk. In particular,
we want for all i ∈ [1, n] to minimize |vi −


j∈[1,k] αi,juj |2, where the αi,j are any real numbers.

Then, our optimization problem over all vectors is to find u1, u2, . . . uk ∈ Rm and αi,j for
i ∈ [1,m], j ∈ [1, k] that minimizes:

n

i=1

vi −
k

j=1

αi,juj


2

(1)

This optimization problem is non-linear and nonconvex. It’s amazing that it can actually
be solved. But it can, using the tool of singular value decomposition. The term singular value
decomposition (also principle component analysis, spectral decomposition, etc.) is just a fancy
word for computing all the eigenvectors and eigenvalues of the matrix. Before we talk more about
how this works mathematically, some example applications.

1.1 Big Data

Suppose a marketer wants to understand behavior of n shoppers with respect to m goods. A very
simple model of shopping behavior is that each shopper has a budget Bi and they allocate it equally
over all m items. Then if pj is the price of the j-th item, the vector associated with shopper i is:


Bi

p1
,
Bi

p2
, . . .

Bi

pm



So what dimensionality is the data in this model? The data in this model has dimension 1.
But maybe the above model is too simplistic. A more realistic model might be the following. We

assume the goods are partitioned into k (unknown) categories like: produce, deli, items purchased
by families with babies, etc. Let S1, S2, . . . Sk denote the k subsets of items in these categories.
They are unknown to us and may overlap. Now assume that the i-th shopper designates a budget
Bij for the j-th category and then divides that budget equally among all items in that category.
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How does this model work? For j ∈ [1, k], let uj ∈ Rm be the vector, where for i ∕= St uj [i] = 0
and for i ∈ St, uj [i] = 1/pj . Then the vector for each shopper i that gives the quantity of each
good purchased by that shopper is:

k

j=1

Bij

|Sj |
uj

What dimensionality is this model? It is k dimension. Note that no model will exactly match
the data, so the data set will only be “approximately” low-dimensional.

Consider 3 items and let v1 = (1/3, 1/3, 1/3) and v2 = (1/2, 0, 1/2). Every customer is now a
combination of these 2 vectors, so every customer is defined by exactly 2 coordinates so span(v1, v2)
is a 2-D space.

1.2 Application: Microarray Data in Biology

The human body has a huge number of genes, and the activity level of these genes depends both
on your genetic code and on environmental factors. Microarrays are small “chips” of chemical sites
that can measure the gene expression level of a large number of genes (say m = 10, 000) in one
experiment. After testing n individuals with a microarray, we get a m by n matrix of real values.

In practice, these matrices turn out to be “low-dimensional” in the sense of equation 1. For
example, there may tend to be three common “directions” such that most of the columns are close to
the span of these three directions. These new axis directions usually have some biological meaning:
for example sets of genes whose is expression is controlled by the same regulatory mechanism (i.e.
the same “regulatory molecule”).

2 View 2: Low-rank Approximation

We have a m by n matrix M and suspect it is a noisy version of a rank k matrix, say M̃ . Given
M , we want to find M̃ . A natural optimization problem then is to find a rank k matrix M̃ that
minimizes:



i∈[1,m];j∈[1,n]


M [i, j]− M̃ [i, j]

2

(2)

Again this seems like a hopelessly complicated optimization problem. But taking a closer look,
you can tell that a rank k matrix is one whose columns are just linear combinations of k independent
vectors. Then if you let vi be the i-th column ofM , this problem is equivalent to solving Equation 1.
(Recall that for vector x, |x|2 is just the sum of the squares of its coordinates.

Now some applications of this viewpoint.

2.1 Data Compression

Storing the matrix M requires storing mn real values. In contrast, storing the matrix M̃ requires
first storing km real values for the k new basis vectors. Then we need to store k real values for each
vector of M , for a total of an additional kn real values. Thus, the total storage cost is kn + km
which may be much smaller than mn; for example, if m and n are in the millions and k = 10.

Thus, singular value decomposition gives a handy way to compress structured data with mini-
mum loss.

2



CS 506 Lecture: Singular Value Decomposition

2.2 Semantic Word Embeddings

Low rank approximations of data can also be used in natural language processing (NLP) to capture
the semantic meaning of words via a vector.

For example, in a large test corpus (say Wikipedia) let N be the number of distinct words
(usually on the order of 105) and construct a N by N matrix M where M [i, j] is the number of
times that word i and word j cooccur within a window of size, say 3.

In practice, M can be very well-approximated by a matrix of rank 300. This means there is
a 300 dimensional space, such that, for every word i, we can compute a vector ui in this space
that is pretty close to the true cooccurrence vector for the i-th word. These ui vectors are called
word embeddings, and they capture the semantic meaning of words. Also the linguistic similarity
between two words tends to correlate with the inner product of these ui vectors.

3 Eigenvectors are the Answer

So how exactly do we solve all these important problems? One word: eigenvectors. For simplic-
ity, let’s start with a symmetric n by n matrix M . Suppose its eigenvalues are λ1,λ2, . . .λn in
decreasing order of absolute value, and the corresponding eigenvectors (scaled to be unit vectors)
are e1, e2, . . . , en. Recall that ei is an eigenvector, with eigenvalue λi for matrix M iff Mei = λiei.

Then, M has the following alternative representation.

Theorem 1. (Spectral Decomposition) Consider any symmetric matrixM with eigenvalues λ1, . . .λn

and eigenvectors e1, . . . en. Then the following holds:

M =

n

i=1

λieie
T
i

Proof: Note that eie
T
i is a n by n, rank 1 matrix (it’s rank 1 since each column is a multiple of

ei). Let B =
n

i=1 λieie
T
i . Any matrix is completely specified by how it acts on an orthonormal

basis. This is because M(x+ y) = Mx+My for any vectors x and y.
By definition, M is the matrix that acts as follows on the set e1, e2, . . . en: Mej = λjej .
How does B act on this orthonormal set? For any 1 ≤ j ≤ n, we have:

Bej =


n

i=1

λieie
T
i


ej

= (λjej(e
T
j ej))

= λjej

This proves that B behaves the same way as M on an orthonormal basis. Hence B = M . □

3.1 Best Rank k approximation

Theorem 2. (Courant-Fisher) If e1, . . . , en are the eigenvectors of M , then

1. e1 is the unit vector that maximizes |Mx|2 among all unit vectors x

2. ei+1 maximizes |Mx|2, among all unit vectors x orthogonal to e1, . . . ei.
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Proof: We will prove the first statement. Any unit vector x can be represented as a combination
of eigenvectors: x =

n
i=1 αiei, where

n
i=1 α

2
i = 1. So,

Mx = M


n

i=1

αiei



=

n

i=1

Mαiei

=

n

i=1

λiαiei

Thus,

|Mx|2 =


n

i=1

λiαiei


2

=

n

i=1

λ2
iα

2
i

Maximizing this last sum subject to the constraint that


i α
2
i = 1 requires setting α1 = 1.

This is true since λ1 ≥ λi for all i > 1. □

Given a symmetric matrix M , with eigenvalues λ1, . . .λn in decreasing order of absolute value,
and eigenvectors e1, . . . en, for any k, 1 ≤ k ≤ n, let

Mk =

k

i=1

λieie
T
i

3.2 A Simple Example

Consider the following matrix. Let e1 = (1/2, 1/2, 1/2, 1/2). Assume that λ1 = 1. Then the matrix
M1 = λ1e1e

T
1 equals 



1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4





Now consider the case where we have a matrix like the following:




1/4 +  1/4−  −1/4 +  −1/4− 
1/4−  1/4 +  −1/4−  −1/4 + 
−1/4 +  −1/4−  1/4 +  1/4− 
−1/4−  −1/4 +  1/4−  1/4 + 





This matrix is “well-represented” by M1 = e1e
T
1 , where e1 = (1/2, 1/2,−1/2,−1/2) even though it

is not a rank 1 matrix. But to capture it exactly, we’d need another matrix M2 = λ2e2e
T
2 , where

e2 = (1/2,−1/2, 1/2,−1/2). This matrix M2 would be:




+ − + −
− + − +
+ − + −
− + − +
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3.3 Mk is Optimal

Theorem 3. Among all rank k matrices, M̃ = Mk is the matrix that minimizes:



i∈[1,m],j∈[1,n]

M [i, j]− M̃ [i, j]


2

Proof: We will prove the theorem for k = 1, the remaining proof will follow by an induction and
is left as an exercise.

We want to prove that M1 is the best rank 1 approximation to M . A rank 1 matrix is one where
each column is a multiple of some unit vector x. Denote the columns of M by M [1],M [2], . . .M [n].
Then the multiple of x that is closest to column M [i] is just the projection 〈M [i], x〉x. Thus, the
approximation comes down to finding a unit vector x that minimizes:

n

i=1

M [i]− 〈M [i], x〉x

2

=

n

i=1

|M [i]|2 −
n

i=1

|〈M [i], x〉|2

To see the above equality, note that the square of the norm of the vectorM [i] after the projection
onto x is subtracted out is just the squared of the norm of M [i] minus the square of the norm of
the projection. This holds by the Pythagorean theorem!

Can we simplify the above optimization problem in terms of x? Yes! Minimizing the above
expression is the same as maximizing:

n

i=1

|〈M [i], x〉|2 = |Mx|2

By the Courant-Fisher theorem, |Mx|2 is maximized when x = e1. □

4 Singular Vectors

Consider general matrices that are not necessarily symmetric. These matrices may not have eigen-
vectors in the tradition sense that Mx = λx for some vector x. For example, consider the following

matrix M :


0 1
0 0


.

Matrix M is not symmetric, and there is no nonzero vector x such that Mx = λx for some
positive value λ. (Try to find one!).

Luckily, much of what we’ve said previously can still generalize to non-symmetric matrices. In
particular, all matrices have what are called left and right singular vectors; these are sometimes
also called left and right eigenvectors. The idea is that these singular vectors occur in pairs. For
example, the matrix M has a pair that is right singular vector v1 = (0, 1) and left singular vector
u1 = (1, 0), along with singular value σ1 = 1. We can then say that Mv1 = σ1u1.

All of the theorems in this lecture can be generalized to all matrices using singular vectors and
singular values. For example, the following theorem can be proven similarly to the above proofs.

Theorem 4. (Singular Value Decomposition). Every m by n matrix M has t ≤ min(m,n) non-
negative singular values σ1, . . . ,σt, and two sets of non-zero unit vectors U = {u1, . . . ut} all in Rm

and V = {v1, . . . vt} all in Rn, where U , V are orthonormal sets, and:
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uTi M = σiv
T
i and Mvi = σiui.

Furthermore, if we let

Mk =

k

i=1

σiuiv
T
i

then Mk is the best rank k approximation to M in the sense that it minimizes:



i∈[1,m],j∈[1,n]

M [i, j]−Mk[i, j]


2

5 Computing the SVD

So how can we compute the singular value decomposition? Idea 1: Import your matrix, M , into
Matlab and type svd(M). But how does Matlab do this computation?

One of the simplest algorithms is called the power iteration method. It is based on our proof of
the Courant-Fisher theorem. For a symmetric matrix, you start with some random unit vector x
and just keep multiplying your matrix, M by x until the vector converges to the top eigenvector.
Recall that we can write x =

n
i=1 αiei where ei is the i-th eigenvector of M . Thus, if we do k

iterations of matrix multiplication by x, we get:

Mkx = Mk
n

i=1

αiei

=

n

i=1

αiλ
k
i ei

In this last equality, as k grows large, the value λk
1 will grow much larger than λk

i for any i > 1.
Hence, the output vector will be “mostly” in the direction of e1. Thus, the normalized output
vector will converge quickly to e1. In particular, the rate of convergence will be determined by the
ratio λ2/λ1 which is know as the spectral gap.

Once we’ve found e1 in this way, we can just project out the direction of e1 from each column
of M and repeat the process to get e2, e3, . . . en.

Finding singular vectors follows a similar process. It can be done by multiplying row and column
vectors back and forth across the matrix. More simply, it can be done by noting that all the right
singular vectors of M are just the eigenvectors of the symmetric matrix MTM . Then, we just
follow the power iteration method for finding eigenvectors above.

6 View 3: Directions of Maximum Variance

Another view of SVD is that the eigenvectors are directions where the data has maximum variance.
For example, consider a symmetric matrix M . Imagine shifting your points/rows of the matrix
M [1],M [2], . . . ,M [n] so that their mean is the origin. In particular, 1

n

n
i=1M [i] is the the origin.

Then, the first eigenvector represents the direction x where the projections of the data points
have maximum variance. To see this, note that the variance of the projections of the rows onto x
is:

n

i=1


〈M [i], x〉 −


1

n

n

i=1

M [i]

2

=

n

i=1

(〈M [i], x〉)2
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where the equality holds because we have explicitly set 1
n

n
i=1M [i] to the origin.

Thus, the variance equals the maximum over all unit vectors of |Mx|2. In the Courant-Fisher
Theorem, we proved this is maximized when x = e1. The second eigenvector corresponds to the
direction with maximum variance after removing this first component and so forth.

Thus, the eigenvectors can be viewed as directions that best describe the variation in the data.
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