
CS 506 Lecture 1: Convex Hull

Note: These lecture notes are based on lecture notes by Jeff Erickson and the textbook “Com-
putational Geometry” by Berg et al.

1 Convex Hull

A set of points is said to be convex if it contains all points in the line segments connecting each
pair of its points.

The Convex hull of a set of points P may be defined (equivalently) as:

1. The minimal convex set containing P

2. The intersection of all convex sets containing P

3. The union of all simplexes over points in P

4. The union of all convex combinations of points in P

A simplex is a polytope with the smallest number of vertices for a space of given dimensionality.
In 2-D a simplex is a triangle; in 3-D, a tetrahedron.

A convex combination of a set of points P ′ = {p1, . . . pℓ} is any point
ℓ

i=1 λipi, for any set of

numbers λi, i ∈ [1, n] such that ∀i∈[1,n]λi ≥ 0 and
ℓ

i=1 λi = 1

1.1 Algorithmic Problem

Convex Hull Problem:
Given: A set of points P in the plane.
Goal: Find the smallest, convex polygon containing all points in P

Definitions:

• Polygon: A region of the plane bounded by a cycle of line segments, joined end-to-end. The
line segments are called edges and the points where there are joined are called vertices

• Smallest: Removing any point from the convex hull will violate convexity or the fact that it
contains P .

This problem is equivalent to

• Finding the largest convex polygon whose vertices are points in P .

• Finding the set of all convex combinations of points in P (i.e. all points on any line segment
between any pair of points).

• Finding the intersection of all convex regions containing P

Questions:

• Can there be a convex set of points (not necessarily a polygon) that contains P and has
smaller area than the convex hull?

• What is the maximum number of vertices on the convex hull when |P | = n, and all points in
P are in general position (see below)?

1

CS 506 Lecture 1: Convex Hull

1.2 Applications

• Recipes: Each recipe for a crepe is a point in a 4-D space that gives the amount of each
ingredient in the crepe (e.g. egg, milk, water and flour). Fundamentally, a crepe is defined
as the convex-hull of all these points. Similarly, pancakes and flan are defined as separate
convex hulls in the same space.

• Robotics: Find convex-hull of obstacles to simplify motion-planning problems

• Chemical-Engineering: Have several input mixtures of oil containing component A and B at
a certain ration. For example, have mixtures that are (.3, .7), (.5, .5), (.9, .1). Can you achieve
goal ratio (x, y) by mixing the input mixtures? Solution: Is (x, y) in the convex hull of the
input points?

• Biology: Determining the territory that is “owned” by an animal or a pack.

• Economics: Making Budget sets and preference functions convex, in order to apply theorems
determining market equilibria.

• Computer Science: Via duality and projections, we can use a solution to convex hull to also
find Voronoi Diagrams, Delaunay Triangulations and Upper Envelopes.

1.3 General Position

Throughout this class we will assume points are in general position: no 3 points are on a line. This
is analogous to assuming now two numbers are the same in sorting.

Technique to remove this assumption is Symbolic Perturbation. Intuitively, the idea is to perturb
the coordinates of every point by a uniformly random amount chosen for a range small enough to
have no impact on the output. Then, with all but negligible probability, the points will be in
general position.

2 3 points

Consider 3 points, x, y, z. These points are in counterclockwise (ccw) order iff the crossproduct of
the vectors y − x and z − x is positive.

x

z

y

y - x

z - x

Figure 1. From the viewpoint of x, y is ccw of z. The case where x is on the other side of the line supported by y and z
is also handled by using the cross product.

2

CS 506 Lecture 1: Convex Hull

Figure 2. Jariv’s march From Jeff Erickson’s lecture notes.

2.1 Jarvis’ Algorithm (Wrapping)

procedure Jarvis(P)
ℓ ← leftmost point in P
p ← ℓ
repeat

q ← closest clockwise point from p, among all points not yet in hull
next(p) ← q ⊲ next(p) is next point in convex hull
p ← q

until p = ℓ
end procedure

The step where we find q takes O(n) time (to find a minimum). Thus the entire algorithm takes
O(hn) time where h is the number of points on the convex hull.

2.2 Divide and Conquer

In this algorithm, we partition the points, recursively compute the hull of each partition, and then
patch up the two hulls to get the hull of P .

procedure DivideAndConquer(P)
p ← point chosen uniformly at random in P
L ← all points with x-coordinate less than or equal to that of p
R ← P − L
CL ← convex hull of L (computed recursively)
CR ← convex hull of R (computed recursively)
“Merge” CL and CR to get convex hull of P
Create two bridges between the rightmost point in CL and leftmost point in CR

3

CS 506 Lecture 1: Convex Hull

Figure 3. Merging Hull - From Jeff Erickson’s lecture notes.

while Either endpoint of either bridge is in a concave corner do
Remove the vertex at the middle of this corner from the hull
Update that bridge to connect the endpoints of that concave corner

end while
end procedure

For an ordered sequence of points, p, q, r in a potential convex hull, we say that p, q and r form
a concave corner if from p’s viewpoint, r is ccw of q. Then q is the corner vertex that is removed
from the hull.

The figure shows the merging. The red line segments are the bridges. The yellow wedges
represent concave corners found. Note that the middle point of the wedge is the point that is
always removed.

The runtime is a random variable. We can use linearity of expectation to create a recurrence
relation for the expected run time. If T (n) is the expected runtime of the algorithm when there
are n points, then we have:

T (n) =

n

i=1

1

n
(T (i) + T (n− i) + n)

since we have the two recursive calls and at most n time to merge the hulls. An inductive proof
shows that the solution to this recurrence is O(n log n). There is some trickiness in pushing through
the induction - it helps to break the sum into halves.

2.3 Graham Scan

procedure GrahamScan(P)
ℓ ← leftmost point in P
Sort all points in P in CCW order with respect to ℓ

4

CS 506 Lecture 1: Convex Hull

A simple polygon formed in the sorting phase of Graham’s scan.

Figure 4. Sorting counter-clockwise wrt to leftmost point ℓ

Figure 5. Steps of Graham Scan

Let p, q and r be consecutive vertices in the sorted P . (Imagine there are 3 pennies on these
vertices.)

repeat
if p, q and r are in ccw order then

Output vertex back penny is on as part of convex hull
Move back penny forward to the successor of r (in P)

else
Remove q from P , move middle penny back to predecessor(p)

end if
until r equals ℓ

end procedure

2.3.1 Runtime

Whenever a penny moves forward, it is to a vertex never seen before, so the first part of the if
statement happens O(n) times.

5

CS 506 Lecture 1: Convex Hull

Figure 6. Inductive Step for Graham Scan

Whenever a penny moves backward, a vertex is removed from P , so this step happens O(n)
times.

Thus, total runtime of algorithm is dominated by the sorting which takes O(n log n) time.

2.3.2 Correctness

The following is based on the proof from: http://www.cs.cmu.edu/afs/cs/academic/class/15456-s10/
Homeworks/hw1-answers.pdf

Theorem: Graham Scan outputs the convex hull of P .

Proof: Let v1, v2, . . . vn be the points of the input sorted in CCW order. For any 1 ≤ j ≤ n, let
Vj = v1, v2, . . . vj ; and let CH(Vj) be the convex hull of these j points. Define OS(Vi) (for output
stack) to be the vertices output by the algorithm as being on the hull, plus the 3 vertices covered
by pennies when the condition of if statement is met (i.e. we have a green triangle in
Figure 2.3) after processing points Vi.

We will prove that for all i, that OS(Vi) = CH(Vi). We do this via induction on i.

BC: (i=3) OS(V3) is the set of all 3 vertices in V3 in CCW order, and this is CH(V3).

IH: OS(Vi−1) = CH(Vi−1).

IS: Consider OS(Vi). By the IH, OS(Vi−1) is in CCW order, and by the properties of the algorithm,
when vi is placed on the output stack, OS(Vi) is in CCW order (See Figure 2.3.2).

We also know that OS(Vi) starts at vertex v1 and ends at vertex vi. Our goal is to show

1. All points in Vi are inside OS(Vi)

2. All points in Vi that are not on CH(Vi) are not in OS(Vi).

We first show (1). By the IH, all points in Vi−1 are inside OS(Vi−1). When processing the point
vi, we may have removed some points in OS(Vi−1). But, by the properties of the algorithm, these
are exactly the points that are in the wedge induced by the line from v1 to vi and the line from vi
to some previous point on OS(Vi−1) (See Figure 2.3.2). Thus all points in Vi are within OS(Vi).

We next show (2). By the IH, OS(Vi−1) does not contain any points not on the hull CH(Vi−1).
Since the algorithm never revisits a point that is discarded, these points will also not be on OS(Vi).
But, there may be points on OS(Vi−1) that are not on CH(Vi). However, these are exactly the
points that are strictly inside the wedge induced by v1, vi and the closest clockwise point to vi
on CH(Vi−1) (again See Figure 2.3.2). The algorithm pops off all of these points from the output
stack while processing point vi. Thus vi is correctly added to CH(Vi−1). This creates a new convex
polygon that includes vi as a vertex. □

6

http://www.cs.cmu.edu/afs/cs/academic/class/15456-s10/Homeworks/hw1-answers.pdf

CS 506 Lecture 1: Convex Hull

2.4 Chan’s algorithm

Chan’s algorithm is output sensitive in that the runtime is O(n log h).
To understand it better, assume first that we know h in advance. Then we do the following

procedure Chan(P)
Partition P arbitrarily into n/h sets of size h
Compute convex hulls of each partition (using say Graham scan)
Compute convex hull of all these hulls via “wrapping” (as in Jarvis’ march)

end procedure

Total runtime is O(n/h(h log h)) = O(n log h) for the recursive calls. When we ”wrap”, we
repeatedly need to find the tangent line between a vertex p and any sub-hull. This can be done in
O(log h) time via a type of binary search. Since there are n/h subhulls, takes O((n/h) log h) time
to find the successor of p. Since we find the successor h− 1 times, wrapping takes O(n log h) time.

So everything works great if we know h in advance. What if we don’t?

Shattering the points and computing subhulls in O n
Figure 7. Chan’s algorithm: Compute hulls of partitions

2.4.1 Guessing h

In Chan’s algorithm, we actually guess increasingly large values of h. Let h′ = 3 be our first guess.
If our guess is too small, we square h′ and try again. In the final iteration, h′ ≤ h2, so the total
cost of last iteration is O(n log h2) = O(n log h). Say that there are k total iterations, then the cost
of all iterations is

k

i=1

O(n log 32
i
) = O

n

k

i=1

2i

.

Since a geometric summation is always a constant times its largest term, total runtime is big-O
of the time of the last iteration which is O(n log h).

7

CS 506 Lecture 1: Convex Hull

Wrapping the subhulls in O(n log h) time.
Figure 8. Chan’s algorithm: “wrap” the subhulls

3 Open Problems

Convex-hull in the CONGEST model. Each point is a wireless node. Can compute in parallel, but
in each round, can broadcase O(polylog(n)) bits. What is the minimum number of rounds needed
to compute convex-hull?

4 Appendix

4.1 A note on cross products

Let x = (a, b), y = (c, d) and z = (e, f). Then the three points are in counterclockwise (ccw) order
iff cross-product of the two vectors (c, d)− (a, b) and (e, f)− (a, b) is greater than 0. This holds iff

(f − b)(c− a)− (d− b)(e− a) > 0

One can also think of the slope of the line given by (a, b), (c, d) is less than the slope of the line
given by (a, b), (e, f). In particular, if (a, b) is to the left of (c, d) and (e, f), then ccw order holds
only if

d− b

c− a
<

d− b

e− a

Cross-multiplying, we get that the points are in ccw order iff

(f − b)(c− a) > (d− b)(e− a)

This final equivalence is true even if (a, b) is not the leftmost point.

8

