
CS 561, Lecture 17

Jared Saia

University of New Mexico

Today’s Outline

• Potential Method

• Dynamic Tables

1

Potential Method

• The most powerful method (and hardest to use)

• Builds on the idea from physics of potential energy

• Instead of associating taxes with particular operations, rep-

resent prepaid work as a potential that can be spent on later

operations

• Potential is a function of the entire data structure

2

Potential Function

• Let Di denote our data structure after i operations

• Let Φi denote the potential of Di

• Let ci denote the cost of the i-th operation (this changes

Di−1 into Di)

• Then the amortized cost of the i-th operation, ai, is defined

to be the actual cost plus the change in potential:

ai = ci + Φi −Φi−1

3



Potential Method

• So the total amortized cost of n operations is the actual cost

plus the change in potential:

n∑
i=1

ai =
n∑

i=1

(
ci + Φi −Φi−1

)
=

n∑
i=1

ci + Φn −Φ0.

4

Potential Method

• Our task is to define a potential function so that

1. Φ0 = 0

2. Φi ≥ 0 for all i

• If we do this, the total actual cost of any sequence of oper-

ations will be less than the total amortized cost
n∑

i=1

ci =
n∑

i=1

ai −Φn ≤
n∑

i=1

ai.

5

Binary Counter Example

• For the binary counter, we can define the potential Φi after

the i-th Increment operation to be the number of bits with

value 1

• Initially all bits are 0 so Φ0 = 0, further Φi ≥ 0 for all i > 0,

so this is a legal potential function

6

Binary Counter

• We can describe both the actual cost of an Increment and

the change in potential in terms of the number of bits set to

1 and reset to 0.

ci = #bits flipped from 0 to 1 + #bits flipped 1 to 0

Φi −Φi−1 = #bits flipped from 0 to 1−#bits flipped 1 to 0

• Thus, the amortized cost of the ith Increment is

ai = ci + Φi −Φi−1 = 2×#bits flipped from 0 to 1

7



Binary Counter

• Since Increment only changes one bit from a 0 to a 1, the

amortized cost of Increment is 2 (using this potential func-

tion)

• Recall that for a legal potential function,
∑n

i=1 ci ≤
∑n

i=1 ai

thus the total cost for n call to increment is no more than

2n

• (Same as saying that the amortized cost is 2)

8

Potential Method Recipe

1. Define a potential function for the data structure that is 1)

initially equal to zero and 2) is always nonnegative.

2. The amortized cost of an operation is its actual cost plus

the change in potential.

9

Binary Counter Example

• For the binary counter, the potential was exactly the total

unspent taxes paid using the taxation method

• So it gave us the same amortized bound

• In general, however, there may be no way of interpreting the

potential as “taxes”

10

A Good Potential Function

• Different potential functions lead to different amortized time

bounds

• Trick to using the method is to get the best possible potential

function

• A good potential function goes up a little during any cheap/fast

operation and goes down a lot during any expensive/slow op-

eration

• Unfortunately, there’s no general technique for doing this

other than trying lots of possibilities

11



Stack Example

• Consider again a stack with Multipop

• Define the potential function Φ on the stack to be the num-

ber of objects on the stack

• This potential function is “legal” since Φ0 = 0 and Φi ≥ 0

for all i > 0

12

Push

• Let’s now compute the costs of the different stack operations

on a stack with s items

• If the i-th operation on the stack is a push operation on a

stack containing s objects, then

Φi −Φi−1 = (s + 1)− s = 1

• So ai = ci + 1 = 2

13

Multipop

• Let the i-th operation be Multipop(S,k) and let k′ = min(k, s)

be the number of objects popped off the stack. Then

Φi −Φi−1 = (s− k′)− s = −k′.

• Further ci = k′.
• Thus,

ai = −k′ + k′ = 0

• (We can show similarly that the amortized cost of a pop

operation is 0)

14

Wrapup

• The amortized cost of each of these three operations is O(1)

• Thus the worst case cost of n operations is O(n)

15



Dynamic Tables

• Consider the situation where we do not know in advance the

number of items that will be stored in a table, but we want

constant time access

• We might allocate a fixed amount of space for the table only

to find out later that this was not enough space

• In this case, we need to copy over all objects stored in the

original table into a new larger table

• Similarly, if many objects are deleted, we might want to re-

duce the size of the table

16

Dynamic Tables

• The data structure that we want is a Dynamic Table (aka

Dynamic Array)

• We can show using amortized analysis that the amortized

cost of an insertion and deletion into a Dynamic Table is

O(1) even though worst case cost may be much larger

17

Load Factor

• For a nonempty table T , we define the “load factor” of T ,

α(T ), to be the number of items stored in the table divided

by the size (number of slots) of the table

• We assign an empty table (one with no items) size 0 and

load factor of 1

• Note that the load factor of any table is always between 0

and 1

• Further if we can say that the load factor of a table is always

at least some constant c, then the unused space in the table

is never more than 1− c

18

Table Expansion

• Assume that the table is allocated as an array

• A table is full when all slots are used i.e. when the load factor

is 1

• When an insert occurs when the table is full, we need to

expand the table

• The way we will do this is to allocate an array which is twice

the size of the old array and then copy all the elements of

the old array into this new larger array

• If only insertions are performed, this ensures that the load

factor is always at least 1/2

19



Pseudocode

Table-Insert(T,x){

if (T.size == 0){allocate T with 1 slot;T.size=1}

if (T.num == T.size){

allocate newTable with 2*T.size slots;

insert all items in T.table into newTable;

T.table = newTable;

T.size = 2*T.size

}

T.table[T.num] = x;

T.num++

}

20

Amortized Analysis

• Note that usually Table-Insert just does an “elementary” in-

sert into the array

• However very occasionally it will do an “expansion”. We will

say that the cost of an expansion is equal to the size before

the expansio occurs

• (This is the cost of moving over all the old elements to the

larger table)

21

Aggregate Analysis

• Let ci be the cost of the i-th call to Table-Insert.

• If i − 1 is an exact power of 2, then we’ll need to do an

expansion and so ci = i

• Otherwise, ci = 1

• The total cost of n Table-Insert operations is thus

n∑
i=1

ci ≤ n +
blognc∑
j=0

2j (1)

< n + 2blognc+1 (2)

= n + 2 ∗ 2blognc (3)

≤ n + 2n (4)

= 3n (5)

• Thus the amortized cost of a single operation is 3

22

Taxation method

• Every time Table-Insert is called, we tax the operation 3

dollars

• Intuitively, the item inserted pays for:

1. its insertion

2. moving itself when the table is eventually expanded

3. moving some other item that has already been moved

once when the table is expanded

23



Taxation Method

• Suppose that the size of the table is m right after an expan-

sion

• Then the number of items in the table is m/2

• Each time Table-Insert is called, we tax the operation 3 dol-

lars:

1. One dollar is used immediately to pay for the elementary

insert

2. Another dollar is stored with the item that is inserted

3. The third dollar is placed as credit on one of the m/2

items already in the table

24

Taxation Method

• Filling the table again requires m/2 total calls to Table-Insert

• Thus by the time the table is full and we do another expan-

sion, each item will have one dollar of credit on it

• This dollar of credit can be used to pay for the movement

of that item during the expansion

25

Potential Method

• Let’s now analyze Table-Insert using the potential method

• Let numi be the num value for the i-th call to Table-Insert

• Let sizei be the size value for the i-th call to Table-Insert

• Then let

Φi = 2 ∗ numi − sizei

26

In Class Exercise

Recall that ai = ci + Φi −Φi−1

• Show that this potential function is 0 initially and always

nonnegative

• Compute ai for the case where Table-Insert does not trigger

an expansion

• Compute ai for the case where Table-Insert does trigger an

expansion (note that numi−1 = numi−1, sizei−1 = numi−1,

sizei = 2 ∗ (numi − 1))

27


