
CS 561, Lecture 6

Jared Saia

University of New Mexico

Outline

“For NASA, space is still a high priority”, Dan Quayle

• Priority Queues

• Quicksort

1

Priority Queues

A Priority Queue is an ADT for a set S which supports the

following operations:

• Insert (S,x): inserts x into the set S

• Maximum (S): returns the maximum element in S

• Extract-Max (S): removes and returns the element of S with

the largest key

• Increase-Key (S,x,k): increases the value of x’s key to the

new value k (k is assumed to be as large as x’s current key)

(note: can also have an analagous min-priority queue)

2

Applications of Priority Queue

• Application: Scheduling jobs on a workstation

• Priority Queue holds jobs to be performed and their priorities

• When a job is finished or interrupted, highest-priority job is

chosen using Extract-Max

• New jobs can be added using Insert

(note: an application of a min-priority queue is scheduling events

in a simulation)

3

Implementation

• A Priority Queue can be implemented using heaps

• We’ll show how to implement each of these four functions

using heaps

4

Heap-Maximum

Heap-Maximum (A)

1. return A[1]

5

Heap-Extract-Max

Heap-Extract-Max (A)

1. if (heap-size (A)<1) then return “error”

2. max = A[1];

3. A[1] = A[heap-size (A)];

4. heap-size (A)−−;

5. Max-Heapify (A,1);

6. return max;

6

Heap-Increase-Key

Heap-Increase-Key (A,i,key)

1. if (key < A[i]) then error “new key is smaller than current

key”

2. A[i] = key;

3. while (i>1 and A[Parent (i)] < A[i])

(a) do exchange A[i] and A[Parent (i)]

(b) i = Parent (i);

7

Heap-Insert

Heap-Insert (A,key)

1. heap-size (A) ++;

2. A[heap-size (A)] = - infinity

3. Heap-Increase-Key (A,heap-size (A), key)

8

Analysis

• Heap-Maximum takes O(1) time

• Heap-Extract-Max takes O(logn)

• Heap-Increase-Key takes O(logn)

• Heap-Insert takes O(logn)

Correctness?

9

At-Home Exercise

• Imagine you have a min-heap with the following operations

defined and taking O(logn):

– (key,data) Heap-Extract-Min (A)

– Heap-Insert (A,key,data)

• Now assume you’re given k sorted lists, each of length n/k

• Use this min-heap to give a O(n log k) algorithm for merging

these k lists into one sorted list of size n.

10

At-Home Exercise

• Q1: What is the high level idea for solving this problem?

• Q2: What is the pseudocode for solving the problem?

• Q3: What is the runtime analysis?

• Q4: What would be an appropriate loop invariant for proving

correctness of the algorithm?

11

Quicksort

• Based on divide and conquer strategy

• Worst case is Θ(n2)

• Expected running time is Θ(n logn)

• An In-place sorting algorithm

• Almost always the fastest sorting algorithm

12

Quicksort

• Divide: Pick some element A[q] of the array A and partition

A into two arrays A1 and A2 such that every element in A1

is ≤ A[q], and every element in A2 is > A[p]

• Conquer: Recursively sort A1 and A2

• Combine: A1 concatenated with A[q] concatenated with A2

is now the sorted version of A

13

The Algorithm

//PRE: A is the array to be sorted, p>=1;

// r is <= the size of A

//POST: A[p..r] is in sorted order

Quicksort (A,p,r){

if (p<r){

q = Partition (A,p,r);

Quicksort (A,p,q-1);

Quicksort (A,q+1,r);

}

14

Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size

// of A, A[r] is the pivot element

//POST: Let A’ be the array A after the function is run. Then

// A’[p..r] contains the same elements as A[p..r]. Further,

// all elements in A’[p..res-1] are <= A[r], A’[res] = A[r],

// and all elements in A’[res+1..r] are > A[r]

Partition (A,p,r){

x = A[r];

i = p-1;

for (j=p;j<=r-1;j++){

if (A[j]<=x){

i++;

exchange A[i] and A[j];

}

exchange A[i+1] and A[r];

return i+1;

}

15

Correctness

Basic idea: The array is partitioned into four regions, x is the

pivot

• Region 1: Region that is less than or equal to x

(between p and i)

• Region 2: Region that is greater than x

(between i + 1 and j − 1)

• Region 3: Unprocessed region

(between j and r − 1)

• Region 4: Region that contains x only

(r)

Region 1 and 2 are growing and Region 3 is shrinking

16

Loop Invariant

At the beginning of each iteration of the for loop, for any index

k:

1. If p ≤ k ≤ i then A[k] ≤ x

2. If i + 1 ≤ k ≤ j − 1 then A[k] > x

3. If k = r then A[k] = x

17

Example

• Consider the array (2 6 4 1 5 3)

18

At-Home Exercise

• Show Initialization for this loop invariant

• Show Termination for this loop invariant

• Show Maintenance for this loop invariant:

– Show Maintenance when A[j] > x

– Show Maintenance when A[j] ≤ x

19

Analysis

• The function Partition takes O(n) time. Why?

• Q: What is the runtime of Quicksort?

• A: It depends on the size of the two lists in the recursive calls

20

Best Case

• In the best case, the partition always splits the original list

into two lists of half the size

• Then we have the recurrence T (n) = 2T (n/2) + Θ(n)

• This is the same recurrence as for mergesort and its solution

is T (n) = O(n logn)

21

Worst Case

• In the worst case, the partition always splits the original list

into a singleton element and the remaining list

• Then we have the recurrence T (n) = T (n−1)+T (1)+Θ(n),

which is the same as T (n) = T (n− 1) + Θ(n)

• The solution to this recurrence is T (n) = O(n2). Why?

22

Average Case Intuition

• Even if the recurrence tree is somewhat unbalanced, Quick-

sort does well

• Imagine we always have a 9-to-1 split

• Then we get the recurrence T (n) ≤ T (9n/10)+T (n/10)+cn

• Solving this recurrence (with annihilators or recursion tree)

gives T (n) = Θ(n logn)

23

Wrap Up

• Take away: Both the worst case, best case, and average case

analysis of algorithms can be important.

• You will have a hw problem on the “average case intuition”

for deterministic quicksort

• (Note: A solution to the in-class exercise is on page 147 of

the text)

24

Randomized Quick-Sort

• We’d like to ensure that we get reasonably good splits rea-

sonably quickly

• Q: How do we ensure that we “usually” get good splits?

How can we ensure this even for worst case inputs?

• A: We use randomization.

25

R-Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size

// of A

//POST: Let A’ be the array A after the function is run. Then

// A’[p..r] contains the same elements as A[p..r]. Further,

// all elements in A’[p..res-1] are <= A[i], A’[res] = A[i],

// and all elements in A’[res+1..r] are > A[i], where i is

// a random number between p and r.

R-Partition (A,p,r){

i = Random(p,r);

exchange A[r] and A[i];

return Partition(A,p,r);

}

26

Randomized Quicksort

//PRE: A is the array to be sorted, p>=1, and r is <= the size of A

//POST: A[p..r] is in sorted order

R-Quicksort (A,p,r){

if (p<r){

q = R-Partition (A,p,r);

R-Quicksort (A,p,q-1);

R-Quicksort (A,q+1,r);

}

27

Analysis

• R-Quicksort is a randomized algorithm

• The run time is a random variable

• We’d like to analyze the expected run time of R-Quicksort

• To do this, we first need to learn some basic probability

theory.

28

Probability Definitions

(from Appendix C.3)

• A random variable is a variable that takes on one of several

values, each with some probability. (Example: if X is the

outcome of the role of a die, X is a random variable)

• The expected value of a random variable,X is defined as:

E(X) =
∑
x

x ∗ P (X = x)

(Example if X is the outcome of the role of a three sided

die,

E(X) = 1 ∗ (1/3) + 2 ∗ (1/3) + 3 ∗ (1/3)

= 2

29

Probability Definitions

• Two events A and B are mutually exclusive if A
⋂

B is the

empty set (Example: A is the event that the outcome of a

die is 1 and B is the event that the outcome of a die is 2)

• Two random variables X and Y are independent if for all x

and y, P (X = x and Y = y) = P (X = x)P (Y = y) (Example:

let X be the outcome of the first role of a die, and Y be the

outcome of the second role of the die. Then X and Y are

independent.)

30

Probability Definitions

• An Indicator Random Variable associated with event A is

defined as:

– I(A) = 1 if A occurs

– I(A) = 0 if A does not occur

• Example: Let A be the event that the role of a die comes

up 2. Then I(A) is 1 if the die comes up 2 and 0 otherwise.

31

Linearity of Expectation

• Let X and Y be two random variables

• Then E(X + Y) = E(X) + E(Y)

• (Holds even if X and Y are not independent.)

• More generally, let X1, X2, . . . , Xn be n random variables

• Then

E(
n∑

i=1

Xi) =
n∑

i=1

E(Xi)

32

Example

• For 1 ≤ i ≤ n, let Xi be the outcome of the i-th role of

three-sided die

• Then

E(
n∑

i=1

Xi) =
n∑

i=1

E(Xi) = 2n

33

Example

• Indicator Random Variables and Linearity of Expectation used

together are a very powerful tool

• The “Birthday Paradox” illustrates this point

• To analyze the run time of quicksort, we will also use indica-

tor r.v.’s and linearity of expectation (analysis will be similar

to “birthday paradox” problem)

34

“Birthday Paradox”

• Assume there are k people in a room, and n days in a year

• Assume that each of these k people is born on a day chosen

uniformly at random from the n days

• Q: What is the expected number of pairs of individuals that

have the same birthday?

• We can use indicator random variables and linearity of ex-

pectation to compute this

35

Analysis

• For all 1 ≤ i < j ≤ k, let Xi,j be an indicator random variable

defined such that:

– Xi,j = 1 if person i and person j have the same birthday

– Xi,j = 0 otherwise

• Note that for all i, j,

E(Xi,j) = P (person i and j have same birthday)

= 1/n

36

Analysis

• Let X be a random variable giving the number of pairs of

people with the same birthday

• We want E(X)

• Then X =
∑

(i,j) Xi,j

• So E(X) = E(
∑

(i,j) Xi,j)

37

Analysis

E(X) = E(
∑
(i,j)

Xi,j)

=
∑
(i,j)

E(Xi,j)

=
∑
(i,j)

1/n

=
(n

2

)
1/n

=
k(k − 1)

2n

The second step follows by Linearity of Expectation

38

Reality Check

• Thus, if k(k − 1) ≥ 2n, expected number of pairs of people

with same birthday is at least 1

• Thus if have at least
√

2n+1 people in the room, can expect

to have at least two with same birthday

• For n = 365, if k = 28, expected number of pairs with same

birthday is 1.04

39

In-Class Exercise

• Assume there are k people in a room, and n days in a year

• Assume that each of these k people is born on a day chosen

uniformly at random from the n days

• Let X be the number of groups of three people who all have

the same birthday. What is E(X)?

• Let Xi,j,k be an indicator r.v. which is 1 if people i,j, and k

have the same birthday and 0 otherwise

40

In-Class Exercise

• Q1: Write the expected value of X as a function of the Xi,j,k

(use linearity of expectation)

• Q2: What is E(Xi,j,k)?

• Q3: What is the total number of groups of three people out

of k?

• Q4: What is E(X)?

41

