CS 561, Lecture 11

Jared Saia
University of New Mexico

C Outline ———

e All Pairs Shortest Paths
e Floyd Warshall Algorithm

o All-Pairs Shortest Paths —

e For the single-source shortest paths problem, we wanted to
find the shortest path from a source vertex s to all the other
vertices in the graph

e We will now generalize this problem further to that of finding
the shortest path from every possible source to every possible
destination

e In particular, for every pair of vertices v and v, we need to
compute the following information:

— dist(u,v) is the length of the shortest path (if any) from
u to v

— pred(u,v) is the second-to-last vertex (if any) on the short-
est path (if any) from u to v

C Example ——

e For any vertex v, we have dist(v,v) = 0 and pred(v,v) =

NULL

e If the shortest path from « to v is only one edge long, then
dist(u,v) = w(u — v) and pred(u,v) = u

e If there’s no shortest path from u to v, then dist(u,v) = o
and pred(u,v) = NULL

APSP

The output of our shortest path algorithm will be a pair of
V| x |V| arrays encoding all |V|2 distances and predecessors.
Many maps contain such a distance matric - to find the
distance from (say) Albuquerque to (say) Ruidoso, you look
in the row labeled “Albuquerque” and the column labeled
"Ruidoso”

In this class, we'll focus only on computing the distance array
The predecessor array, from which you would compute the
actual shortest paths, can be computed with only minor ad-
ditions to the algorithms presented here

o Lots of Single Sources

e Most obvious solution to APSP is to just run SSSP algorithm
|V | times, once for every possible source vertex

e Specifically, to fill in the subarray dist(s, *), we invoke either
Dijkstra’s or Bellman-Ford starting at the source vertex s

e We'll call this algorithm ObviousAPSP

C ObviousAPSP

ObviousAPSP(V,E,w){
for every vertex s{
dist(s,*) = SSSP(V,E,w,s);
}
¥

C Analysis ——_

e [he running time of this algorithm depends on which SSSP
algorithm we use

e If we use Bellman-Ford, the overall running time is O(|V|?|E|) =
o(V|*)

e If all the edge weights are positive, we can use Dijkstra’s in-
stead, which decreases the run time to ©(|V||E|+|V|?log |V]) =
o(|V[3)

— Problem ——_

e We'd like to have an algorithm which takes O(|V|3) but which
can also handle negative edge weights

e We'll see that a dynamic programming algorithm, the Floyd
Warshall algorithm, will achieve this

e Note: the book discusses another algorithm, Johnson's al-
gorithm, which is asymptotically better than Floyd Warshall
on sparse graphs. However we will not be discussing this
algorithm in class.

— Dynamic Programming ——

e Recall: Dynamic Programming = Recursion + Memorization
e [hus we first need to come up with a recursive formulation

of the problem
e We might recursively define dist(u,v) as follows:
, 0 if u=w
dist(u,v) = . . :
ming (dzst(u, x) +w(z — v)) otherwise

— The problem —

e In other words, to find the shortest path from « to v, try all

possible predecessors x, compute the shortest path from w
to x and then add the last edge u — v

e Unfortunately, this recurrence doesn’t work

e To compute dist(u,v), we first must compute dist(u,z) for
every other vertex z, but to compute any dist(u,x), we first
need to compute dist(u,v)

e We're stuck in an infinite loop!

10

C T he solution ——

e [0 avoid this circular dependency, we need some additional
parameter that decreases at each recursion and eventually
reaches zero at the base case

e One possibility is to include the number of edges in the short-
est path as this third magic parameter

e So define dist(u,v,k) to be the length of the shortest path
from uw to v that uses at most k edges

e Since we know that the shortest path between any two ver-
tices uses at most |V| — 1 edges, what we want to compute
is dist(u,v,|V]|—1)

11

T he Recurrence

——
)
0 ifu=w
dist(u,v, k) = { oo if k=0 and u# v
ming (dist(u, ., k—1) +w(lx — v)) otherwise
\

12

— The Algorithm ——

e It's not hard to turn this recurrence into a dynamic program-
ming algorithm

e Even before we write down the algorithm, though, we can
tell that its running time will be ©(|V|%)

e [his is just because the recurrence has four variables — u,
v, k and x — each of which can take on |V| different values

e Except for the base cases, the algorithm will just be four
nested ‘for” loops

13

— DP-APSP

DP-APSP(V,E,w){
for all vertices u in V{
for all vertices v in V{
if (u=v)
dist(u,v,0) = 0;
else
dist(u,v,0) = infinity;
3}
for k=1 to |V|-1{
for all vertices u in V{
for all vertices u in V{
dist(u,v,k) = infinity;
for all vertices x in V{
if (dist(u,v,k)>dist(u,x,k-1)+w(x,Vv))
dist(u,v,k) = dist(u,x,k-1)+w(x,v);
j3333;

14

— The Problem ——

e This algorithm still takes O(|V|*) which is no better than the
ObviousAPSP algorithm

e If we use a certain divide and conquer technique, there is a
way to get this down to O(|V[3log|V]) (think about how you
might do this)

e However, to get down to O(|V|3) run time, we need to use
a different third parameter in the recurrence

15

C Floyd-Warshall —

e Number the vertices arbitrarily from 1 to |V|

e Define dist(u,v,r) to be the shortest path from « to v where
all intermediate vertices (if any) are numbered r or less

o If r = 0, we can’t use any intermediate vertices so shortest
path from « to v is just the weight of the edge (if any)
between u and v

e If r > 0, then either the shortest legal path from u« to v goes
through vertex r or it doesn't

e \We need to compute the shortest path distance from v to v
with no restrictions, which is just dist(u, v, |V])

16

The recurrenCé — M —

—

We get the following recurrence:

dist(u,v,r) = <

(w(u — v)

\

min{dist(u,v,r — 1),
dist(u,r,7 — 1) + dist(r,v,r — 1)}

if r=20

otherwise

17

— The Algorithm ——

FloydWarshall(V,E,w){
for u=1 to |V|{
for v=1 to |VI|{
dist(u,v,0) = w(u,v);
1}
for r=1 to |V|{
for u=1 to |VI|{
for v=1 to |VI|{
if (dist(u,v,r-1) < dist(u,r,r-1) + dist(r,v,r-1))
dist(u,v,r) = dist(u,v,r-1);
else
dist(u,v,r) = dist(u,r,r-1) + dist(r,v,r-1);

31}

C Analysis ——_

e There are three variables here, each of which takes on |V/|
possible values

e Thus the run time is ©(|V|3)

e Space required is also ©(|V|3)

19

— Take Away —

e Floyd-Warshall solves the APSP problem in ©(|V|3) time
even with negative edge weights

e Floyd-Warshall uses dynamic programming to compute APSP

e \We've seen that sometimes for a dynamic program, we need
to introduce an extra variable to break dependencies in the
recurrence.

e We've also seen that the choice of this extra variable can
have a big impact on the run time of the dynamic program

20

