
CS 561, Lecture 9

Jared Saia

University of New Mexico

Today’s Outline

• Minimum Spanning Trees

• Safe Edge Theorem

• Kruskal and Prim’s algorithms

• Graph Representation

1

Graph Definition

• A graph is a pair of sets (V,E).

• We call V the vertices of the graph

• E is a set of vertex pairs which we call the edges of the

graph.

• In an undirected graph, the edges are unordered pairs of

vertices and in a directed graph, the edges are ordered pairs.

• We assume that there is never an edge from a vertex to itself

(no self-loops) and that there is at most one edge from any

vertex to any other (no multi-edges)

• |V | is the number of vertices in the graph and |E| is the

number of edges

2

Graph Defns

• A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V

and E′ ⊆ E

• If (u, v) is an edge in a graph, then u is a neighbor of v

• For a vertex v, the degree of v, deg(v), is equal to the number

of neighbors of v

• A path is a sequence of edges, where each successive pair of

edges shares a vertex

• A graph is connected if there is a path from any vertex to

any other vertex

• A disconnected graph consists of several connected compo-

nents which are maximal connected subgraphs

• Two vertices are in the same component if and only if there

is a path between them

3

Graph Defns

For undirected graphs:

• A cycle is a path that starts and ends at the same vertex

and has at least 3 edges

• A graph is acyclic if no subgraph is a cycle. Acyclic graphs

are also called forests

• A tree is a connected acyclic graph. It’s also a connected

component of a forest.

• A spanning tree of a graph G is a subgraph that is a tree

and also contains every vertex of G. A graph can only have

a spanning tree if it’s connected

• A spanning forest of G is a collection of spanning trees, one

for each connected component of G

4

Minimum Spanning Tree Problem

• Suppose we are given a connected, undirected weighted graph

• That is a graph G = (V,E) together with a function w : E →
R that assigns a weight w(e) to each edge e. (We assume

the weights are real numbers)

• Our task is to find the minimum spanning tree of G, i.e., the

spanning tree T minimizing the function

w(T) =
∑
e∈T

w(e)

5

Example

Graph Defns

• A cycle is a path that starts and ends at the same vertex
and has at least one edge

• A graph is acyclic if no subgraph is a cycle. Acyclic graphs
are also called forests

• A tree is a connected acyclic graph. It’s also a connected
component of a forest.

• A spanning tree of a graph G is a subgraph that is a tree
and also contains every vertex of G. A graph can only have
a spanning tree if it’s connected

• A spanning forest of G is a collection of spanning trees, one
for each connected component of G

4

Minimum Spanning Tree Problem

• Suppose we are given a connected, undirected weighted graph
• That is a graph G = (V, E) together with a function w : E →

R that assigns a weight w(e) to each edge e. (We assume
the weights are real numbers)

• Our task is to find the minimum spanning tree of G, i.e., the
spanning tree T minimizing the function

w(T) =
∑

e∈T

w(e)

5

Example

8 5

10

2 3

18 16

12

14

30

4 26

A weighted graph and its minimum spanning tree

6

Applications

• Creating an inexpensive road network to connect cities
• Wiring up homes for phone service with the smallest amount

of phone wire
• Finding a good approximation to the TSP problem

7

A weighted graph and its minimum spanning tree

6

Applications

• Creating an inexpensive road network to connect cities

• Wiring up homes for phone service with the smallest amount

of wire

• Finding a good approximation to the TSP problem

7

Generic MST Algorithm

Generic-MST(G,w){

A = {};

while (A does not form a spanning tree){

find an edge (u,v) that is safe for A;

A = A union (u,v);

}

return A;

}

8

Safe edges - Definition

• Let A be any subset of edges in G that is a subset of some

MST of G

• An edge e is safe for A if A∪ {e} is also a subset of a MST.

9

Safe edges

• A cut (S, V − S) of a graph G = (V,E) is a partition of V

• An edge (u, v) crosses the cut (S, V −S) if one of its endpoints

is in S and the other is in V − S

• A cut respects a set of edges A if no edge in A crosses the

cut.

• An edge is a light edge crossing a cut if its weight is the

minimum of any edge crossing the cut

10

Theorem

Let G = (V,E) be a connected, undirected graph with a real-

valued weight function w defined on E. Let A be a subset of

E that is included in some minimum spanning tree for G. Let

(S, V − S) be any cut of G that respects A and let (u, v) be a

light edge crossing (S, V − S). Then edge (u, v) is safe for A

11

Proof

• Let T be a MST that includes some set of edges A

• Assume that T does not contain the light edge e = (u, v)

• Since T is connected, it contains a unique path from u to v

and at least one edge e′ on this path crosses the cut that

respects A

• Note that w(e) ≤ w(e′) by assumption

• Removing e′ from the MST and adding e gives us a new

spanning tree T ′

• T ′ has total weight no more than T and this T ′ must also be

a MST. QED.

12

Example

Proof

• Let T be a minimum spanning tree that includes some set of
edges A

• Assume that T does not contain the light edge e = (u, v)
• Since T is connected, it contains a unique path from u to v,

and at least one edge e′ on this path crosses the cut
• Note that w(e) ≤ w(e′) by assumption
• Removing e′ from the minimum spanning tree and adding e

gives us a new spanning tree, T ′

• T ′ has total weight no more than T .
• Thus the edge e is in fact contained in some MST.

12

Example

u

v

e

e’

Proving that every safe edge is some minimum spanning tree.

13

Corollary

Let G = (V, E) be a connected, undirected graph with a real-
valued weight function w defined on E. Let A be a subset of
E that is included in some minimum spanning tree for G, and
let C = (Vc, Ec) be a connected component (tree) in the forest
GA = (V, A). If (u, v) is a light edge connecting C to some other
component in GA, then (u, v) is safe for A

Proof: The cut (VC, V −VC) respects A, and (u, v) is a light edge
for this cut. Therefore (u, v) is safe for A.

14

Two MST algorithms

• There are two major MST algorithms, Kruskal’s and Prim’s
• In Kruskal’s algorithm, the set A is a forest. The safe edge

added to A is always a least-weighted edge in the graph that
connects two distinct components

• In Prim’s algorithm, the set A forms a single tree. The safe
edge added to A is always a least-weighted edge connecting
the tree to a vertex not in the tree

15

Proof that every safe edge is in some MST. The red edges are

the set A.

13

Corollary

Let G = (V,E) be a connected, undirected graph with a real-

valued weight function w defined on E. Let A be a subset of

E that is included in some minimum spanning tree for G, and

let C = (Vc, Ec) be a connected component (tree) in the forest

GA = (V,A). If (u, v) is a light edge connecting C to some other

component in GA, then (u, v) is safe for A

Proof: The cut (VC, V −VC) respects A, and (u, v) is a light edge

for this cut. Therefore (u, v) is safe for A.

14

Two MST algorithms

• There are two major MST algorithms, Kruskal’s and Prim’s

• In Kruskal’s algorithm, the set A is a forest. The safe edge

added to A is always a least-weighted edge in the graph that

connects two distinct components

• In Prim’s algorithm, the set A forms a single tree. The safe

edge added to A is always a least-weighted edge connecting

the tree to a vertex not in the tree

15

Kruskal’s Algorithm

• Q: In Kruskal’s algorithm, how do we determine whether or

not an edge connects two distinct connected components?

• A: We need some way to keep track of the sets of vertices

that are in each connected components and a way to take

the union of these sets when adding a new edge to A merges

two connected components

• What we need is the data structure for maintaining disjoint

sets (aka Union-Find) that we discussed last week

16

Kruskal’s Algorithm

MST-Kruskal(G,w){

for (each vertex v in V)

Make-Set(v);

sort the edges of E into nondecreasing order by weight;

for (each edge (u,v) in E taken in nondecreasing order){

if(Find-Set(u)!=Find-Set(v)){

A = A union (u,v);

Set-Union(u,v);

}

}

return A;

}

17

Example Run
Kruskal’s Algorithm

• Q: In Kruskal’s algorithm, how do we determine whether or
not an edge connects two distinct connected components?

• A: We need some way to keep track of the sets of vertices
that are in each connected components and a way to take
the union of these sets when adding a new edge to A merges
two connected components

• What we need is the data structure for maintaining disjoint
sets (aka Union-Find) that we discussed last week

16

Kruskal’s Algorithm

MST-Kruskal(G,w){

for (each vertex v in V)

Make-Set(v);

sort the edges of E into nondecreasing order by weight;

for (each edge (u,v) in E taken in nondecreasing order){

if(Find-Set(u)!=Find-Set(v)){

A = A union (u,v);

Set-Union(u,v);

}

}

return A;

}

17

Example Run

8 5

10

2 3

18 16

12

14

30

4 26

8 5

10

3

18 16

12

14

30

4 26

8 5

10

18 16

12

14

30

4 26

8 5

10

18 16

12

14

30

26

18

8

10

16

12

14

30

26

10

16

12

14

30

26

16

12

14

30

26

181816

14

30

26

1816

30

26

18

30

26

18

30

26

30

Kruskal’s algorithm run on the example graph. Thick edges are in A.
Dashed edges are useless.

18

Correctness?

• Correctness of Kruskal’s algorithm follows immediately from
the corollary

• Each time we add the lightest weight edge that connects two
connected components, hence this edge must be safe for A

• This implies that at the end of the algorith, A will be a MST

19

Kruskal’s algorithm run on the example graph. Thick edges are in A.
Dashed edges are useless.

18

Correctness?

• Correctness of Kruskal’s algorithm follows immediately from

the corollary

• Each time we add the lightest weight edge that connects two

connected components, hence this edge must be safe for A

• This implies that at the end of the algorith, A will be a MST

19

Runtime?

• The runtime for Kruskal’s alg. will depend on the implemen-

tation of the disjoint-set data structure. We’ll assume the im-

plementation with union-by-rank and path-compression which

we showed has amortized cost of log∗ n

20

Runtime?

• Time to sort the edges is O(|E| log |E|)
• Total amount of time for the |V | Make-Sets and up to |E|

Set-Unions is O((|V |+ |E|) log∗ |V |)
• Since G is connected, |E| ≥ |V |−1 and so O((|V |+|E|) log∗ |V |) =

O(|E| log∗ |V |) = O(|E| log |E|)
• Total amount of additional work done in the for loop is just

O(E)

• Thus total runtime of the algorithm is O(|E| log |E|)
• Since |E| ≤ |V |2, we can rewrite this as O(|E| log |V |)

21

Prim’s Algorithm

• In Prim’s algorithm, the set A maintained by the algorithm

forms a single tree.

• The tree starts from an arbitrary root vertex and grows until

it spans all the vertices in V

• At each step, a light edge is added to the tree A which

connects A to an isolated vertex of GA = (V,A)

• By our Corollary, this rule adds only safe edges to A, so when

the algorithm terminates, it will return a MST

22

Example Run

Runtime?

• The runtime fo the Kruskal’s alg. will depend on the imple-
mentation of the disjoint-set data structure. We’ll assume
the implementation with union-by-rank and path-compression
which we showed has amortized cost of log∗ n

20

Runtime?

• Time to sort the edges is O(|E| log |E|)
• Total amount of time for the |V | Make-Sets and up to |E|

Set-Unions is O((|V | + |E|) log∗ |V |)
• Since G is connected, |E| ≥ |V |−1 and so O((|V |+|E|) log∗ |V |) =

O(|E| log∗ |V |) = O(|E| log |E|)
• Total amount of additional work done in the for loop is just

O(E)
• Thus total runtime of the algorithm is O(|E| log |E|)
• Since |E| ≤ |V |2, we can rewrite this as O(|E| log |V |)

21

Prim’s Algorithm

• In Prim’s algorithm, the set A maintained by the algorithm
forms a single tree.

• The tree starts from an arbitrary root vertex and grows until
it spans all the vertices in V

• At each step, a light edge is added to the tree A which
connects A to an isolated vertex of GA = (V, A)

• By our Corollary, this rule adds only safe edges to A, so when
the algorithm terminates, it will return a MST

22

Example Run

8 5

10

2 3

18 16

12

14

30

4 26

18

8 5

10

2 3

16

12

14

30

26

8 5

10

2 3

18 16

30

26

8 5

10

3

16

30

26

8 5

16

30

26

16

30

26

Prim’s algorithm run on the example graph, starting with the
bottom vertex.

At each stage, thick edges are in A, an arrow points along A’s
safe edge, and dashed edges are useless.

23

Prim’s algorithm run on the example graph, starting with the

bottom vertex.

At each stage, thick edges are in A, an arrow points along A’s

safe edge, and dashed edges are useless.

23

An Implementation

• To implement Prim’s algorithm, we keep all edges adjacent

to A in a heap

• When we pull the minimum-weight edge off the heap, we

first check to see if both its endpoints are in A

• If not, we add the edge to A and then add the neighboring

edges to the heap

• If we implement Prim’s algorithm this way, its running time

is O(|E| log |E|) = O(|E| log |V |)
• However, we can do better

24

Prim’s Algorithm

• We can speed things up by noticing that the algorithm visits

each vertex only once

• Rather than keeping the edges in the heap, we will keep a

heap of vertices, where the key of each vertex v is the weight

of the minimum-weight edge between v and A (or infinity if

there is no such edge)

• Each time we add a new edge to A, we may need to decrease

the key of some neighboring vertices

25

Prim’s

We will break up the algorithm into two parts, Prim-Init and

Prim-Loop

Prim(V,E,s){

Prim-Init(V,E,s);

Prim-Loop(V,E,s);

}

26

Prim-Init

Prim-Init(V,E,s){

for each vertex v in V - {s}{

if ((v,s) is in E){

edge(v) = (v,s);

key(v) = w((v,s));

}else{

edge(v) = NULL;

key(v) = infinity;

}

Heap-Insert(v);

}

Heap-Insert(s);

}

27

Prim-Loop

Prim-Loop(V,E,s){

A = {};

for (i = 1 to |V| - 1){

v = Heap-ExtractMin();

add edge(v) to A;

for (each edge (u,v) in E){

if ((u,v) is not in A AND key(u) > w(u,v)){

edge(u) = (u,v);

Heap-DecreaseKey(u,w(u,v));

}

}

}

return A;

}

28

Runtime?

• The runtime of Prim’s is dominated by the cost of the heap

operations Insert, ExtractMin and DecreaseKey

• Insert and ExtractMin are each called O(|V |) times

• DecreaseKey is called O(|E|) times, at most twice for each

edge

• If we use a Fibonacci Heap, the amortized costs of Insert and

DecreaseKey is O(1) and the amortized cost of ExtractMin

is O(log |V |)
• Thus the overall run time of Prim’s is O(|E|+ |V | log |V |)
• This is faster than Kruskal’s unless E = O(|V |)

29

Note

• This analysis assumes that it is fast to find all the edges that

are incident to a given vertex

• We have not yet discussed how we can do this

• This brings us to a discussion of how to represent a graph in

a computer

30

Graph Representation

There are two common data structures used to explicity repre-

sent graphs

• Adjacency Matrices

• Adjacency Lists

31

Adjacency Matrix

• The adjacency matrix of a graph G is a |V | × |V | matrix of

0’s and 1’s

• For an adjacency matrix A, the entry A[i, j] is 1 if (i, j) ∈ E

and 0 otherwise

• For undirectd graphs, the adjacency matrix is always sym-

metric: A[i, j] = A[j, i]. Also the diagonal elements A[i, i] are

all zeros

32

Example Graph

Adjacency Matrix

• The adjacency matrix of a graph G is a |V | × |V | matrix of
0’s and 1’s

• For an adjacency matrix A, the entry A[i, j] is 1 if (i, j) ∈ E

and 0 otherwise
• For undirectd graphs, the adjacency matrix is always sym-

metric: A[i, j] = A[j, i]. Also the diagonal elements A[i, i] are
all zeros

32

Example Graph

a

b

e

d

f g

h

ic

33

Example Representations

a b c d e f g h i
a 011000000
b 101110000
c 110110000
d 011011000
e 011101000
f 000110000
g 000000010
h 000000101
i 000000110

a

b

c

d

e

f

g

h

i

d

d

d

e

e

e

f

f

a

b

b

b

a

d

g

g

h

c

c

c

c

b

e

h

i

i

Adjacency matrix and adjacency list representations for the
example graph.

34

Adjacency Matrix

• Given an adjacency matrix, we can decide in Θ(1) time
whether two vertices are connected by an edge.

• We can also list all the neighbors of a vertex in Θ(|V |) time
by scanning the row corresponding to that vertex

• This is optimal in the worst case, however if a vertex has few
neighbors, we still need to examine every entry in the row to
find them all

• Also, adjacency matrices require Θ(|V |2) space, regardless of
how many edges the graph has, so it is only space efficient
for very dense graphs

35

33

Example Representations

a b c d e f g h i
a 0 1 1 0 0 0 0 0 0
b 1 0 1 1 1 0 0 0 0
c 1 1 0 1 1 0 0 0 0
d 0 1 1 0 1 1 0 0 0
e 0 1 1 1 0 1 0 0 0
f 0 0 0 1 1 0 0 0 0
g 0 0 0 0 0 0 0 1 0
h 0 0 0 0 0 0 1 0 1
i 0 0 0 0 0 0 1 1 0

Adjacency matrix and adjacency list representations for the

example graph.

34

Adjacency Matrix

• Given an adjacency matrix, we can decide in Θ(1) time

whether two vertices are connected by an edge.

• We can also list all the neighbors of a vertex in Θ(|V |) time

by scanning the row corresponding to that vertex

• This is optimal in the worst case, however if a vertex has few

neighbors, we still need to examine every entry in the row to

find them all

• Also, adjacency matrices require Θ(|V |2) space, regardless of

how many edges the graph has, so it is only space efficient

for very dense graphs

35

Adjacency Lists

• For sparse graphs — graphs with relatively few edges —

we’re better off with adjacency lists

• An adjacency list is an array of linked lists, one list per vertex

• Each linked list stores the neighbors of the corresponding

vertex

36

Adjacency Lists

• The total space required for an adjacency list is O(|V |+ |E|)
• Listing all the neighbors of a node v takes O(1+deg(v)) time

• We can determine if (u, v) is an edge in O(1 + deg(u)) time

by scanning the neighbor list of u

• Note that we can speed things up by storing the neighbors

of a node not in lists but rather in hash tables

• Then we can determine if an edge is in the graph in expected

O(1) time and still list all the neighbors of a node v in O(1 +

deg(v)) time

37

