
University of New Mexico
Department of Computer Science

Final Examination
CS 561 Data Structures and Algorithms

Fall, 2023

Name:

Email:

Directions:

• This exam lasts 2 hours. It is closed book and notes, and no electronic
devices are permitted. However, you are allowed to use 2 pages of hand-
written “cheat sheets”

• Show your work! You will not get full credit, if we cannot figure out how
you arrived at your answer.

• Write your solution in the space provided for the corresponding problem.

Question Points Score Grader

1 20

2 20

3 20

4 20

5 20

Total 100



1. Short Answer (4 points each)

Answer the following using simplest possible Θ notation.

(a) Time to determine if a graph with n nodes and m edges has a 4-
clique?

(b) Solution to the recurrence: f(n) = 2f(n− 1)− f(n− 2)+1. Answer
in big-O notation here.

(c) Worst-case runtime of Kruskal’s algorithm when using a union-find
data structure where Make-Set, Find-Set and Union all have amor-
tized cost O(log n)? Assume the graph has n nodes and m edges.



(d) A stack has two operations: Push, and a PopGreaterThan(x) oper-
ation which repeatedly pops the top item off the stack until either
the stack is empty or the top item on the stack has value less than
x. Over a total of n operations on an initially empty stack, what is
the amortized cost per operation?

(e) What is the best expected time to solve the activity selection problem
on n jobs if the finish times of all activities are selected independently
and uniformly at random in the range 0 to M?



2. Medium Answer

(a) (10 points) Let n > 2. In an n by n grid, a node is an interior node
if it has 4 neighbors. So, the grid has (n− 2)2 interior nodes.

Each node is colored independently red or green, each with proba-
bility 1/2. What is the expected number of interior nodes where the
node and all 4 of its neighbors have the same color?



(b) (10 points) Let T be a minimum spanning tree in some graph G =
(V,E). Prove that any edge (u, v) in T is a light edge crossing some
cut.

(Remember that a cut is a partition of the nodes in V into two
disjoint sets. You will get no points on this problem if you don’t
specify these two sets for which (u, v) is a light crossing edge. Hint:
Use both T and (u, v) in defining your cut.)



3. NP-Completeness

LONG-PATH takes as input a graph G = (V,E), a start vertex s ∈ V ,
an end vertex t ∈ V , and an integer k. It returns YES iff there is a path
starting at s and ending at t, that traverses k edges and visits at least k
different vertices. Note that s and t do not need to be different.

For example, for the following graph, G, LONG-PATH(G,a,a,5) returns
YES because of the path a, e, d, c, b, a, while LONG-PATH(G,f,d,2) re-
turns NO, since there is no path of length 2 from f to d.

f d
e

a

b
c

(a) (16 points) Prove that LONG-PATH is NP-Hard by reduction from
one of the following: 3-SAT, CLIQUE, INDEPENDENT SET, VER-
TEX COVER, 3-COLORABLE, or HAMILTONIAN-CYCLE.



(b) (4 points) Prove that LONG-PATH is NP-COMPLETE by showing
that it is also in NP.



4. Dynamic Programming

Dance, Dance Revolution (DDR) is played on a platform with 4 squares.
In round i ≥ 1, one of your feet must be on the square σ[i], where σ is
an input sequence composed of the symbols A, B, C or D, representing
the four squares. Your feet must always be in different squares, and you
can move at most one foot at the start of each round to any new square.
Your left foot starts in square A and right foot in square B.

Your goal is to maximize your score: the number of rounds in which
neither foot moves. Below is an example game play.

σ A C A D C D B

Feet position (A,B) (A,C) (A,C) (D,C) (D,C) (D,C) (B,C)

Point? 0 0 1 0 1 1 0

You scored 3 points since there are 3 rounds where neither foot moved.

(a) (15 points) Write a recurrence relation for the value m(i, ℓ, r) which
gives the maximum score possible on the first i symbols of σ if your
left foot ends in square ℓ and your right foot ends in square r.



(b) (5 points) Describe a dynamic program to return the max score for
any input σ of length n based on your recurrence. What are the
dimensions of your table? How do you fill it in? What is the final
value returned? What is the runtime of your algorithm?



5. Gradient Descent

X-STREAM Dance Dance Revolution (XDDR) is played on a pogo-stick
while blind-folded. At the beginning of each round, you can hop from
your current square to any square. However, the target sequence, σ is
not known in advance, and the value σ[i] is announced only at the end
of round i, for each i ∈ [1, n] where n is the length of σ.

Your goal is to minimize cost : the number of rounds i ∈ [1, n] in which
you hop in a square different than σ[i].

Below is an example game; your cost is 5 because there are 5 rounds
where the square you hop in does not match the target square in σ.

σ A C A D C D D

Pogo position A B B D A C A

Cost? 0 1 1 0 1 1 1

In round i, you let x⃗i be a length 4 vector giving a probability distribution
over the 4 possible squares on which you will hop, i.e. x⃗i[1], x⃗i[2], x⃗i[3],
x⃗i[4] are the probabilities of hopping into squares A, B, C,D respectively.

Then, for round i, you will define fi(xi) as your expected cost in round i.
In round i, let ci be a length 4 vector giving the cost outcome: ci[j] = 0
when j matches the square given by σ[i] and ci[j] = 1 otherwise. For
example, in round i, if xi = [1/8, 1/2, 1/8, 1/4] and ci = [1, 1, 1, 0], then
your expected cost for this round is 3/4

(a) (5 points) Give a 1 line definition of fi as a function of x⃗i and c⃗i.



(b) (5 points) Describe, algebraically, the convex search space κ. What
is the diameter, D of κ?

(c) (5 points) Zinkevich’s theorem says that the cost of online gradient
descent tracks the cost of the best offline solution, x∗. In particular,
if OPT is the cost of the best offline solution, then the cost of our
algorithm is at most OPT +

√
nDG. Give a precise 1 line definition

of OPT for this problem using the ci values.



(d) (5 points) Now, you want to use some history. In particular, you
notice that the current square in σ often depends on the last square.
So you want to use the outcome of the last round to help set your
probability distribution for the current round. To do this, how would
you change the convex search space κ? How many dimensions does
it now have? Will OPT, G and D likely increase or decrease? Will
your algorithm’s expected cost increase or decrease?



5. Gradient Descent, continued.


