# CS 561, Gradient Descent 

Jared Saia
University of New Mexico

## The Problem

Given:

- Convex space $\mathcal{K}$
- Convex function $f$

Goal: Find $x \in \mathcal{K}$ that minimizes $f(x)$

## Convexity

1. A convex set contains every point on every line segment drawn between any two points in the set.
2. A convex function is one where any secant line segment is always above the function. A secant (Latin: cut) line is a line segment that intersects the function at exactly two points.

- Equivalently, a function is convex if the epigraph is a convex set. An epigraph ("epi" (Latin): on top of) is the set of points above the function.
- If the function is twice differentiable, then it is convex iff its second derivative is always non-negative.

3. A function $f$ is concave iff $-f$ is convex.

- The gradient of a function $f(\nabla f)$ is just the derivatives of $f$ written as a vector.
- Ex: The gradient of $f(x, y)=2 x+3 y$ is the vector $(2,3)$
- Ex: The gradient of $f(x, y)=x^{2}+y^{2}$ at the point $x=2, y=3$ is $(4,6)$
- Ex: The gradient of $f(x, y)=x y$ at the point $x=2, y=3$ is $(3,2)$


## Gradient Descent Variables

- $D=\max _{x, y \in \mathcal{K}}|x-y|$
- $G$ is an upperbound on $|\nabla f(x)|$ for any $x \in \mathcal{K}$

Note: all norms are 2-norms. D is known as the diameter of $\mathcal{K}$

## Gradient Descent Algorithm

$\eta \leftarrow \frac{D}{G \sqrt{T}}$
Repeat for $i=0$ to $T$ :

1. $y_{i+1} \leftarrow x_{i}-\eta \nabla f\left(x_{i}\right)$
2. $x_{i+1} \leftarrow$ Projection of $y_{i+1}$ onto $\mathcal{K}$

Output $z=\frac{1}{T} \sum_{i=1}^{T} x_{i}$

## Example Run



## Theorem 1

Theorem 1 Let $x^{*} \in \mathcal{K}$ be the value that minimizes $f$. Then, for any $\epsilon>0$, if we set $T=\frac{D^{2} G^{2}}{\epsilon^{2}}$, then:

$$
f(z) \leq f\left(x^{*}\right)+\epsilon
$$

Fact 1: $f(x)-f(y) \leq \nabla f(x) \cdot(x-y)$

A convex function that is differentiable satisfies the following (basically, this says that the function is above the tangent plane at any point).

$$
f(x+z) \geq f(x)+\nabla f(x) \cdot z, \text { for all } x, z
$$

Seting $z=y-x$, we get:

$$
f(x)-f(y) \leq \nabla f(x) \cdot(x-y) \text { for all } x, y
$$

Fact 1: Picture


## Proof of Theorem 1 (I)

$$
\begin{aligned}
\left|x_{i+1}-x^{*}\right|^{2} & \leq\left|y_{i+1}-x^{*}\right|^{2} \\
& =\left|x_{i}-x^{*}-\eta \nabla f\left(x_{i}\right)\right|^{2} \\
& =\left|x_{i}-x^{*}\right|^{2}+\eta^{2}\left|\nabla f\left(x_{i}\right)\right|^{2}-2 \eta \nabla f\left(x_{i}\right) \cdot\left(x_{i}-x^{*}\right)
\end{aligned}
$$

First step holds since $x_{i+1}$ projects $y_{i+1}$ onto a space that contains $x^{*}$. Second step holds by definition of $y_{i+1}$. Last step holds since $|v|^{2}=v \cdot v$.

## Proof of Theorem 1 (II)

From last slide:

$$
\left|x_{i+1}-x^{*}\right|^{2} \leq\left|x_{i}-x^{*}\right|^{2}+\eta^{2}\left|\nabla f\left(x_{i}\right)\right|^{2}-2 \eta \nabla f\left(x_{i}\right) \cdot\left(x_{i}-x^{*}\right)
$$

Reorganizing, and using definition of $G$ :

$$
\nabla f\left(x_{i}\right) \cdot\left(x_{i}-x^{*}\right) \leq \frac{1}{2 \eta}\left(\left|x_{i}-x^{*}\right|^{2}-\left|x_{i+1}-x^{*}\right|^{2}\right)+\frac{\eta}{2} G^{2}
$$

Using Fact 1:

$$
\begin{equation*}
f\left(x_{i}\right)-f\left(x^{*}\right) \leq \frac{1}{2 \eta}\left(\left|x_{i}-x^{*}\right|^{2}-\left|x_{i+1}-x^{*}\right|^{2}\right)+\frac{\eta}{2} G^{2} \tag{1}
\end{equation*}
$$

## Proof of Theorem 1 (III)

Sum last inequality for $i=1$ to $T$. After cancellations:

$$
\sum_{i=1}^{T}\left(f\left(x_{i}\right)-f\left(x^{*}\right)\right) \leq \frac{1}{2 \eta}\left(\left|x_{1}-x^{*}\right|^{2}-\left|x_{T+1}-x^{*}\right|^{2}\right)+\frac{T \eta}{2} G^{2}
$$

Divide the above by T . By convexity, $f\left(\frac{1}{T}\left(\sum_{i} x_{i}\right)\right) \leq \frac{1}{T} \sum_{i} f\left(x_{i}\right)$. Since $z=\frac{1}{T} \sum_{i} x_{i}$, we get

$$
f(z)-f\left(x^{*}\right) \leq \frac{D^{2}}{2 \eta T}+\frac{\eta}{2} G^{2} .
$$

Since $\eta=\frac{D}{G \sqrt{T}}$, the right hand side is at most $\frac{D G}{\sqrt{T}}$. Since $T=$ $\frac{D^{2} G^{2}}{\epsilon^{2}}$, we have $f(z) \leq f\left(x^{*}\right)+\epsilon$

## Online Gradient Descent

- Surprisingly, the gradient descent algorithm can work even when the function to minimize changes in every round!
- Even if these functions are chosen by an adversary! - So long as they are always convex.
- We just need to make a slight tweak in the algorithm (next slide - can you spot the differences?)

Online GD Algorithm
$\eta \leftarrow \frac{D}{G \sqrt{T}}$
Repeat for $i=0$ to $T$ :

1. $y_{i+1} \leftarrow x_{i}-\eta \nabla f_{i}\left(x_{i}\right)$
2. $x_{i+1} \leftarrow$ Projection of $y_{i+1}$ onto $\mathcal{K}$

## Online Gradient Theorem

Theorem 2 (Zinkevich's Theorem) Let $x^{*} \in \mathcal{K}$ be the value that minimizes $\sum_{i=1}^{T} f_{i}\left(x^{*}\right)$. Then, for all $T>0$,

$$
\frac{1}{T} \sum_{i=1}^{T}\left(f_{i}\left(x_{i}\right)-f_{i}\left(x^{*}\right)\right) \leq \frac{D G}{\sqrt{T}}
$$

Left hand side of this inequality is called the regret per step.

## Proof

- Equation 1 from Slide 9 bounds the regret for step $i$
- Sum regrets over all $i$ and divide by $T$ to get the theorem!


## Applctn: Portfolio Management

- From Section 16.6 in Arora notes


## Portfolio Management

- Imagine you are investing in $n$ stocks
- For $i, 1 \leq i \leq n$, and $t>1$, define

$$
r_{t}[i]=\frac{\text { Price of stock } i \text { on day } t}{\text { Price of stock } i \text { on day } t-1}
$$

- Let $x^{*}$ be an optimal allocation of your money among the $n$ stocks in hindsight.
- Q: Can we design an algorithm that is competitive with $x^{*}$ ?


## Portfolio Management

- Our goal: Choose an allocation, $x_{t}$ for each day $t$, that maximizes

$$
\prod_{t} r_{t} \cdot x_{t}
$$

- Taking logs, we get that we want to maximize:

$$
\sum_{t} \log \left(r_{t} \cdot x_{t}\right)
$$

- Same as minimizing

$$
-\sum_{t} \log \left(r_{t} \cdot x_{t}\right)
$$

- This last function is convex and so by Zinkevich's theorem, online gradient descent tracks

$$
-\sum_{t} \log \left(r_{t} \cdot x^{*}\right)
$$

## Stochastic Gradient Descent

The final major trick of GD enables significant speed up. Assume we want to minimize over just one function, $f$, again.

- In each step, $i$, we estimate the gradient of $f$ at $x_{i}$ based on one random data item
- Call this random gradient $g_{i}$, where $E\left(g_{i}\right)=\nabla f\left(x_{i}\right)$
- Then, using the $g_{i}$ 's we get essentially same results as if we had the true gradient


## Stochastic GD Algorithm

$\eta \leftarrow \frac{D}{G \sqrt{T}}$
Repeat for $i=0$ to $T$ :

1. $g_{i} \leftarrow$ a random vector, such that $E\left(g_{i}\right)=\nabla f\left(x_{i}\right)$
2. $y_{i+1} \leftarrow x_{i}-\eta g_{i}$
3. $x_{i+1} \leftarrow$ Projection of $y_{i+1}$ onto $\mathcal{K}$

Output $z=\frac{1}{T} \sum_{i=1}^{T} x_{i}$

## Stochastic GD Theorem

Theorem $3 E(f(z)) \leq f\left(x^{*}\right)+\frac{D G}{\sqrt{T}}$.

## Proof (1/2)

$$
\begin{aligned}
E(f(z)) & =E\left(f\left(\frac{1}{T} \sum_{i=1}^{T} x_{i}\right)\right) \\
& \leq E\left(\frac{1}{T} \sum_{i=1}^{T} f\left(x_{i}\right)\right) \quad \text { By convexity of } \mathrm{f} \\
& \leq \frac{1}{T} E\left(\sum_{i=1}^{T} f\left(x_{i}\right)\right) \quad \text { Since } \mathrm{E}(\mathrm{cX})=\mathrm{cE}(\mathrm{X}) \text { for constant } \mathrm{c}
\end{aligned}
$$

## Proof (2/2)

$$
\begin{aligned}
E\left(f(z)-f\left(x^{*}\right)\right) & \leq \frac{1}{T} E\left(\sum_{i=1}^{T}\left(f\left(x_{i}\right)-f\left(x^{*}\right)\right)\right) \quad \text { By previous slide } \\
& \leq \frac{1}{T} \sum_{i} E\left(\nabla f\left(x_{i}\right) \cdot\left(x_{i}-x^{*}\right)\right) \quad \text { Using Fact } 1 \\
& =\frac{1}{T} \sum_{i} E\left(g_{i} \cdot\left(x_{i}-x^{*}\right)\right) \quad \text { Cuz } E\left(g_{i} \cdot x\right)=\nabla f\left(x_{i}\right) \cdot x \\
& =\frac{1}{T} \sum_{i} E\left(f_{i}\left(x_{i}\right)-f_{i}\left(x^{*}\right)\right) \quad \text { Letting } f_{i}(x)=g_{i} \cdot x \\
& =E\left(\frac{1}{T} \sum_{i=1}^{T}\left(f_{i}\left(x_{i}\right)-f_{i}\left(x^{*}\right)\right)\right) \quad \text { Linearity of Exp. } \\
& \leq \frac{D G}{\sqrt{T}} \quad \text { Regret bound using Zinkevich's Thm }
\end{aligned}
$$

## Two Notes on Proof

- Requirement in Step 3: $E\left(g_{i} \cdot x\right)=\nabla f\left(x_{i}\right) \cdot x$, for all $x$
- Holds since dot product is linear, and $E\left(g_{i}\right)=\nabla f\left(x_{i}\right)$
- Requirement in Last Step: $f_{i}(x)$ is convex. Needed to use Zinkevich
- Holds since $f_{i}(x)=g_{i} \cdot x$ is linear


## Take Away

## Gradient Descent comes in 3 flavors:

- Standard Gradient Descent
- Online Gradient Descent

Works even when function is changing

- Stochastic Gradient Descent

Just need the correct gradient in expectation

