CS 561, Randomized Algorithms

Jared Saia
University of New Mexico

Quicksort

- Based on divide and conquer strategy
- Worst case is $\Theta\left(n^{2}\right)$
- Expected running time is $\Theta(n \log n)$
- An In-place sorting algorithm
- Almost always the fastest sorting algorithm

Quicksort

- Divide: Pick some element $\mathrm{A}[\mathrm{q}]$ of the array A and partition A into two arrays A_{1} and A_{2} such that every element in A_{1} is $\leq \mathrm{A}[\mathrm{q}]$, and every element in A_{2} is $>\mathrm{A}[\mathrm{p}]$
- Conquer: Recursively sort A_{1} and A_{2}
- Combine: A_{1} concatenated with $A[q]$ concatenated with A_{2} is now the sorted version of A

The Algorithm

```
//PRE: A is the array to be sorted, p>=1;
// r is <= the size of A
//POST: A[p..r] is in sorted order
Quicksort (A,p,r){
    if (p<r){
        q = Partition (A,p,r);
        Quicksort (A,p,q-1);
        Quicksort (A,q+1,r);
    }
```


Partition

//PRE: A[p..r] is the array to be partitioned, $\mathrm{p}>=1$ and r <= size // of A, A[r] is the pivot element
//POST: Let A' be the array A after the function is run. Then // A'[p..r] contains the same elements as A[p..r]. Further, // all elements in A '[p..res-1] are $<=A[r]$, A ' [res] = $A[r]$,
// and all elements in A'[res+1..r] are > A[r]
Partition (A,p,r)\{
$\mathrm{x}=\mathrm{A}[\mathrm{r}]$;
i $=p-1$;
for ($\mathrm{j}=\mathrm{p} ; \mathrm{j}<=\mathrm{r}-1 ; \mathrm{j}++$) $\{$
if ($A[j]<=x)\{$
i++;
exchange A[i] and A[j];
\}\}
exchange $A[i+1]$ and $A[r]$;
return i+1;
\}

Analysis

- The function Partition takes $O(n)$ time. Why?

Example QuickSort

- QuickSort the array $[2,6,9,1,5,3,8,7,4]$

Randomized Quick-Sort

- We'd like to ensure that we get reasonably good splits reasonably quickly
- Q: How do we ensure that we "usually" get good splits? How can we ensure this even for worst case inputs?
- A: We use randomization.

R-Partition

```
//PRE: A[p..r] is the array to be partitioned, \(\mathrm{p}>=1\) and r <= size
// of A
//POST: Let A' be the array A after the function is run. Then
// A'[p..r] contains the same elements as A[p..r]. Further,
// all elements in A'[p..res-1] are <= A[i], A'[res] = A[i],
// and all elements in A'[res+1..r] are > A[i], where i is
// a random number between \(\$ \mathrm{p} \$\) and \(\$ \mathrm{r} \$\).
R-Partition (A, \(\mathrm{p}, \mathrm{r})\{\)
    i \(=\) Random( \(\mathrm{p}, \mathrm{r}\) );
    exchange \(\mathrm{A}[\mathrm{r}]\) and \(\mathrm{A}[\mathrm{i}]\);
    return Partition(A,p,r);
\}
```


Randomized Quicksort

//PRE: A is the array to be sorted, $\mathrm{p}>=1$, and r is <= the size of A //POST: A[p..r] is in sorted order
R-Quicksort (A, $\mathrm{p}, \mathrm{r})\{$
if ($\mathrm{p}<\mathrm{r}$) \{
$\mathrm{q}=\mathrm{R}$-Partition (A,p,r);
R-Quicksort (A,p,q-1);
R-Quicksort (A, q+1,r);
\}

Analysis

- R-Quicksort is a randomized algorithm
- The run time is a random variable
- We'd like to analyze the expected run time of R-Quicksort
- To do this, we first need to learn some basic probability theory.

Probability Definitions

(from Appendix C.3)

- A random variable is a variable that takes on one of several values, each with some probability. (Example: if X is the outcome of the roll of a die, X is a random variable)
- The expected value of a random variable, X is defined as:

$$
E(X)=\sum_{x} x \operatorname{Pr}(X=x)
$$

(Example if X is the outcome of the roll of a three sided die,

$$
\begin{aligned}
E(X) & =1(1 / 3)+2(1 / 3)+3(1 / 3) \\
& =2
\end{aligned}
$$

Probability Definitions

- Two events A and B are mutually exclusive if $A \cap B$ is the empty set (Example: A is the event that the outcome of a die is 1 and B is the event that the outcome of a die is 2)
- Two random variables X and Y are independent if for all x and $y, P(X=x$ and $Y=y)=P(X=x) P(Y=y)$ (Example: let X be the outcome of the first roll of a die, and Y be the outcome of the second roll of the die. Then X and Y are independent.)

Indicator Random Variables

- An Indicator Random Variable for event A, is defined as:

$$
I(A)= \begin{cases}1 & \text { if event } A \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

- Example: Let A be the event that the roll of a die equals 2 . Then $I(A)$ is 1 if the die roll is 2 and 0 otherwise.

Linearity of Expectation

- Let X and Y be two random variables
- Then $E(X+Y)=E(X)+E(Y)$
- (Holds even if X and Y are not independent.)
- More generally, let $X_{1}, X_{2}, \ldots, X_{n}$ be n random variables
- Then

$$
E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)
$$

Example

- For $1 \leq i \leq n$, let X_{i} be the outcome of the i-th roll of three-sided die
- Then

$$
E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)=2 n
$$

Example

- Indicator Random Variables and Linearity of Expectation used together are a very powerful tool
- The Birthday Paradox illustrates this point
- To analyze the run time of Quicksort, we will also use indicator r.v.'s and linearity of expectation (analysis will be similar to "birthday paradox" problem)

Birthday Paradox

- Assume there are m people in a room, and n days in a year
- Assume that each of these m people is born on a day chosen independently and uniformly at random from the n days
- Q: What is the expected number of pairs of individuals that have the same birthday?
- We can use indicator random variables and linearity of expectation to compute this

Analysis

- For all $1 \leq i<j \leq m$, let $X_{i, j}$ be an indicator random variable defined such that:
$-X_{i, j}=1$ if person i and person j have the same birthday
$-X_{i, j}=0$ otherwise
- Note that for all i, j,

$$
\begin{aligned}
E\left(X_{i, j}\right) & =P(\text { person } \mathrm{i} \text { and } \mathrm{j} \text { have same birthday }) \\
& =1 / n
\end{aligned}
$$

Analysis

- Let X be a random variable giving the number of pairs of people with the same birthday
- We want $E(X)$
- Then $X=\sum_{1 \leq i<j \leq m} X_{i, j}$
- So $E(X)=E\left(\sum_{1 \leq i<j \leq m} X_{i, j}\right)$

$$
\begin{aligned}
E(X) & =E\left(\sum_{1 \leq i<j \leq m} X_{i, j}\right) \\
& =\sum_{1 \leq i<j \leq m} E\left(X_{i, j}\right) \\
& =\sum_{1 \leq i<j \leq m} 1 / n \\
& =\binom{m}{2} \frac{1}{n} \\
& =\frac{m(m-1)}{2 n}
\end{aligned}
$$

The second step follows by Linearity of Expectation

Reality Check

- Thus, if $m(m-1) \geq 2 n$, expected number of pairs of people with same birthday is at least 1
- Thus if have at least $\sqrt{2 n}$ people in the room, expected number of pairs with same birthday is at least 1.
- For $n=365$, if $m=28$, expected number of pairs with same birthday is 1.04

In-Class Exercise

- Assume there are m people in a room, and n days in a year
- Assume that each of these m people is born on a day chosen uniformly at random from the n days
- Let X be the number of groups of three people who all have the same birthday. What is $E(X)$?
- Let $X_{i, j, k}$ be an indicator r.v. which is 1 if people i, j, and k have the same birthday and 0 otherwise

In-Class Exercise

- Q1: Write the expected value of X as a function of the $X_{i, j, k}$ (use linearity of expectation)
- Q2: What is $E\left(X_{i, j, k}\right)$?
- Q3: What is the total number of groups of three people out of m ?
- Q4: What is $E(X)$?

Plan of Attack

"If you get hold of the head of a snake, the rest of it is mere rope" - Akan Proverb

- We will analyze the total number of comparisons made by quicksort
- We will let X be the total number of comparisons made by R-Quicksort
- We will write X as the sum of a bunch of indicator random variables
- We will use linearity of expectation to compute the expected value of X
- Let A be the array to be sorted
- Let z_{i} be the i-th smallest element in the array A
- Let $Z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$

Indicator Random Variables

- Let $X_{i, j}$ be 1 if z_{i} is compared with z_{j} and 0 otherwise
- Note that $X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}$
- Further note that

$$
E(X)=E\left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i, j}\right)
$$

Questions

- Q1: So what is $E\left(X_{i, j}\right)$?
- A1: It is $P\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$
- Q2: What is $P\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$?
- A2: It is:
P (either z_{i} or z_{j} are the first elems in $Z_{i, j}$ chosen as pivots)
- Why?
- If no element in $Z_{i, j}$ has been chosen yet, no two elements in $Z_{i, j}$ have yet been compared, and all of $Z_{i, j}$ is in same list
- If some element in $Z_{i, j}$ other than z_{i} or z_{j} is chosen first, z_{i} and z_{j} will be split into separate lists (and hence will never be compared)

More Questions

- Q: What is
P (either z_{i} or z_{j} are first elems in $Z_{i, j}$ chosen as pivots)
- A: $P\left(z_{i}\right.$ chosen as first elem in $\left.Z_{i, j}\right)+$ $P\left(z_{j}\right.$ chosen as first elem in $\left.Z_{i, j}\right)$
- Further note that number of elems in $Z_{i, j}$ is $j-i+1$, so

$$
P\left(z_{i} \text { chosen as first elem in } Z_{i, j}\right)=\frac{1}{j-i+1}
$$

and

$$
P\left(z_{j} \text { chosen as first elem in } Z_{i, j}\right)=\frac{1}{j-i+1}
$$

- Hence
$P\left(z_{i}\right.$ or z_{j} are first elems in $Z_{i, j}$ chosen as pivots $)=\frac{2}{j-i+1}$

Conclusion

$$
\begin{align*}
E\left(X_{i, j}\right) & =P\left(z_{i} \text { is compared to } z_{j}\right) \tag{1}\\
& =\frac{2}{j-i+1} \tag{2}
\end{align*}
$$

$$
\begin{align*}
E(X) & =E\left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right) \tag{3}\\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i, j}\right) \tag{4}\\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \tag{5}\\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \tag{6}\\
& <\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \tag{7}\\
& =\sum_{i=1}^{n-1} O(\log n) \tag{8}\\
& =O(n \log n) \tag{9}
\end{align*}
$$

Questions

- Q: Why is $\sum_{k=1}^{n} \frac{2}{k}=O(\log n)$?
- A:

$$
\begin{align*}
\sum_{k=1}^{n} \frac{2}{k} & =2 \sum_{k=1}^{n} 1 / k \tag{10}\\
& \leq 2(\ln n+1) \tag{11}
\end{align*}
$$

- Where the last step follows by an integral bound on the sum (p. 1067)

How Fast Can We Sort?

- Q: What is a lowerbound on the runtime of any sorting algorithm?
- We know that $\Omega(n)$ is a trivial lowerbound
- But all the algorithms we've seen so far are $O(n \log n$) (or $\left.O\left(n^{2}\right)\right)$, so is $\Omega(n \log n)$ a lowerbound?

Comparison Sorts

- Definition: An sorting algorithm is a comparison sort if the sorted order they determine is based only on comparisons between input elements.
- Heapsort, mergesort, quicksort, bubblesort, and insertion sort are all comparison sorts
- We will show that any comparison sort must take $\Omega(n \log n)$

Comparisons

- Assume we have an input sequence $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- In a comparison sort, we only perform tests of the form $a_{i}<$ $a_{j}, a_{i} \leq a_{j}, a_{i}=a_{j}, a_{i} \geq a_{j}$, or $a_{i}>a_{j}$ to determine the relative order of all elements in A
- We'll assume that all elements are distinct, and so note that the only comparison we need to make is $a_{i} \leq a_{j}$.
- This comparison gives us a yes or no answer

Decision Tree Model

- A decision tree is a full binary tree that gives the possible sequences of comparisons made for a particular input array, A
- Each internal node is labelled with the indices of the two elements to be compared
- Each leaf node gives a permutation of A

Decision Tree Model

- The execution of the sorting algorithm corresponds to a path from the root node to a leaf node in the tree.
- We take the left child of the node if the comparison is \leq and we take the right child if the comparison is >
- The internal nodes along this path give the comparisons made by the alg, and the leaf node gives the output of the sorting algorithm.

Leaf Nodes

- Any correct sorting algorithm must be able to produce each possible permutation of the input
- Thus there must be at least n ! leaf nodes
- The length of the longest path from the root node to a leaf in this tree gives the worst case run time of the algorithm (i.e. the height of the tree gives the worst case runtime)

Example

- Consider the problem of sorting an array of size two: $A=$ $\left(a_{1}, a_{2}\right)$
- Following is a decision tree for this problem.

In-Class Exercise

- Give a decision tree for sorting an array of size three: $A=$ $\left(a_{1}, a_{2}, a_{3}\right)$
- What is the height? What is the number of leaf nodes?

Height of Decision Tree

- Q: What is the height of a binary tree with at least n ! leaf nodes?
- A: If h is the height, we know that $2^{h} \geq n$!
- Taking \log of both sides, we get $h \geq \log (n!)$

Height of Decision Tree

- Q: What is $\log (n!)$?
- A: It is

$$
\begin{aligned}
\log (n *(n-1) * \cdots * 1) & =\log n+\log (n-1)+\cdots+\log 1 \\
& \geq(n / 2) \log (n / 2) \\
& \geq(n / 2)(\log n-\log 2) \\
& =\Omega(n \log n)
\end{aligned}
$$

- Thus any decision tree for sorting n elements will have a height of $\Omega(n \log n)$

Take Away

- We've just proven that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time
- This does not mean that all sorting algorithms take $\Omega(n \log n)$ time
- In fact, there are non comparison-based sorting algorithms which, under certain circumstances, are asymptotically faster.

Bucket Sort

- Bucket sort assumes that the input is drawn from a uniform distribution over the range $[0,1$)
- Basic idea is to divide the interval $[0,1$) into n equal size regions, or buckets
- We expect that a small number of elements in A will fall into each bucket
- To get the output, we can sort the numbers in each bucket and just output the sorted buckets in order

Bucket Sort

//PRE: A is the array to be sorted, all elements in A[i] are between 0 and 1 inclusive.
//POST: returns a list which is the elements of A in sorted order BucketSort(A)\{
B = new List []
$\mathrm{n}=$ length (A)
for (i=1;i<=n;i++)\{
insert $A[i]$ at end of list $B[f l o o r(n * A[i])]$;
\}
for (i=0;i<=n-1;i++)\{ sort list $B[i]$ with insertion sort;
\}
return the concatenated list $B[0], B[1], \ldots, B[n-1]$;
\}

Bucket Sort

- Claim: If the input numbers are distributed uniformly over the range $[0,1)$, then Bucket sort takes expected time $O(n)$
- Let $T(n)$ be the run time of bucket sort on a list of size n
- Let B_{i} be the random variable giving the number of elements in bucket $B[i]$
- Then $T(n)=\Theta(n)+\sum_{i=0}^{n-1} O\left(B_{i}^{2}\right)$

Analysis

- We know $T(n)=\Theta(n)+\sum_{i=0}^{n-1} O\left(B_{i}^{2}\right)$
- Taking expectation of both sides, we have

$$
\begin{aligned}
E(T(n)) & =\Theta(n)+E\left(\sum_{i=0}^{n-1} C B_{i}^{2}\right) \\
& =\Theta(n)+\sum_{i=0}^{n-1} E\left(C B_{i}^{2}\right) \\
& \left.=\Theta(n)+\sum_{i=0}^{n-1} C E\left(B_{i}^{2}\right)\right)
\end{aligned}
$$

- The second step follows by linearity of expectation
- The last step holds since for any constant a and random variable $X, E(a X)=a E(X)$ (see Equation C. 21 in the text)

Analysis

- We claim that $E\left(B_{i}^{2}\right)=2-1 / n$
- To prove this, we define indicator random variables: $X_{i j}=1$ if $A[j]$ falls in bucket i and 0 otherwise (defined for all i, $0 \leq i \leq n-1$ and $j, 1 \leq j \leq n$)
- Thus, $B_{i}=\sum_{j=1}^{n} X_{i j}$
- We can now compute $E\left(B_{i}^{2}\right)$ by expanding the square and regrouping terms

Analysis

$$
\begin{aligned}
E\left(B_{i}^{2}\right) & =E\left(\left(\sum_{j=1}^{n} X_{i j}\right)^{2}\right) \\
& =E\left(\sum_{j=1}^{n} \sum_{k=1}^{n} X_{i j} X_{i k}\right) \\
& =E\left(\sum_{j=1}^{n} X_{i j}^{2}+\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j} X_{i j} X_{i k}\right) \\
& \left.=\sum_{j=1}^{n} E\left(X_{i j}^{2}\right)+\sum_{1 \leq j \leq n} E\left(X_{i j} X_{i k}\right)\right)
\end{aligned}
$$

Analysis

- We can evaluate the two summations separately. $X_{i j}$ is 1 with probability $1 / n$ and 0 otherwise
- Thus $E\left(X_{i j}^{2}\right)=1 *(1 / n)+0 *(1-1 / n)=1 / n$
- Where $k \neq j$, the random variables $X_{i j}$ and $X_{i k}$ are independent
- For any two independent random variables X and $Y, E(X Y)=$ $E(X) E(Y)$ (see C. 3 in the book for a proof of this)
- Thus we have that

$$
\begin{aligned}
E\left(X_{i j} X_{i k}\right) & =E\left(X_{i j}\right) E\left(X_{i k}\right) \\
& =(1 / n)(1 / n) \\
& =\left(1 / n^{2}\right)
\end{aligned}
$$

Analysis

- Substituting these two expected values back into our main equation, we get:

$$
\begin{aligned}
E\left(B_{i}^{2}\right) & \left.=\sum_{j=1}^{n} E\left(X_{i j}^{2}\right)+\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j} E\left(X_{i j} X_{i k}\right)\right) \\
& =\sum_{j=1}^{n}(1 / n)+\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j}\left(1 / n^{2}\right) \\
& =n(1 / n)+(n)(n-1)\left(1 / n^{2}\right) \\
& =1+(n-1) / n \\
& =2-(1 / n)
\end{aligned}
$$

Analysis

- Recall that $E(T(n))=\Theta(n)+\sum_{i=0}^{n-1}\left(O\left(E\left(B_{i}^{2}\right)\right)\right)$
- We can now plug in the equation $E\left(B_{i}^{2}\right)=2-(1 / n)$ to get

$$
\begin{aligned}
E(T(n)) & =\Theta(n)+\sum_{i=0}^{n-1} 2-(1 / n) \\
& =\Theta(n)+\Theta(n) \\
& =\Theta(n)
\end{aligned}
$$

- Thus the entire bucket sort algorithm runs in expected linear time

