CS 561, Randomized Data Structures :

 Hash Tables, Skip Lists, Bloom Filters, Count-Min sketchJared Saia
University of New Mexico

Outline

- Skip Lists
- Bloom Filters
- Count-Min Sketch

Dictionary ADT

A dictionary ADT implements the following operations

- Insert (x) : puts the item x into the dictionary
- Delete (x) : deletes the item x from the dictionary
- IsIn (x) : returns true iff the item x is in the dictionary

Skip List

- Enables insertions and searches for ordered keys in $O(\log n)$ expected time
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time (e.g. Find-Max, Predecessor/ Sucessor)
- Can even enable "find-i-th value" if store with each edge the number of elements that edge skips

Skip List

- A skip list is basically a collection of doubly-linked lists, $L_{1}, L_{2}, \ldots, L_{x}$, for some integer x
- Each list has a special head and tail node, the keys of these nodes are assumed to be -MAXNUM and +MAXNUM respectively
- The keys in each list are in sorted order (non-decreasing)

Skip List

- Every node is stored in the bottom list
- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists
- Each node v stores a search key $(\operatorname{key}(v))$, a pointer to its next lower copy (down (v)), and a pointer to the next node in its level (right (v)).

Example

Search

- To do a search for a key, x, we start at the leftmost node L in the highest level
- We then scan through each level as far as we can without passing the target value x and then proceed down to the next level
- The search ends either when we find the key x or fail to find x on the lowest level

Search

```
SkipListFind(x, L){
    v = L;
    while (v != NULL) and (Key(v) != x){
        if (Key(Right(v)) > x)
            v = Down(v);
        else
            v = Right(v);
    }
return v;
}
```


Search Example

Insert

coin() returns " heads" with probability $1 / 2$

```
Insert(k){
First call Search(k), let pLeft be the leftmost elem <= k in L_1
Insert k in List 0, to the right of pLeft
i = 1;
while (coin() = "heads"){
    insert k in List i;
    i++;
}
```


Deletion

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to "zip up" the lists after the deletion

Analysis

- Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$
- Similarly, each time we add another level, we cut the search time in half except for a constant overhead
- So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$
- We will now formalize these two intuitive observations

Height of Skip List

- For some key, k, let X_{k} be the maximum height of k in the skip list.
- Q: What is the probability that $X_{k} \geq 2 \log n$?
- A: If $p=1 / 2$, we have:

$$
\begin{aligned}
P\left(X_{k} \geq 2 \log n\right) & =\left(\frac{1}{2}\right)^{2 \log n} \\
& =\frac{1}{\left(2^{\log n}\right)^{2}} \\
& =\frac{1}{n^{2}}
\end{aligned}
$$

- Thus the probability that a particular key k achieves height $2 \log n$ is $\frac{1}{n^{2}}$

New Tool: Union Bound

Given two events E_{1} and E_{2},

$$
\operatorname{Pr}\left(E_{1} \cup E_{2}\right) \leq \operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)
$$

Proof:

$$
\begin{aligned}
\operatorname{Pr}\left(E_{1} \cup E_{2}\right) & =\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)-\operatorname{Pr}\left(E_{1} \cap E_{2}\right) \\
& \leq \operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)
\end{aligned}
$$

Generalizing to n events, we have that:

$$
\operatorname{Pr}\left(\cup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)
$$

Height of Skip List

- Q: What is the probability that any key achieves height $2 \log n ?$
- A: We want

$$
P\left(X_{1} \geq 2 \log n \text { or } X_{2} \geq 2 \log n \text { or } \ldots \text { or } X_{n} \geq 2 \log n\right)
$$

- By a Union Bound, this probability is no more than

$$
P\left(X_{1} \geq 2 \log n\right)+P\left(X_{2} \geq 2 \log n\right)+\cdots+P\left(X_{n} \geq 2 \log n\right)
$$

- Which equals:

$$
\sum_{i=1}^{n} \frac{1}{n^{2}}=\frac{n}{n^{2}}=1 / n
$$

Height of Skip List

- This probability gets small as n gets large
- In particular, the probability of having a skip list of height exceeding $2 \log n$ is $o(1)$
- If an event occurs with probability $1-o(1)$, we say that it occurs with high probability
- Key Point: The height of a skip list is $O(\log n)$ with high probability.

In-Class Exercise Trick

A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

$$
E(X)=\sum_{i=1}^{n} P(X \geq i)
$$

Why?

$$
\begin{aligned}
\sum_{i=1}^{n} P(X \geq i) & =P(X=1)+P(X=2)+P(X=3)+\ldots \\
& +P(X=2)+P(X=3)+P(X=4)+\ldots \\
& +P(X=3)+P(X=4)+P(X=5)+\ldots \\
& +\ldots \\
& =1 \operatorname{Pr}(X=1)+2 \operatorname{Pr}(X=2)+3 \operatorname{Pr}(X=3)+\ldots \\
& =E(X)
\end{aligned}
$$

In-Class Exercise

Q: How much memory do we expect a skip list to use up?

- Let X_{k} be the number of lists that key k is inserted in.
- Q: What is $P\left(X_{k} \geq 1\right), P\left(X_{k} \geq 2\right), P\left(X_{k} \geq 3\right)$?
- Q: What is $P\left(X_{k} \geq i\right)$ for $i \geq 1$?
- Q: What is $E\left(X_{k}\right)$?
- Q: Let $X=\sum_{k=1}^{n} X_{k}$. What is $E(X)$?

Search Time

- Its easier to analyze the search time if we imagine running the search backwards
- Imagine that we start at the found node v in the bottommost list and we trace the path backwards to the top leftmost senitel, L
- This will give us the length of the search path from L to v which is the time required to do the search

SLFback(v) \{

$$
\begin{gathered}
\text { while (v != L) \{ } \\
\text { if (Up(v)!=NIL) } \\
\text { v = Up(v); } \\
\text { else } \\
\text { v = Left (v); }
\end{gathered}
$$

\}\}

Backward Search

- For every node v in the skip list $\mathrm{Up}(\mathrm{v})$ exists with probability $1 / 2$. So for purposes of analysis, SLFBack is the same as the following algorithm:

```
FlipWalk(v){
    while (v != L){
        if (COINFLIP == HEADS)
        v = Up(v);
        else
            v = Left(v);
}}
```


Analysis

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails
- Thus the expected run time of the algorithm is twice the expected number of upward jumps
- Since we already know that the number of upward jumps is $O(\log n)$ with high probability, we can conclude that the expected search time is $O(\log n)$

Bloom Filters

- Randomized data structure for representing a set. Implements:
- Insert(x) :
- IsMember(x) :
- Allow false positives but require very little space
- Used frequently in: Databases, networking problems, p2p networks, packet routing

Bloom Filters

- Have m slots, k hash functions, n elements; assume hash functions are all independent
- Each slot stores 1 bit, initially all bits are 0
- Insert(x): Set the bit in slots $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ to 1
- IsMember(x) : Return yes iff the bits in $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ are all 1

Analysis Sketch

- m slots, k hash functions, n elements; assume hash functions are all independent
- Then $P($ fixed slot is still 0$)=(1-1 / m)^{k n}$
- Useful fact from Taylor expansion of e^{-x} :

$$
e^{-x}-x^{2} / 2 \leq 1-x \leq e^{-x} \text { for } x<1
$$

- Then if $x \leq 1$

$$
e^{-x}\left(1-x^{2}\right) \leq 1-x \leq e^{-x}
$$

Analysis

- Thus we have the following to good approximation.

$$
\begin{aligned}
\operatorname{Pr}(\text { fixed slot is still } 0) & =(1-1 / m)^{k n} \\
& \approx e^{-k n / m}
\end{aligned}
$$

- Let $p=e^{-k n / m}$ and let ρ be the fraction of 0 bits after n elements inserted then

$$
\operatorname{Pr}(\text { false positive })=(1-\rho)^{k} \approx(1-p)^{k}
$$

- Where this last approximation holds because ρ is very close to p (by a Martingale argument beyond the scope of this class)

Analysis

- Want to minimize $(1-p)^{k}$, which is equivalent to minimizing $g(p)=k \ln (1-p)$
- Trick: Note that $g(p)=-(m / n) \ln (p) \ln (1-p)$
- By symmetry, this is minimized when $p=1 / 2$ or equivalently $k=(m / n) \ln 2$
- False positive rate is then $(1 / 2)^{k} \approx(.6185)^{m / n}$

Tricks

- Can get the union of two sets by just taking the bitwise-or of the bit-vectors for the corresponding Bloom filters
- Can easily half the size of a bloom filter - assume size is power of 2 then just bitwise-or the first and second halves together
- Can approximate the size of the intersection of two sets inner product of the bit vectors associated with the Bloom filters is a good approximation to this.

Extensions

- Counting Bloom filters handle deletions: instead of storing bits, store integers in the slots. Insertion increments, deletion decrements.
- Bloomier Filters: Also allow for data to be inserted in the filter - similar functionality to hash tables but less space, and the possibility of false positives.

Data Streams

- A router forwards packets through a network
- A natural question for an administrator to ask is: what is the list of substrings of a fixed length that have passed through the router more than a predetermined threshold number of times
- This would be a natural way to try to, for example, identify worms and spam
- Problem: the number of packets passing through the router is *much* too high to be able to store counts for every substring that is seen!

Data Streams

- This problem motivates the data stream model
- Informally: there is a stream of data given as input to the algorithm
- The algorithm can take at most one pass over this data and must process it sequentially
- The memory available to the algorithm is much less than the size of the stream
- In general, we won't be able to solve problems exactly in this model, only approximate

Our Problem

- We are presented with a stream of items i
- We want to get a good approximation to the value Count(i,T), which is the number of times we have seen item i up to time T

Count-Min Sketch

- Our solution will be to use a data structure called a CountMin Sketch
- This is a randomized data structure that will keep approximate values of Count(i,T)
- It is implemented using k hash functions and m counters

Count-Min Sketch

- Think of our m counters as being in a 2-dimensional array, with m / k counters per row and k rows
- Let $C_{a, b}$ be the counter in row a and column b
- Our hash functions map items from the universe into counters
- In particular, hash function h_{a} maps item i to counter $C_{a, h_{a}(i)}$

Updates

- Initially all counters are set to 0
- When we see item i in the data stream we do the following
- For each $1 \leq a \leq k$, increment $C_{a, h_{a}(i)}$

Count Approximations

- Let $C_{a, b}(T)$ be the value of the counter $C_{a, b}$ after processing T tuples
- We approximate Count(i, T) by returning the value of the smallest counter associated with i
- Let $m(i, T)$ be this value

Analysis

Theorem: For any $\epsilon>0$, we can design a Count-Min sketch such that the following hold:

- For every item $i, m(i, T) \geq \operatorname{Count}(\mathrm{i}, \top)$
- With probability at least $1-e^{-m \epsilon / e}$, for every item i :

$$
m(i, T) \leq \operatorname{Count}(\mathrm{i}, \top)+\epsilon T
$$

Proof

- Easy to see that $m(i, T) \geq \operatorname{Count}(\mathrm{i}, \top)$, since each counter $C_{a, h_{a}(i)}$ incremented by c_{t} every time pair $\left(i, c_{t}\right)$ is seen
- Hard Part: Showing $m(i, T) \leq \operatorname{Count}(\mathrm{i}, \top)+\epsilon T$.
- To see this, we will first consider the specific counter $C_{1, h_{1}(i)}$ and then use symmetry.

Proof

- Let Z_{1} be a random variable giving the amount the counter is incremented by items other than i
- Let X_{t} be an indicator r.v. that is 1 if j is the t-th item, and $j \neq i$ and $h_{1}(i)=h_{1}(j)$
- Then $Z_{1}=\sum_{t=1}^{T} X_{t}$
- But if the hash functions are "good", then if $i \neq j$, $\operatorname{Pr}\left(h_{1}(i)=h_{1}(j)\right)=k / m$ (specifically, we need the hash functions to come from a 2-universal family, but we won't get into that in this class)
- Hence, $E\left(X_{t}\right)=k / m$

Proof

- Thus, by linearity of expectation, we have that:

$$
\begin{align*}
E\left(Z_{1}\right) & \leq \sum_{t=1}^{T}(k / m) \tag{1}\\
& =T k / m
\end{align*}
$$

- We now need to make use of a very important inequality: Markov's inequality

Markov's Inequality

- Let X be a random variable that only takes on non-negative values
- Then for any $\lambda>0$:

$$
\operatorname{Pr}(X \geq \lambda) \leq E(X) / \lambda
$$

- Proof of Markov's: Assume instead that there exists a λ such that $\operatorname{Pr}(X \geq \lambda)$ was actually larger than $E(X) / \lambda$
- But then the expected value of X would be at least $\lambda \operatorname{Pr}(X \geq \lambda)>E(X)$, which is a contradiction!!!

Proof

- Now, by Markov's inequality,

$$
\operatorname{Pr}\left(Z_{1} \geq \epsilon T\right) \leq \frac{T k / m}{\epsilon T}=\frac{k}{m \epsilon}
$$

- This is the event where Z_{1} is "bad" for item i.

Proof (Cont'd)

- Now again assume our k hash functions are "good" in the sense that they are independent
- Then we have that

$$
\prod_{i=1}^{k} \operatorname{Pr}\left(Z_{j} \geq \epsilon T\right) \leq\left(\frac{k}{m \epsilon}\right)^{k}
$$

Proof

- Finally, we want to choose a k that minimizes $f(k)=\left(\frac{k}{m \epsilon}\right)^{k}$
- Note that $\frac{\partial f}{\partial k}=\left(\frac{k}{m \epsilon}\right)^{k}\left(\ln \frac{k}{m \epsilon}+1\right)$
- From this, we can see that the probability is minimized when $k=m \epsilon / e$, in which case:

$$
\left(\frac{k}{m \epsilon}\right)^{k}=e^{-m \epsilon / e}
$$

Recap

- Our Count-Min Sketch is very good at giving estimating counts of items with very little external space
- Tradeoff is that it only provides approximate counts, but we can bound the approximation!
- Note: Can use the Count-Min Sketch to keep track of all the items in the stream that occur more than a given threshold ("heavy hitters")
- Basic idea is to store an item in a list of "heavy hitters" if its count estimate ever exceeds some given threshold

