
CS 561, Single Source Shortest Paths

Jared Saia

University of New Mexico

Today’s Outline

“The path that can be trodden is not the enduring and unchang-

ing Path. The name that can be named is not the enduring and

unchanging Name.” - Tao Te Ching

• BFS and DFS

• Single Source Shortest Paths

• Dijkstra’s Algorithm

• Bellman-Ford Algoriithm

1

Generic Traverse

Traverse(s){

put (nil,s) in bag;

while (the bag is not empty){

take some edge (p,v) from the bag

if (v is unmarked)

mark v;

parent(v) = p;

for each edge (v,w) incident to v{

put (v,w) into the bag;

}

}

}

}

2

DFS and BFS

• If we implement the “bag” by using a stack, we have Depth

First Search

• If we implement the “bag” by using a queue, we have Breadth

First Search

3

Analysis

• Note that if we use adjacency lists for the graph, the overhead

for the “for” loop is only a constant per edge (no matter how

we implement the bag)

• If we implement the bag using either stacks or queues, each

operation on the bag takes constant time

• Hence the overall runtime is O(|V |+ |E|) = O(|E|)

4

DFS vs BFS

• Note that DFS trees tend to be long and skinny while BFS

trees are short and fat

• In addition, the BFS tree contains shortest paths from the

start vertex s to every other vertex in its connected compo-

nent. (here we define the length of a path to be the number

of edges in the path)

5

Final Note

• Now assume the edges are weighted

• If we implement the “bag” using a priority queue, always

extracting the minimum weight edge from the bag, then we

have a version of Prim’s algorithm

• Each extraction from the “bag” now takes O(log |E|) time

so the total running time is O(|V |+ |E| log |E|)

6

Example

a

b

e

d

f

c

a

b

e

d

f

c

depth-first spanning tree and a breadth-first spanning tr
A depth-first spanning tree and a breadth-first spanning tree

of one component of the example graph, with start vertex a.

7

Searching Disconnected Graphs

If the graph is disconnected, then Traverse only visits nodes in

the connected component of the start vertex s. If we want to

visit all vertices, we can use the following “wrapper” around

Traverse

TraverseAll(){

for all vertices v{

if (v is unmarked){

Traverse(v);

}

}

}

8

DFS and BFS

• Note that we can do DFS and BFS equally well on undirected

and directed graphs

• If the graph is undirected, there are two types of edges in G:

edges that are in the DFS or BFS tree and edges that are

not in this tree

• If the graph is directed, there are several types of edges

9

DFS in Directed Graphs

• Tree edges are edges that are in the tree itself

• Back edges are those edges (u, v) connecting a vertex u to

an ancestor v in the DFS tree

• Forward edges are nontree edges (u, v) that connect a vertex

u to a descendant in a DFS tree

• Cross edges are all other edges. They go between two ver-

tices where neither vertex is a descendant of the other

10

Acyclic graphs

• Useful Fact: A directed graph G is acyclic if and only if a

DFS of G yields no back edges

• Challenge: Try to prove this fact.

11

Take Away

• BFS and DFS are two useful algorithms for exploring graphs

• Each of these algorithms is an instantiation of the Traverse

algorithm. BFS uses a queue to hold the edges and DFS

uses a stack

• Each of these algorithms constructs a spanning tree of all

the nodes which are reachable from the start node s

12

Shortest Paths Problem

• Another interesting problem for graphs is that of finding

shortest paths

• Assume we are given a weighted directed graph G = (V,E)

with two special vertices, a source s and a target t

• We want to find the shortest directed path from s to t

• In other words, we want to find the path p starting at s and

ending at t minimizing the function

w(p) =

e∈p
w(e)

13

Example

• Imagine we want to find the fastest way to drive from Albu-

querque,NM to Seattle,WA

• We might use a graph whose vertices are cities, edges are

roads, weights are driving times, s is Albuquerque and t is

Seattle

• The graph is directed since driving times along the same

road might be different in different directions (e.g. because

of construction, speed traps, etc)

14

SSSP

• Every algorithm known for solving this problem actually solves

the following more general single source shortest paths or

SSSP problem:

• Find the shortest path from the source vertex s to every

other vertex in the graph

• This problem is usually solved by finding a shortest path tree

rooted at s that contains all the desired shortest paths

15

Shortest Path Tree

• It’s not hard to see that if the shortest paths are unique,

then they form a tree

• To prove this, we need only observe that the sub-paths of

shortest paths are themselves shortest paths

• If there are multiple shortest paths to the same vertex, we

can always choose just one of them, so that the union of the

paths is a tree

• If there are shortest paths to two vertices u and v which

diverge, then meet, then diverge again, we can modify one

of the paths so that the two paths diverge once only.

16

Example

s

u

v

a

b c

d

x y

If s → a → b → c → d → v and s → a → x → y → d → u are both

shortest paths,

then s → a → b → c → d → u is also a shortest path.

17

MST vs SPT

• Note that the minimum spanning tree and shortest path tree

can be different

• For example, there exist graphs which have only one MST,

but multiple shortest path trees (one for every source vertex)

18

Example

8 5

10

2 3

18 16

12

14

30

4 26

8 5

10

2 3

18 16

12

14

30

4 26

A minimum spanning tree (left) and a shortest path tree rooted at the
topmost vertex (right).

19

Negative Weights

• We’ll actually allow negative weights on edges

• The presence of a negative cycle might mean that there is

no shortest path

• A shortest path from s to t exists if and only if there is at

least one path from s to t but no path from s to t that

touches a negative cycle

• In the following example, there is no shortest path from s to t

s t5

2 !8

4 1

3

20

SSSP Algorithms

• We’ll now go over some algorithms for SSSP on directed

graphs.

• These algorithms will work for undirected graphs with slight

modification

• In particular, we must specifically prohibit alternating back

and forth across the same undirected negative-weight edge

• Like for graph traversal, all the SSSP algorithms will be spe-

cial cases of a single generic algorithm

21

SSSP Algorithms

Each vertex v in the graph will store two values which describe

a tentative shortest path from s to v

• dist(v) is the length of the tentative shortest path between

s and v

• pred(v) is the predecessor of v in this tentative shortest path

• The predecessor pointers automatically define a tentative

shortest path tree

22

Defns

Initially we set:

• dist(s) = 0, pred(s) = NULL

• For every vertex v ∕= s, dist(v) = ∞ and pred(v) = NULL

23

Relaxation

• We call an edge (u, v) tense if dist(u) + w(u, v) < dist(v)

• If (u, v) is tense, then the tentative shortest path from s to

v is incorrect since the path s to u and then (u, v) is shorter

• Our generic algorithm repeatedly finds a tense edge in the

graph and relaxes it

• If there are no tense edges, our algorithm is finished and we

have our desired shortest path tree

24

Relax

Relax(u,v){

dist(v) = dist(u) + w(u,v);

pred(v) = u;

}

25

Correctness

• The correctness of the relaxation algorithm follows directly

from three simple claims

• The run time of the algorithm will depend on the way that

we make choices about which edges to relax

26

Claim 1

• CLAIM 1: If dist(v) ∕= ∞, then dist(v) is the total weight of

the predecessor chain ending at v:

s → · · · → pred(pred(v)) → pred(v) → v.

• This is easy to prove by induction on the number of edges in

the predecessor chain path from s to v. (left as an exercise)

27

Claim 2

• CLAIM 2: If the algorithm halts, then dist(v) ≤ w(s ❀ v) for

any path s ❀ v.

• This is easy to prove by induction on the number of edges

in the path s ❀ v. (left as an exercise)

28

Claim 3

• CLAIM 3: The algorithm halts if and only if there is no

negative cycle reachable from s.

• The ‘only if’ direction is easy—if there is a reachable negative

cycle, then after the first edge in the cycle is relaxed, the

cycle always has at least one tense edge.

• The ‘if’ direction follows from the fact that every relaxation

step reduces either the number of vertices with dist(v) = ∞
by 1 or reduces the sum of the finite shortest path lengths

by some positive amount.

29

Generic SSSP

• We haven’t yet said how to detect which edges can be relaxed

or what order to relax them in

• The following Generic SSSP algorithm answers these ques-

tions

• We will maintain a “bag” of vertices initially containing just

the source vertex s

• Whenever we take a vertex u out of the bag, we scan all of

its outgoing edges, looking for something to relax

• Whenever we successfully relax an edge (u, v), we put v in

the bag

30

InitSSSP

InitSSSP(s){

dist(s) = 0;

pred(s) = NULL;

for all vertices v != s{

dist(v) = infinity;

pred(v) = NULL;

}

}

31

GenericSSSP

GenericSSSP(s){

InitSSSP(s);

put s in the bag;

while the bag is not empty{

take u from the bag;

for all edges (u,v){

if (u,v) is tense{

Relax(u,v);

put v in the bag;

}

}

}

}

32

Generic SSSP

• Just as with graph traversal, using different data structures

for the bag gives us different algorithms

• Some obvious choices are: a stack, a queue and a heap

• Unfortunately if we use a stack, we need to perform Θ(2|E|)
relaxation steps in the worst case (an exercise for the diligent

student)

• The other possibilities are more efficient

33

Diskstra’s Algorithm

• If we implement the bag as a heap, where the key of a vertex

v is dist(v), we obtain Dijkstra’s algorithm

• Dijkstra’s algorithm does particularly well if the graph has no

negative-weight edges

• In this case, it’s not hard to show (by induction, of course

- see next slides) that the vertices are scanned in increasing

order of their shortest-path length from s

• It follows that each vertex is scanned at most once, and thus

that each edge is relaxed at most once

34

Inductive Proof

• We assume there are no negative edge weights

• GOAL: (1) Dijkstra’s algorithm scans vertices in increasing

order of their shortest path length from s; and (2) before it

scans a vertex, the dist value of that vertex is correct i.e. it

is the shortest path length from s to that vertex.

• Assume the vertices are labelled 1,2, . . . n by increasing order

of shortest path length from s. We break ties in this sorting

the same way that Dijkstra’s breaks ties in removing vertices

from the heap.

• We’ll fix a graph G, and show our goal by induction on x,

the label of the vertices in the above ordering.

35

Inductive Proof

• BC: x = 1: Dijkstra’s scans the vertex s first. s is the vertex
labelled 1 in our sorted list. The dist value of s is 0.

• IH: For all j < x, (1) Dijkstra’s algorithm scans vertices
1,2, . . . , j in increasing order of their shortest path length;
and (2) the dist values for all these vertices are set correctly
when the vertices are scanned.

• IS: Consider the vertex labelled x. The vertex x has a parent
in the final shortest path tree that has some label p, where
p < x. Since p < x, by the IH: (1) p was scanned before x;
and (2) the dist value of p was correct when p was scanned.
Hence, when the edge p → x was relaxed, the dist value of x

was set correctly. Thus, dist(x) is correct when x is scanned.

Also, the dist values of vertices with labels more than x must
be greater than or equal to dist(x), after vertices 1, . . . , x− 1
have been scanned, since dist values are at least equal to
shortest path lengths. Thus, x is scanned right after the
vertex with label x− 1.

36

Dijktra’s Algorithm Runtime

• Since the key of each vertex in the heap is its tentative dis-

tance from s, the algorithm performs a DecreaseKey opera-

tion every time an edge is relaxed

• Thus the algorithm performs at most |E| DecreaseKey’s

• Similarly, there are at most |V | Insert and ExtractMin oper-

ations

• Thus if we store the vertices in a Fibonacci heap, the total

running time of Dijkstra’s algorithm is O(|E|+ |V | log |V |)

37

Negative Edges

• This analysis assumes that no edge has negative weight

• The algorithm given here is still correct if there are negative

weight edges but the worst-case run time could be exponen-

tial

• The algorithm in our text book gives incorrect results for

graphs with negative edges (which they make clear)

38

Example

1

3 2

0 5

10 12

8

4

6 3

7

s

!

!

!

!

4

3

1

3 2

0 5

10 12

8

4

6 3

7

s

0

!

!

!

!

!

!

1

3 2

0 5

10 12

8

4

6 3

7

s

!

!

!

4

3

12

1

3 2

0 5

10 12

8

4

6 3

7

s

!

!

4

3

94
1

3 2

0 5

10 12

8

4

6 3

7

s

4

3

94

7

14

0 0

0 0

phases of Dijkstra’s algorithm run on a graph with no negative

15

Four phases of Dijkstra’s algorithm run on a graph with no negative edges.
At each phase, the shaded vertices are in the heap, and the bold vertex has

just been scanned.
The bold edges describe the evolving shortest path tree.

39

Bellman-Ford

• If we replace the bag in the GenericSSSP with a queue, we

get the Bellman-Ford algorithm

• Bellman-Ford is efficient even if there are negative edges

and it can be used to quickly detect the presence of negative

cycles

• If there are no negative edges, however, Dijkstra’s algorithm

is faster than Bellman-Ford

40

Analysis

• The easiest way to analyze this algorithm is to break the

execution into phases

• Before we begin the alg, we insert a token into the queue

• Whenever we take the token out of the queue, we begin a

new phase by just reinserting the token into the queue

• The 0-th phase consists entirely of scanning the source vertex

s

• The algorithm ends when the queue contains only the token

41

Invariant

• A simple inductive argument (left as an exercise) shows the

following invariant:

• At the end of the i-th phase, for each vertex v, dist(v) is

less than or equal to the length of the shortest path s ❀ v

consisting of i or fewer edges

42

Example

!2

1

2

0 5

4

6 3

s

0

!3

!18

a

b

c

d

e

f
1

2

0 5

4

6 3

s

0

!3

!18

a

b

c

d

e

f

1

2

0 5

4

6 3

s

0

!

!3

!18

a

b

c

d

e

f
1

2

0 5

4

6 3

s

0

!

!

!

!

!

! !3

!18

a

b

c

d

e

f
1

2

0 5

4

6 3

s

0

!

!

!

!3

!18

a

b

c

d

e

f

6

4

3 6

2

3

74

3

2

2 7

9

!8!8

!8!8!8

!3 !3

!3 !3

!3

1

9

7

2

3

1

Four phases of Bellman-Ford’s algorithm run on a directed

graph with negative edges.

Nodes are taken from the queue in the order

s ⋄ a b c ⋄ d f b ⋄ a e d ⋄ d a ⋄ ⋄, where ⋄ is the token.

Shaded vertices are in the queue at the end of each phase.

The bold edges describe the evolving shortest path tree.

43

Analysis

• Since a shortest path can only pass through each vertex once,

either the algorithm halts before the |V |-th phase or the graph

contains a negative cycle

• In each phase, we scan each vertex at most once and so we

relax each edge at most once

• Hence the run time of a single phase is O(|E|)
• Thus, the overall run time of Bellman-Ford is O(|V ||E|)

44

Book Bellman-Ford

• Now that we understand how the phases of Bellman-Ford

work, we can simplify the algorithm

• Instead of using a queue to perform a partial BFS in each

phase, we will just scan through the adjacency list directly

and try to relax every edge in the graph

• This will be much closer to how the textbook presents Bellman-

Ford

• The run time will still be O(|V ||E|)
• To show correctness, we’ll have to show that our earlier in-

variant holds which can be proved by induction on i

45

Book Bellman-Ford

Book-BF(s){

InitSSSP(s);

repeat |V| times{

for every edge (u,v) in E{

if (u,v) is tense{

Relax(u,v);

}

}

}

for every edge (u,v) in E{

if (u,v) is tense, return ‘‘Negative Cycle’’

}

}

46

Take Away

• Dijkstra’s algorithm and Bellman-Ford are both variants of

the GenericSSSP algorithm for solving SSSP

• Dijkstra’s algorithm uses a Fibonacci heap for the bag while

Bellman-Ford uses a queue

• Dijkstra’s algorithm runs in time O(|E|+ |V | log |V |) if there

are no negative edges

• Bellman-Ford runs in time O(|V ||E|) and can handle negative

edges (and detect negative cycles)

47

