
CS 591, Lecture 20

Jared Saia

University of New Mexico

Class Outline

• Presentations - Good Job!!

• Smoothed Analysis Intro

• Smoothed Analysis of Shortest Path Problem

1

Smoothed Analysis Intro

Motivation:

• Worst Case Analysis is too hard - typical instances of real-

world problems are not at all similar to the worst case

• Average Case Analysis is too easy - a “random” instance of

a problem is usually not a typical instance

• Smoothed Analysis is just right - combines the difficulty of

worst case analysis with the easiness of average case analysis

2

Smoothed Analysis

• The smoothed complexity of an algorithm is

maxxEy∈Nε(x)C(y)

• x ranges over all inputs, y is a random instance in a neighbor-

hood of x (whose size depends on the smoothing parameter

ε), C(y) is the cost of running the algorithm on y and E

denotes expectation

• As ε gets small, the smoothed complexity approaches worst

case complexity; as ε gets large, smoothed complexity ap-

proaches best case complexity

3

Most Famous Result (so far)

• The smoothed complexity of the simplex algorithm for linear

programming is polynomial (even though the worst case run

time of the simplex algorithm is exponential!)

• Linear programming is a continuous problem where the input

is continuous numbers

• Smoothing operation adds Gaussian noise with parameter ε

to each number in the input

• Running time is polynomial with the degree of the polynomial

depending on 1/ε

4

Problems

• Most known results on smoothed analysis are on continuous

problems

• Hard to know how to add “noise” to discrete problem

• We will discuss two ideas

5

Partial Bit Randomization

• Imagine we have a problem which involves the use of integers

• We parameterize the smoothness by an integer k

• For each integer, the last k bits are randomly modified

• We will use this analysis for the single source shortest paths

problem

6

Single Source Shortest Paths

• Given a graph with n vertices and m edges

• Edge weights are in [0,2K − 1] (K bit integers)

• Assume that addition, etc of integers can be done in constant

time

• Average complexity is known to be O(n+m) (assumes inte-

gers are all random)

• Worst case is known to be O(m+ nK)

7

Theorem: Smoothed Analysis

Theorem

• Let G be an arbitrary graph, c : E −→ [0, . . . ,2K − 1] be an

arbitrary cost function and let k be such that 0 ≤ k ≤ K
• Let c̄ be obtained from c by making the last k bits of each

edge cost random

• Then the single source shortest path problem can be solved

in expected time O(m+ n(K − k))

8

Proof

• For a node v, let MinInCost(v) be the minimum cost of any

incoming edge

• Goldberg has shown that the running time for his algorithm

is:

O(n+m+
∑

v
(K − log MinInCost(v) + 1)

9

Proof

• Note that MinInCost(v) is the minimum of din(v) number of

which the last k bits are random

• For an edge e, let r(e) be the number of leading zeros in the

random part of e.

• Note that E(r(e)) = 2. Why?

10

Proof

Thus we have:

K − log MinInCost(v) ≤ K − k + max
e∈inedges(v)

r(e) (1)

≤ K − k +
∑

e∈inedges(v)

r(e) (2)

Thus:

E(K − log MinInCost(v)) ≤ K − k +O(din(v))

and if we sum over all n vertices, the time bound follows.

11

Partial Permutations

• Smoothed Analysis model we’ll use for Quicksort is Partial

Permutations

• Parameterized by real number p : 0 ≤ p ≤ 1

• Select each element independently with probability p and let

m be the number of selected elements

• Take one of the m! permutations of m elements (uniformly

at random) and let it act on the selected elements.

12

QuickSort

• Theorem: Expected number of comparisons of quicksort is

4/p(1 + o(1))n log4/3 n

• To show this will involve several steps

• 1) We will calculate pi, the probability that the i-th position

is selected and yet unchanged by the permutation of selected

elements

• 2) For a fixed element, we will say a call of quicksort is

“good” if the subproblem containing the elem has less than

3/4 its original size

• 3) We’ll show that the probability a call is good is relatively

large (using the pi’s calculated in step 1), so that the total

number of expected calls is small

13

Some Notes

Review of quicksort:

• Choose a pivot element in the list, call it p

• Split the list into l1 and l2 where l1 is all elements less than

or equal to p and l2 is all elems greater than p

• Recursively sort l1 and l2

• Return the sorted list l1, p, l2

Note: Our version of quicksort just chooses the first element in

the list as the pivot element

14

pi

• Assume we have a list of x elements.

• Let pi be the probability that in the “smoothing”, the first

element is selected and filled with the i-th element

• Note that p1 is greater than pi for all i > 2

• But all the remaining pi (i > 1), are equal by symmetry

15

p1

p1 = p
∑

0≤j≤x−1

(x− 1

j

)
pj(1− p)x−1−j 1

j + 1
(3)

=
1

n

∑

0≤j≤x−1

(x

j + 1

)
pj+1(1− p)x−1−j (4)

=
1

n

∑

1≤j≤x

(x
j

)
pj(1− p)x−j (5)

=
1

n
(1− (1− p)x) (6)

16

pi

• By symmetry, p2 = p3 = · · · = px

• Hence we have

pi = (p− p1)/(x− 1) (7)

≥ p− 1/x

x− 1
(8)

17

Good Calls

We can now bound the runtime

• Consider a fixed element and say a call is “good” if the sub-

problem containing the element has less than 3/4 its original

size

• How many calls are needed until the elem is in some sub-

problem of constant size d?

• Number of good calls is bounded by log4/3 n!

18

Good Calls

• Q: What is the probability that a call is good?

• A: A call is good if the pivot (the first element) is among

the elements with rank x/4 to 3x/4 in the input list

• There are x/2 such elems which would make good pivots

• Each of these elems is the pivot with probability at least p2

• Hence the call is good with probability at least (x/2)p2 (events

that i-th elem chosen as pivot are mutually exclusive so can

sum probabilities)

19

Good Calls

x

2
p2 ≥

x

2
· p− 1/x

x− 1
(9)

≥ p− p/d
2

(10)

(11)

• The last equation follows provided that we choose d and

bound x such that p/d ≥ 1/x is always true

• Let π = p−p/d
2 be a lower bound on the probability a call is

good

• We need log4/3 n good calls

20

The End Game

• Expected number of calls to get log4/3 n good calls is π−1 log4/3 n

• Hence running time is no more than nπ−1 log4/3 n+dn where

dn is the total cost of the small calls

• Choosing the optimum value of d gives a running time of

4/p(1 + o(1))n log4/3 n

21

Conclusion

• Smoothed Analysis is a brand new and possibly very useful

way to analyze algorithms

• There are still many, many problems it hasen’t been tried on

yet

• Frequently, The challenge for discrete problems is figuring

out how to add in the “noise”

• Keep it in mind the next time you are trying to analyze a

“real world” problem

Good luck on Exams and Have a Great Winter Break!!! Enjoy

the good ski conditions!!!

22

