CS 591, Lecture 20

Jared Saia
University of New Mexico

Class Outline

- Presentations - Good Job!!
- Smoothed Analysis Intro
- Smoothed Analysis of Shortest Path Problem

Smoothed Analysis Intro

Motivation:

- Worst Case Analysis is too hard - typical instances of realworld problems are not at all similar to the worst case
- Average Case Analysis is too easy - a "random" instance of a problem is usually not a typical instance
- Smoothed Analysis is just right - combines the difficulty of worst case analysis with the easiness of average case analysis

Smoothed Analysis

- The smoothed complexity of an algorithm is

$$
\max _{x} E_{y \in N_{\epsilon}(x)} C(y)
$$

- x ranges over all inputs, y is a random instance in a neighborhood of x (whose size depends on the smoothing parameter $\epsilon), C(y)$ is the cost of running the algorithm on y and E denotes expectation
- As ϵ gets small, the smoothed complexity approaches worst case complexity; as ϵ gets large, smoothed complexity approaches best case complexity

Most Famous Result (so far)

- The smoothed complexity of the simplex algorithm for linear programming is polynomial (even though the worst case run time of the simplex algorithm is exponential!)
- Linear programming is a continuous problem where the input is continuous numbers
- Smoothing operation adds Gaussian noise with parameter ϵ to each number in the input
- Running time is polynomial with the degree of the polynomial depending on $1 / \epsilon$

Problems

- Most known results on smoothed analysis are on continuous problems
- Hard to know how to add "noise" to discrete problem
- We will discuss two ideas

Partial Bit Randomization

- Imagine we have a problem which involves the use of integers
- We parameterize the smoothness by an integer k
- For each integer, the last k bits are randomly modified
- We will use this analysis for the single source shortest paths problem

Single Source Shortest Paths

- Given a graph with n vertices and m edges
- Edge weights are in [0, $2^{K}-1$] (K bit integers)
- Assume that addition, etc of integers can be done in constant time
- Average complexity is known to be $O(n+m)$ (assumes integers are all random)
- Worst case is known to be $O(m+n K)$

Theorem: Smoothed Analysis

Theorem

- Let G be an arbitrary graph, $c: E \longrightarrow\left[0, \ldots, 2^{K}-1\right]$ be an arbitrary cost function and let k be such that $0 \leq k \leq K$
- Let \bar{c} be obtained from c by making the last k bits of each edge cost random
- Then the single source shortest path problem can be solved in expected time $O(m+n(K-k))$

Proof

- For a node v, let $\operatorname{MinInCost}(v)$ be the minimum cost of any incoming edge
- Goldberg has shown that the running time for his algorithm is:

$$
O\left(n+m+\sum_{v}(K-\log \operatorname{MinInCost}(v)+1)\right.
$$

Proof

- Note that $\operatorname{MinInCost}(v)$ is the minimum of $d_{i n}(v)$ number of which the last k bits are random
- For an edge e, let $r(e)$ be the number of leading zeros in the random part of e.
- Note that $E(r(e))=2$. Why?

Proof

Thus we have:

$$
\begin{align*}
K-\log \operatorname{MinInCost}(v) & \leq K-k+\max _{e \in \text { inedges }(v)} r(e) \tag{1}\\
& \leq K-k+\sum_{e \in \text { inedges }(v)} r(e) \tag{2}
\end{align*}
$$

Thus:

$$
E(K-\log \operatorname{MinInCost}(v)) \leq K-k+O\left(d_{i n}(v)\right)
$$

and if we sum over all n vertices, the time bound follows.

Partial Permutations

- Smoothed Analysis model we'll use for Quicksort is Partial Permutations
- Parameterized by real number $p: 0 \leq p \leq 1$
- Select each element independently with probability p and let m be the number of selected elements
- Take one of the m ! permutations of m elements (uniformly at random) and let it act on the selected elements.

QuickSort

- Theorem: Expected number of comparisons of quicksort is $4 / p(1+o(1)) n \log _{4 / 3} n$
- To show this will involve several steps
- 1) We will calculate p_{i}, the probability that the i-th position is selected and yet unchanged by the permutation of selected elements
- 2) For a fixed element, we will say a call of quicksort is "good" if the subproblem containing the elem has less than 3/4 its original size
- 3) We'll show that the probability a call is good is relatively large (using the p_{i} 's calculated in step 1), so that the total number of expected calls is small

Some Notes

Review of quicksort:

- Choose a pivot element in the list, call it p
- Split the list into $l 1$ and $l 2$ where $l 1$ is all elements less than or equal to p and $l 2$ is all elems greater than p
- Recursively sort $l 1$ and $l 2$
- Return the sorted list $l 1, p, l 2$

Note: Our version of quicksort just chooses the first element in the list as the pivot element

- Assume we have a list of x elements.
- Let p_{i} be the probability that in the "smoothing", the first element is selected and filled with the i-th element
- Note that p_{1} is greater than p_{i} for all $i>2$
- But all the remaining $p_{i}(i>1)$, are equal by symmetry

$$
\begin{align*}
p_{1} & =p \sum_{0 \leq j \leq x-1}\binom{x-1}{j} p^{j}(1-p)^{x-1-j} \frac{1}{j+1} \tag{3}\\
& =\frac{1}{n} \sum_{0 \leq j \leq x-1}\binom{x}{j+1} p^{j+1}(1-p)^{x-1-j} \tag{4}\\
& =\frac{1}{n} \sum_{1 \leq j \leq x}\binom{x}{j} p^{j}(1-p)^{x-j} \tag{5}\\
& =\frac{1}{n}\left(1-(1-p)^{x}\right) \tag{6}
\end{align*}
$$

- By symmetry, $p_{2}=p_{3}=\cdots=p_{x}$
- Hence we have

$$
\begin{align*}
p_{i} & =\left(p-p_{1}\right) /(x-1) \tag{7}\\
& \geq \frac{p-1 / x}{x-1} \tag{8}
\end{align*}
$$

Good Calls

We can now bound the runtime

- Consider a fixed element and say a call is "good" if the subproblem containing the element has less than $3 / 4$ its original size
- How many calls are needed until the elem is in some subproblem of constant size d ?
- Number of good calls is bounded by $\log _{4 / 3} n$!

Good Calls

- Q: What is the probability that a call is good?
- A: A call is good if the pivot (the first element) is among the elements with rank $x / 4$ to $3 x / 4$ in the input list
- There are $x / 2$ such elems which would make good pivots
- Each of these elems is the pivot with probability at least p_{2}
- Hence the call is good with probability at least $(x / 2) p_{2}$ (events that i-th elem chosen as pivot are mutually exclusive so can sum probabilities)

Good Calls

$$
\begin{align*}
\frac{x}{2} p_{2} & \geq \frac{x}{2} \cdot \frac{p-1 / x}{x-1} \tag{9}\\
& \geq \frac{p-p / d}{2} \tag{10}
\end{align*}
$$

- The last equation follows provided that we choose d and bound x such that $p / d \geq 1 / x$ is always true
- Let $\pi=\frac{p-p / d}{2}$ be a lower bound on the probability a call is good
- We need $\log _{4 / 3} n$ good calls

The End Game

- Expected number of calls to get $\log _{4 / 3} n$ good calls is $\pi^{-1} \log _{4 / 3} n$
- Hence running time is no more than $n \pi^{-1} \log _{4 / 3} n+d n$ where $d n$ is the total cost of the small calls
- Choosing the optimum value of d gives a running time of $4 / p(1+o(1)) n \log _{4 / 3} n$

Conclusion

- Smoothed Analysis is a brand new and possibly very useful way to analyze algorithms
- There are still many, many problems it hasen't been tried on yet
- Frequently, The challenge for discrete problems is figuring out how to add in the "noise"
- Keep it in mind the next time you are trying to analyze a "real world" problem

Good luck on Exams and Have a Great Winter Break!!! Enjoy the good ski conditions!!!

