Breaking the $O(n^2)$ Bit Barrier: Scalable Byzantine Agreement

Jared Saia, U. New Mexico
Joint with Valerie King, U. Victoria
Unreliable Components

- Imagine have a collection of chips, some of which are unreliable
- Goal: build a reliable computer
Unreliable Components

- Imagine having a collection of chips, some of which are unreliable

- Goal: build a reliable computer
Unreliable Components

- Imagine having a collection of chips, some of which are unreliable

- Goal: build a reliable computer
Unreliable Components

- Imagine having a collection of chips, some of which are unreliable.

- Goal: build a reliable computer network.
Unreliable Components

Imagine have a collection of chips, some of which are unreliable

Goal: build a reliable computer
Unreliable Components

- Imagine having a collection of chips, some of which are unreliable.
- Goal: build a reliable computer.
Unreliable Components

- Imagine having a collection of chips, some of which are unreliable.
- Goal: build a reliable computer.
Unreliable Components

- Imagine have a collection of chips, some of which are unreliable
- Goal: build a reliable computer
Components Fail,
Group Functions
Group Synchronization

- Periodically, all components must unite in action
- How? Idea: components vote on correct action
- Problem: How to count the votes?
Idea: Majority Voting
A Problem

Start

End

1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0

Sunday, October 17, 2010
Byzantine Agreement

- Each processor starts with a bit
- Goal: All good processors output a bit, that is the same as one of their initial bits
- \(t = \# \) bad processors controlled by an adversary
Problem Solved

Byzantine Agreement

Start

1
1
1
0
0
1
1
0

End

0
0
0
0
0
0
0
0

Sunday, October 17, 2010
Importance

- BA is *synchronization in complex systems*
 - How do fireflies, economic markets, ants, computer networks, bees, brains, immune systems function without a leader?
 - Sine qua non of robust computation
1982: FLP show that 1 fault makes deterministic BA impossible in asynch model

2007: Nancy Lynch wins Knuth Prize for this result, called “fundamental in all of Computer Science”
2,800 Cites Later

- Deterministic, Randomized
- Cryptography, No cryptography
- Synchronous, Asynchronous
- Adaptive, non-adaptive adversary
- Quantum, Shared Memory, Fault-Detectors, Sparse Network, Leader Election, Global Coin Toss, Etc., Etc.,
Large-Scale BA

- Peer-to-peer networks (Oceanstore, Farsite)
 “These replicas cooperate with one another in a **Byzantine agreement** protocol to choose the final commit order for updates.”

- Rule Enforcement
 “… requiring the manager set to perform a **Byzantine agreement protocol**”

- Game Theory (Mediators)
 “The proofs of the impossibility results bring out deep connections between implementing mediators and various agreement problems, such as **Byzantine agreement**”
Scalability

- “Unfortunately, Byzantine agreement requires a number of messages quadratic in the number of participants, so it is infeasible for use in synchronizing a large number of replicas” [REGZK ‘03]

- “Eventually batching cannot compensate for the quadratic number of messages [of Practical Byzantine Fault Tolerance (PBFT)]” [CMLRS ‘05]

- “The communication overhead of Byzantine Agreement is inherently large” [CWL ‘09]
Our Model

- Synchronous w/ rushing adversary
- Private channels
- Resilience: \(t < n(1/3-\varepsilon) \)
- Unlimited messages for bad procs
- Adaptive adversary
Our Goal: Scalable BA

- Polylog bits sent per processor
- Polylog rounds
Impossibility

- Any BA (randomized) protocol which always uses $o(n^2)$ messages will fail with probability > 0
- Implication of [Dolev, Reischuk ‘85]
Our results

Theorem 1 (BA): For any constants c, ε, there is a constant d and a $(1/3 - \varepsilon)n$ resilient protocol which solves BA with prob. $1 - 1/n^c$ using $\tilde{O}(n^{1/2})$ bits per processor in $O(\log^d n)$ rounds.
Also

Theorem 2: (a.e.BA) For any constants c, ε, there is a constant d and a $(1/3 - \varepsilon)$-resilient protocol which brings $1 - O(1/\log n)$ fraction of good procs to agreement with prob. $1 - 1/n^c$ using $\tilde{O}(1)$ bits per proc in $O(\log^d n)$ rounds.
Previous work

- An expected constant number of rounds suffice. (Feldman and Micali 1988)
- However, all previously known protocols use all-to-all communication
KEY IDEA:
Short somewhat random stream S

- $S = s_1 s_2 \ldots s_k$ is a short stream of numbers.
- Some a.e. globally known random numbers, some numbers fixed by an adversary which can see the preceding stream when choosing.
- S can be generated w.h.p.
Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Generating S
Rabin's BA with Global Coin, GC

\[\text{vote} \leftarrow b_i; \text{ Repeat } c \log n \text{ rounds:} \]

1. Send \(\text{vote}\) to all procs;

2. \(\text{maj} \leftarrow \text{majority bit from others;}\)

3. \(\text{fraction} \leftarrow \text{fraction of votes for } \text{maj};\)

4. If \(\text{fraction} \geq 2/3\) then \(\text{vote} \leftarrow \text{maj};\)

5. Else \(\text{vote} \leftarrow \text{GC};\)
Scalable a.e.BA w/ GC

- Use sampler to assign neighbors to procs
- Ensures almost all neighbor sets contain a representative fraction of good procs
- Thus almost all procs have correct maj when “frac with majority bit” > \(\frac{2}{3} + \frac{\epsilon}{2} \) and \(t < \frac{n}{3} - \epsilon \)

Sampler: Almost all nodes on right have majority good neighbors no matter how bad distributed
I: Using S to get a.e. BA

- Use S instead of GC --> a.e.BA whp
- For $i=1,...,k$, generate bit s_i
- Run a.e. BA using s_i for a.e.global coin
- It suffices that clogn bits of S are known a.e. and random
II: Using S to go from a.e. BA to BA

- Idea: Query random set of procs to ask bit. Since almost all good procs agree, majority should give correct answer.
- Problem: In our model, the adversary can flood all procs with queries!!
- Use s to decide which queries to answer.
II: Using S to go from a.e. BA to BA

Labels = \{1, \ldots, n^{1/2}\}

FOR each number s of $S=\text{Labels}^k$:

- Each proc. p picks $\tilde{O}(n^{1/2})$ random queries $<\text{proc},\text{label}>$ and sends label to proc.

- q answers only if label = s (and not overloaded)

- if 2/3 majority of p's queries with the same label are returned and agree on v, then p decides v.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with a RANDOM subsequence!
II: Using S to go from a.e. BA to BA

Labels $= \{1, \ldots, n^{1/2}\}$

FOR each number s of $S = \text{Labels}^k$:

- Each proc. p picks $\tilde{O}(n^{1/2})$ random queries $<\text{proc}, \text{label}>$ and sends label to proc.
- q answers only if label $= s$ (and not overloaded)
- if $2/3$ majority of p's queries with the same label are returned and agree on v, then p decides v.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with a RANDOM subsequence!
III Generating Sparse Network

- Arrays of Random Numbers
- Lightest Bin Algorithm
- Secret Sharing
Sparse Network

- Tree of supernodes of increasing size
- Linked: 1) child & parent; 2) parent & subtree leaves
- Links and Supernodes generated via samplers

Links: 1, 2, 3, 4, 5, 6, 7, 8, 9

Subtrees:
- 1, 2, 3, 4, 5, 6, 7, 8, 9
- 2, 4, 7, 8, 9
- 1, 2, 3, 5, 8, 9
- 1, 2, 3, 6, 8
- 3, 4, 2, 8, 6, 7
- Sunday, October 17, 2010
Elections

- Each proc p generates array A_p of random numbers and **secret shares** it with its leaf node.
- Numbers are revealed as needed to elect which parts of arrays will be passed on to parent node.
Election at a node

- Feige’s algorithm:
 1. Each candidate picks a bin uniformly at random;
 2. Winners are candidates in lightest bin

- Requires Agreement on all bin choices
How to run Feige?

- We use scalable a.e. BA
- Bin numbers and S given by winning arrays of children supernodes.
Splitting Secrets

- As winning array moves up, secret shares are split up among more and more procs on higher levels and erased from children.
- Thus, adversary can’t learn array by taking over small number of procs at lower levels.
Revealing Secrets

- Secrets revealed as needed: by reversing communication downward, reassembling shares at subtrees and leaves
- Thus, adversary can’t prevent secret from being exposed by blocking a single path
Revealing Secrets

- Leaves are sampled deterministically by procs in subtree root in order to learn the secret value
Generation of short S

- Only a polylog number of arrays are left at each of the polylog children of the root. These form S.

- When agreement on all of S is needed, a.e. BA can be run using supplemental bits.
Uses of S

- Easier to generate than a single random coinflip:
 - S can be generated w.h.p scalably in the full information nonadaptive adversary model

- A polylog size S has sufficient randomness to specify a set of n small quorums which are all good w.h.p

- Asynch alg w/nonadaptive adv
Past Scalable BA Results

- No crypto; Asynch communication; Non-adaptive Adv; $o(1)$ prob. failure:
 - Algorithm for BA that requires $\tilde{O}(\sqrt{n})$ bits per proc and polylog latency
 - Algorithm for almost-everywhere BA (all but $o(n)$ procs) that requires $\tilde{O}(1)$ bits per proc and polylog latency
Past Scalable Results (Same Assumptions)

Can solve following with $\tilde{O}(\sqrt{n})$ bits per proc and polylog latency

1. Leader Election: Leader good with constant prob

2. Quorum Selection
 - A good quorum has a majority of good procs
 - Can reach agreement on n good quorums
 - Balanced: No proc in more than $O(\log n)$ quorums
Future work

- Scalable **asynchronous** BA with **adaptive** adversary?
- $\tilde{O}(\sqrt{n})$ bandwidth is fundamental?
- Practical scalable BA
 - Reducing constant factors and polylog terms; Relaxing fault model: e.g. bad procs have limited bandwidth
FW (Cont’d)

- Robust & Scalable for other problems
 - Done: global coin toss, leader election, frequency counts
 - Todo: SMPC type result
- Handle churn
 - Idea: Robust & Scalable mapping of n procs to distinct id in $[1, (1 + \epsilon)n]$
FW: HP/Cloud Computing

- Want: Many local error-corrections instead of one big one
- Idea: Error Correcting Algorithms
- ECA: Computation as ECC: Data
Related Work

- Practical BA
- Amortized Robustness
- Scalable, Rational Secret Sharing
- Scalable, Rational Data Dissemination
Practical BA

Figure 8: Top: Log of number of nodes vs average number of bits sent; Bottom: Log of number of nodes vs log of average number of bits sent.

Other node in the network so the asymptotic number of messages sent per node is $O(n)$ This is in contrast to $\tilde{O}(\sqrt{n})$ for the same metric for our algorithm. The latency for the CKS algorithm is a constant in contrast to the latency for our algorithm which is $O(\log n)$. The CKS algorithm can tolerate a $1/3$ fraction of faulty processors. We emphasize that this is larger than the fraction of bad processors that can be tolerated by our algorithm as simulated here. However, our interest in scalable communication costs inclines us to consider tradeoffs of fault tolerance for scalability.

B. Experimental Results

The outcomes of our experiments are shown in Figures 7, 8, and 9. We note that in our experiments, the measured message complexity for the CKS algorithm varies predictably for different network sizes. This is true since the CKS algorithm requires every node to send messages to every other node in the network a fixed number of times and then always stops. In contrast, the number of messages that a given node sends in our algorithm is less predictable. All data points shown in all of our plots are the average over at least 5 trials.

Figure 7 (top) shows the log of the network size vs. average number of messages sent. This plot shows that our algorithm begins to display better performance at about $6\cdot10^4$ processors on this metric, and for networks much larger than this size, exhibits significant improvement over the CKS algorithm. Figure 7 (bottom) shows the log of the network size vs log of the average number of messages sent. Since this is a log-log plot, the slopes of the two lines fitting the data points give a good approximation to the exponents of n in the function giving the average message cost. Thus, as expected, in this plot the slope for the line for the CKS algorithm is approximately $1/2$. Moreover, as expected, the slope for our algorithm is about $1/2$, since the almost everywhere to everywhere part of the algorithm requires each node to send $\tilde{O}(n^{1/2})$ messages.

Figure 8 (top) shows the log of the network size vs the average number of bits sent. For this metric, our algorithm performs better than the CKS algorithm for all networks of size greater than about 10^4. This is due to the larger message sizes of the CKS algorithm because of its extensive use of cryptography. The bit complexity barely registers on the graph because of the resolution and since it is at most of the order of 10^8 bits. Figure 7 (bottom) shows the log of the network size vs log of the average number of messages sent. Again the CKS algorithm displays linear slope for this plot. However,,
Amortized Robustness

- Fool me once, shame on you. Fool me $\omega(\log n)$ times, shame on me.

- **Goal:** Limit adversarial corruption of messages in a communication network where a majority of nodes are good

- **Problem:** assigning fault when communication involves multiple processors
Scalable Rational Secret Sharing

- **Q:** How to enable secret sharing when every player is selfish: wanting to learn the secret, but preferring for others not to learn it?

- **Known:** Achieve with $O(n)$ bits per proc

- **Goal:** Achieve with $O(\log n)$ bits per proc

- Application: Mediation in game theory
Rational Gossiping

- Want to disseminate a large file to large set of players
- File is broken into pieces, sent by a seeder
- Each player is selfish
 - Only shares pieces if in best interest
 - Leaves when it receives all the pieces
Collaborators

- Current Students: Olumuyiwa Oluwasanmi, Jeffrey Knockel, Yamel Torres-Rodriguez, Nathan Hjelmn

- Former Students
 - PhD: Vishal Sanwalani (Waterloo/MSR), Amitabh Trehan (Technion), Navin Rustagi (Rice)
 - Masters: Maxwell Young (Waterloo), Bo Wu (Microsoft)
 - Non-students: Valerie King (U. Victoria), Varsha Dasani (UNM), Jim Aspnes (Yale), David Kempe (USC), Erik Vee (Yahoo Research)
Questions?