
From almost everywhere to everywhere:
Byzantine agreement with Õ(n3/2) bits

Valerie King1 and Jared Saia2

1 Dept. of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

val@uvic.ca

This research was supported by NSERC
2 Department of Computer Science, University of New Mexico

Albuquerque, NM 87131-1386
saia@cs.unm.edu

This research was partially supported by NSF CAREER Award 0644058

and NSF CCR-0313160 Award.

Abstract. We address the problem of designing distributed algorithms
for large scale networks that are robust to Byzantine faults. We consider
a message passing, full information synchronous model: the adversary is
malicious, controls a constant fraction of processors, and can view all
messages in a round before sending out its own messages for that round.
Furthermore, each corrupt processor may send an unlimited number of
messages. The only constraint on the adversary is that it must choose
its corrupt processors at the start, without knowledge of the processors’
private random bits. To the authors’ best knowledge, there have been no
protocols for such a model that compute Byzantine agreement without
all-to-all communication, even if private channels or cryptography are
assumed, unless corrupt processors’ messages are limited.
In this paper, we give a polylogarithmic time algorithm to agree on a
small representative committee of processors using only Õ(n3/2) total
bits which succeeds with high probability. This representative set can
then be used to efficiently solve Byzantine agreement, leader election, or
other problems. This work extends the authors’ work on scalable almost
everywhere agreement.

1 Introduction

Increases in frequency, speed and severity of attacks on the Internet have led to
a resurgence of interest in the Byzantine fault model for very large networks, see
for example [3, 14]. The goal of this work is to address the problem of designing
distributed algorithms for large scale networks that are robust to Byzantine
faults.

Our paper concerns the well-studied message-passing model: n processors
are in a fully connected network and a malicious adversary with full information
controls less than a 1/3− ε fraction of these processors, where ε is any positive
constant. Our main contribution is to show that randomization can be used to
break the 1985 Ω(n2) barrier [4] for message and bit complexity for Byzantine
agreement in the deterministic synchronous model, if we assume the adversary’s
choice of bad processors is made at the start of the protocol, i.e., independent of
processors’ private coinflips. Our techniques lead to solutions with Õ(n3/2) bit
complexity for leader election and universe reduction. Our protocols are polylog-
arithmic in time and, except for leader election, succeed with high probability.

We overcome the lower bound of [4] by allowing for a small probability of
error. In particular, the lower Ω(n2) lower bound on the number of messages
to compute Byzantine agreement deterministically implies that any randomized
protocol which computes Byzantine agreement with o(n2) messages must err
with some probability ρ > 0, since with probability ρ > 0, an adversary can guess
the random coinflips and cause the protocol to fail when those coinflips occur.
Thus, any randomized algorithm achieving o(n2) messages must necessarily be
a Monte Carlo algorithm.

In 2006, the authors [12] showed that almost everywhere Byzantine agree-
ment, where (1− 1/ log n) fraction of the good processors come to agreement on
a good processor’s input bit, could be computed with high probability in poly-
logarithmic time with a polylogarithmic number of bits of communication per
processor. It is easy to see that one round suffices to go from almost everywhere
agreement to everywhere agreement with n(n − 1) additional bits of communi-
cation. Each processor sends every other processor its bit, and each processor
decides on the majority. Is there a way to avoid this last high cost round?

The difficulty of achieving o(n2) messages is illustrated by showing what
goes wrong with the obvious approach: each processor randomly selects O(log n)
processors to poll and decides a value equal to the majority of their responses.
The problem with this protocol is flooding. That is, bad processors may all
bombard every processor for requests and no processor will be able to respond
to all the requests without incurring a cost of Θ(n2) messages. Previous to this
paper we did not know of any technique of flood avoidance other than to design
a protocol in which each processor predetermines (perhaps using private random
bits) at the start of each round the list of processors it is willing to listen to.
That is, this list does not depend on the list of processors who actually send. This
paper uses a novel technique to deal with flooding that may be of independent
interest.

1.1 Model
We assume a fully connected network of n processors, whose IDs are common
knowledge. Each processor has a private coin. Communication channels are au-
thenticated, in the sense that whenever a processor sends a message directly
to another, the identity of the sender is known to the recipient, but we other-
wise make no cryptographic assumptions. We assume a nonadaptive (sometimes
called static) adversary. That is, the adversary chooses the set of t bad processors
at the start of the protocol, where t is a constant fraction, namely, 1/3−ε for any
positive constant ε of the number of processors n. The adversary is malicious: it
chooses the input bits of every processor, bad processors can engage in any kind
of deviations from the protocol, including false messages and collusion, or crash
failures, while the remaining processors are good and follow the protocol. Bad
processors can send any number of messages.

We consider both synchronous and asynchronous models of communication.
In the synchronous model, communication proceeds in rounds; messages are all
sent out at the same time at the start of the round, and then received at the
same time at the end of the same round; all processors have synchronized clocks.
The time complexity is given by the number of rounds. In the asynchronous
model, each communication can take an arbitrary and unknown amount of time,
and there is no assumption of a joint clock as in the synchronous model. The
adversary can determine the delay of each message and the order in which they
are received. We follow [1] in defining the running time of an asynchronous
protocol as the time of execution, assuming the maximum delay of a message
between the time it is sent and the time it is processed is assumed to be one
unit.

We assume full information: in the synchronous model, the adversary is rush-
ing, that is, it can view all messages sent by the good processors in a round before
the bad processors send their messages in the same round. In the asynchronous
model, the adversary can view any sent message before its delay is determined.

1.2 Problems
One of the most well studied problems in distributed computing is the Byzantine
agreement problem. In this problem, each processor begins with either a 0 or 1.
An execution of a protocol is successful if all processors terminate and, upon
termination, agree on a bit held by at least one good processor at the start.
The leader election problem is the problem of all processors agreeing on a good
processor [12]. The universe reduction problem [9] is to bring processors to
agreement on a small subset of processors with a fraction of bad processors
close to the fraction for the whole set. I.e., the protocol terminates and each
good processor outputs the same set of processor ID’s such that this property
holds. For each of these problems, we say the protocol solves the problem with
probability ρ if, given any worst case adversary behavior, including choice of
initial inputs, the probability of success of any execution over the distribution
of private random coin tosses is at least ρ.

Almost everywhere Byzantine agreement, universe reduction, and leader elec-
tion is the modified version of each problem where instead of bringing all good

processors to agreement, a large majority, but not necessarily all, good processors
are brought to agreement.

1.3 Results
We use the phrase with high probability (w.h.p.) to mean that an event happens
with probability at least 1 − 1/nc for every constant c and sufficiently large n.
For readability, we treat log n as an integer throughout. We show:

Theorem 1. [Byzantine agreement] Let n be the number of processors in a
synchronous full information message passing model with a nonadaptive, rushing
adversary that controls less than 1/3− ε fraction of processors, for any positive
constant ε. Then, there exists a protocol which w.h.p. computes Byzantine agree-
ment, runs in polylogarithmic time, and uses Õ(n3/2) bits of communication.

This result follows easily from the solution to the universe reduction problem
(see the next section) which we present here:

Theorem 2. [Universe reduction] Let ε be any positive constant and let n
be the number of processors in a synchronous fully connected message passing
network with a nonadaptive malicious rushing adversary in the full information
model which controls less than 1/3 − ε fraction of processors. For any positive
constant ε′ < ε, there exists a protocol which uses Õ(n3/2) number of bits of
communication per processor and polylogarithmic number of rounds, such that
w.h.p., all good processors output the same subset of processors, the “represen-
tative set” of size polylogarithmic in n such that 2/3 + ε′ fraction of its elements
are good.

1.4 Techniques
Our results build on the almost everywhere universe reduction protocol of [12]:

Theorem 3. [12] [Almost everywhere universe reduction] Let ε be any
positive constant and let n be the number of processors in a synchronous fully
connected message passing network with a nonadaptive, rushing adversary in the
full information model which controls less than 1/3−ε fraction of processors. For
any positive constant ε′ < ε, there exists a protocol which uses polylogarithmic
number of bits of communication per processor and polylogarithmic number of
rounds, such that w.h.p. 1 − O(1/ log n) fraction of good processors output a
subset of processors of size polylogarithmic in n such that 2/3 + ε′ fraction of its
elements are good.

Our protocol first runs the protocol for almost everywhere universe reduction
in [12] to achieve w.h.p. almost everywhere universe reduction. The technical
challenge is to go from almost everywhere universe reduction to everywhere
universe reduction in o(n2) bits. It is straightforward to go from everywhere
universe reduction to everywhere agreement for Byzantine agreement and leader
election (see [12]). The idea is to notice that any “representative” subset of
processors can run a standard Byzantine agreement protocol or leader election
protocol (using their own input bits, in the case of Byzantine agreement) and

the outcome for the representative subset is a solution to the problem for the
whole set. The representative set need only communicate its results to the other
processors, which determine the correct answer by taking the message sent by
the majority.

We actually prove a stronger result than necessary to prove Theorems 1 and
2 from Theorem 3. That is, we can go from almost everywhere universe reduction
to everywhere universe reduction even in the case where (1) only 1/2+ε fraction
of good processors are in agreement on the representative subset; (2) up to
a 1/2 − ε fraction of the processors are controlled by the adversary; and (3)
communication is in the asynchronous model. Specifically, we show:

Theorem 4. [Almost everywhere to everywhere universe reduction]
Let ε be any positive constant and assume n processors are connected in the full
information, asynchronous, message passing communication model, with a non-
adaptive adversary. Further, suppose there are (1/2 + ε)n good processors that
agree on a subset C of processors containing a majority of good processors. Then
there is a O(n3/2 log3 n|C|) bit protocol which runs in O(log n/ log log n) time
steps after which w.h.p. all good processors agree on C.

We give the Almost Everywhere to Everywhere Universe Reduction Protocol
in Section 3; its proof of correctness in Section 4; and include a sketch of the
Almost Everywhere Universe Reduction Protocol in the Appendix.

2 Related work
In a 2006 paper, the authors (and collaborators) present a polylogarithmic time
protocol with polylogarithmic bits of communication per processor for almost
everywhere Byzantine agreement, leader election, and universe reduction in the
synchronous full information message passing model with a nonadaptive rushing
adversary [12]. Also in 2006, [8, 2] give logarithmic time protocols which use
Ω(n2) bits of communication for Byzantine agreement in the same model with
different techniques. The algorithm in [2] also solves universe reduction and
leader election.

In the asynchronous version of the same model, in a 2008 paper [11], the au-
thors give a polynomial time protocol for Byzantine agreement, leader election,
and universe reduction. While this protocol uses Θ̃(n2) messages (and poly-
nomial time), its structure is very similar to the almost everywhere agreement
protocols [12, 13], and we believe it can be implemented as an almost everywhere
agreement protocol with polylogarithmic bits of communication.

In the gossip problem each process starts with an initial value called a rumor
and attempts to learn all the other rumors. In this literature, one concern is the
number of messages sent between processors. A 2008 paper [7] presents a protocol
to solve the gossip problem in the asynchronous model with crash failures rather
than Byzantine failures, with an oblivious adversary which sets the timing and
crashes in advance and an assumption of private channels. The protocol in [7]
was adapted to solve the consensus problem using O(n7/4 log2 n) messages. The

adversary in [7] is weaker than ours in several respects, though it is stronger
in the sense that the adversary can set delays in communication, so our results
seem incomparable.

Almost everywhere agreement in sparse networks has been studied since 1986.
See [12, 13] for references. The problem of almost everywhere agreement for se-
cure multiparty computation on a partially connected network was defined and
solved in 2008 in [6].

In a 2006 paper [13], the authors give a sparse network implementation of
their protocols from [12]. It is easy to see that everywhere agreement is impossible
in a sparse network where the number of faulty processors t is sufficient to
surround a good processor. To see this, one can use an observation from [10].
Let t be the number of bad processors. Then any Byzantine agreement protocol
where all n − t good processors have their input bits set to 1 must result in
an output of 1. And this must be true even if the bad processors act like good
processors that have a 0. Moreover, it must be the case that when bad processors
act like good processors that have a 1 and t or fewer good processors have a 0, the
output must be a 1 as well. If a processor is surrounded by bad processors, then
all communication with the processor can be made to simulate any execution of
the protocol consistent with that processor’s input bit. Hence if a single processor
has an input bit of 0, and it is surrounded by bad processors, it will be unable to
distinguish between the case where it must output a 0 because all good processors
have a 0, or a 1 because fewer than t processors have a 0.

A protocol in which processors use o(n) bits may seem as vulnerable to being
isolated as in a sparse network, but the difference is that without access to private
random bits, the adversary can’t anticipate at the start of the protocol where
communication will occur. In [10], it is shown that even with private channels,
if a processor must pre-specify the set of processors it is willing to listen to at
the start of a round, where its choice in each round can depend on the outcome
of its random coin tosses, at least one processor must send Ω(n1/3) messages
to compute Byzantine agreement with probability at least 1/2 + 1/ log n. Hence
the only hope for a protocol where every processor sends o(n1/3) messages is
to design outside this constraint. Note that the protocol here does NOT fall
within this restrictive model, only because of line 8 in our Almost Everywhere
to Everywhere protocol, where the decision of whether a message is listened to
(or acted upon) depends on how many messages are received so far.

3 The Almost Everywhere to Everywhere Universe Re-
duction Protocol

In this section, we describe the algorithm that satisfies Theorem 4 by going from
almost everywhere committee election to everywhere committee election.

Precondition: Each processor p starts with an hypothesis of the membership
of C, Cp; this hypothesis may or may not be equal to C or may be empty.
However, the following two assumptions are critical. First, there exists a subset
of the processors, C, of polylogarithmic size, with a majority of good processors.

Second, there is a set S of at least (1/2 + ε)n good processors, such that for all
p ∈ S, Cp = C.

Overview of Algorithm: The main idea of this protocol is for each proces-
sor p to randomly select c log n processors to poll as to the membership of C.
Unfortunately, if these requests are made directly from p, the adversary can
flood the network with “fake” requests so that the good processors are forced
to send too many responses. Thus, the polling request are made through the set
C, which counts the messages received from each processor to enforce that that
total number of polling requests sent out is not too large.

Unfortunately, this approach introduces a new problem: processor p may have
an incorrect guess about the membership of C. We solve this by having p send
a (type 1) message containing its poll-list (Pollp) to Listp, a set of c log n

√
n

randomly sampled processors. Processor p hopes that at least one processor in
the set Listp will have a correct guess about C and will thus be able to forward
a (type 2) message containing Pollp to C. To prevent these processors q ∈ Listp
from being flooded, each such processor q only forwards a type 2 message from
a processor p if p appears in the set Forwardq, which is a set of

√
n processors

that are randomly sampled in advance. Upon receiving a < Pollp, p > (type 2)
message from any processor q, a processor in C then sends a (type 3) request
with p’s ID to each member s ∈ Pollp. More precisely, a processor in C only
processes the first

√
n such type 2 messages that it receives from any given

processor q: this is the crucial filtering that ensures that the total number of
requests answered is not too large. Upon receiving a type 3 request, < p, 3 >
from a majority of C, s sends Cs to p, a (type 4) message.

There are two remaining technical problems. First, since a confused processor,
p, can have a Cp equal to a mostly corrupt set C ′, C ′ can overload every confused
processor. Hence we require that any processor, p, who receives an overload
(more than

√
n log2 n) of type 3 requests wait until their own Cp is verified

before responding. Second, the processors in C handle many more requests than
the other processors. The adversary can conceivably exploit this by bombarding
confused processors which think they are in C with type 2 requests. Thus, the
algorithm begins with a verification of membership in C. Each processor p sends
a request message to a randomly selected sample (Pollp) which is responded to
by a polled processor q if and only if p ∈ Cq.

Example: An example run of our algorithm is shown in Figure 1. This figure
follows the technically challenging part of our protocol, steps 6-10, which are
described in detail in Algorithm 1 listed below. In Figure 1, time increases in the
horizontal direction. This figure concerns a fixed processor p that concludes p 6∈ C
in the earlier parts of the algorithm (steps 2-5). For clarity, in this example, only
messages that are sent on behalf of p that eventually help p to determine C are
shown. Moreover, again for clarity, we show a best case scenario where all nodes
in Pollp are assumed to have received no more than

√
n log2 n type 3 requests.

In the first step of this example, p sends the message < Pollp, p, 1 > to all nodes
in Listp. The node q is the only node in this set such that p ∈ Forwardq, so

p q p

Cq

< C ><
Po

ll p
, p

, 1
>

Listp

< Pollp, p,
2 >

< p, 3 >

Pollpp p

Fig. 1. Steps 6-10 of Our Protocol

q forwards a type 2 message of the form < Pollp, p, 2 > to all the nodes in Cq.
In this example, Cq = C. Next all nodes in Cq send the message < p, 3 > to all
nodes in Pollp. In this example, all nodes in Pollp know the set C, so they all
send the message < C > to p in the final step.

4 Proof of correctness
First, we point out that the asynchronicity of the model is not a real problem
here because of the following observation:
Observation 1 In the asynchronous model, if p is waiting to hear from a set
of processors such that a majority of processors in the set are good and agree
on the same value, and if each sends that value to p, then the adversary cannot
prevent p from receiving this value in one timestep.

In what follows, we show that with high probability, all transmissions which
processors need to respond to are sent by a majority of good processors which
agree on the same value. We say that a processor is knowledgeable if it is good
and Cp = C.

Lemma 1. W.h.p., more than a 1/2+ε/2 fraction of processors of every poll-list
are knowledgeable at the start of the protocol and these remain knowledgeable.

Proof. Let c′ be any positive constant and c be the constant in the protocol.
Let X be the number of processors which are initially knowledgeable in a fixed
poll-list. Then E[X] = (1/2 + ε)c log n. The probability that the number of
initially knowledgeable processors on the poll-list is not a majority is less than

Algorithm 1 Almost Everywhere to Everywhere
Each processor executes the following steps in any order:

1. Each processor p selects uniformly at random, independently, and with replace-
ment three subsets, Listp, Forwardp, and Pollp of processor ID’s where: |Listp| =
c
√

n log n; |Forwardp| =
√

n; |Pollp| = c log n;

Verifying Membership in C:

2. memberp ← FALSE
3. If p ∈ Cp, then p sends a message < Am I in C? > to the members of Pollp;
4. If q receives a message < Am I in C? > from a processor p ∈ Cq, q sends < Y es >

back to the p;
5. If p receives a message < Yes > from a majority of members of Pollp then p sets

memberp ← TRUE;

Determing C:

6. p sends a message < Pollp, p, 1 > (type 1 message) to each processor in Listp;
7. For each q: if < Pollp, p, 1 > is the first type 1 message received from processor

p and p ∈ Forwardq, then q sends < Pollp, p, 2 > (a type 2 message) to every
processor in Cq;

8. For each r: if memberr = TRUE then for every processor q, for the first
√

n type
2 messages of the form < Pollp, p, 2 > which are received from q, send < p, 3 >
(type 3 message) to every processor in Pollp;

9. For each s: for the first
√

n log2 n different type 3 messages of the form
< p, 3 > which are each sent by a majority of processors in Cs, send < Cs, 4 >
(type 4 message) to p;

10. If s receives the same type 4 message < C′, 4 > from a majority of processors in
Polls then
(a) s sets Cs ← C′; and
(b) s answers any remaining type 3 requests that have come from a majority of

the current Cs, i.e. for each such request < p, 3 > s sends < Cs, 4 > to p;

the probability that X ≤ (1−δ)E[X] for δ = (ε/2)/(1/2+ε). Using the Chernoff
bound, this probability is ≤ e(−δ2E[X]/2) ≤ n−c′−1 for c = 8(c′ + 1)(1/2 + ε)/ε2,
i.e., for c a constant, this is 1/nc

′+1.
There are no more than n poll-lists for good processors. Thus, the probability

that any poll-list fails to have at least a 1/2 + ε/2 fraction of initially knowl-
edgeable processors is no greater than the sum of the n individual probabilities
of failure or 1/nc

′
for any constant c′.

Next, we prove by contradiction that no knowledgeable processor becomes
not knowledgeable. Let p be the first processor which becomes not knowledge-
able. This implies that p resets Cp 6= C, which implies that Pollp contains less
than a majority of knowledgeable processors. By assumption, the initially knowl-
edgeable processors in Pollp are still knowledgeable, which implies there must
have been less than a majority of initially knowledgeable processors in Pollp.
But we have shown this event does not occur w.h.p. for any poll-list.

Lemma 2. W.h.p., if every type 3 message received by every knowledgeable pro-
cessor p is responded to by p within O(log n/ log log n) steps then Theorem 4
holds. Moreover, a total of O(n3/2 log3 n|C|) bits are sent.

Proof. We fix a good processor p and first bound the probability that Pollp
is forwarded to C. The probability that a knowledgeable processor q forwards
a type 1 message sent to it by a good processor p is the probability that
p ∈ Forwardq = 1/

√
n. Since each processor p sends out c

√
n log n type 1

messages, the probability that all fail to be forwarded is the probability that for
every message, the processor q receiving it is either not knowledgeable or q is
knowledgeable but p /∈ Forwardq. Recall that by assumption, initially no more
than 1/2 − ε fraction of processors are not knowledgeable and by the previous
lemma, this number does not grow. The probability that Pollp is not forwarded
to C by a particular processor q which receives it is therefore bounded above by
(1/2 − ε) + (1/2 + ε)(1 − 1/

√
n) = 1 − 1/2+ε√

n
. The probability that all requests

to forward fail is (1− (1/2 + ε)/
√
n)c
√
n logn ≤ 1/nc/2.

If Pollp is forwarded by a knowledgeable processor then it is sent to every
processor in C, by the definition of knowledgeable. From the previous lemma,
and a simple Chernoff and union bound, each processor in C verifies it is in C
with high probability. Thus, since a good processor never forwards more than√
n messages, with high probability all good processors in C will send a message

of the form < p, 3 > to each processor in Pollp. In particular, a majority of
processors in C will do so. With high probability (from the previous lemma)
a majority of processors in Pollp are knowledgeable and hence upon receiving
messages from processors in C will send p the correct message which p receives
and decides correctly. Taking the union over all processors p, for any constant c′,
there is a constant c for the algorithm such that the probability of any processor
failing is no greater than 1/nc

′
.

The number of bits transmitted by good processors can be calculated as
follows. First we consider bits sent by processors that are knowledgeable. For the
verification phase, the total number of bits is Õ(n log n). For the next phase, each

poll-list contains O(log n) ID’s of O(log n) length for a total of O(log2 n) bits.
Each good processor forwards no more than

√
n poll-lists to the members of C for

a total of O(n3/2|C| log2 n) bits transmitted. With high probability, each member
of C transmits O(n3/2 ∗ |poll − list|) messages each with at most O(log n) bits
per message to each member of each poll-list in the form of type 3 messages, for
O(n3/2|C| log2 n) bits in total. The knowledgeable processors which receive type
3 messages respond to them all, for a total of O(n3/2|C| log2 n) bits. The total
number of bits transmitted by knowledgable processors is thus O(n3/2|C| log2 n).
In addition, no more than n(

√
n log2 n) type-4 messages are sent by processors

while they are not knowledgeable, for a total of n(
√
n log3 n|C|) bits.

It remains to show:

Lemma 3. W.h.p., every type 3 message received by every knowledgeable pro-
cessor p is responded to by p within O(log n/ log log n) steps.

Proof. A knowledgeable processor is overloaded if there are more than
√
n log2 n

poll-lists received by C which contain it. As there are no more than n3/2 type 2
messages processed by C and each poll-list has size c log n, there can be no more
than cn/ log n processors which receive more than

√
n log2 n type 3 requests from

C.
The adversary can choose its poll lists after seeing the poll lists from all the

good processors. We will denote time step i of our algorithm to begin when i
units of time have elapsed and end just before i + 1 units have elapsed, where
a unit of time is defined to be the maximum delay of a message. We will say
Knowp = FALSE at time i if p has not yet received the same type 4 message
from a majority of processors in Pollp, i.e. the condition for the if statement in
step 10 of our algorithm has not been satisfied, by time i. Otherwise, we will say
Knowp = TRUE. A processor p is blocked at time i if Knowp = FALSE and p
is overloaded.

Claim: With high probability, for any time step j ≥ 6, if there is a processor
withKnowp = FALSE at time step i+j, then there must be ((εc log n)/4)i(log log n)i−1

distinct blocked processors at time j, for i = 1, ..., O(log n/ log log n).
Proof of Claim: Let L = |poll − list| = c log n. We note that since j ≥ 6,
by time step j, w.h.p., all type 1, 2 and 3 messages have been sent out and
received. Moreover, the first set of type 4 messages have been sent and received.
This proof is by induction on i.

Fix a processor p. Then we can view p as a root of a tree. Each node is a
processor; the children of each node q are the processors in Pollq. Note that some
processors may appear more than once in the tree. The degree of each node is
L.
Base Case: For i = 1. Suppose there are fewer than (ε/4)L blocked processors
in time step j. Then from Lemma 1, w.h.p., there are (1/2 + ε/2)L processors
on every poll-list which are knowledgeable. Then there remain (1/2 + ε/4)L
knowledgeable processors on Pollp who are not blocked and will send type 4
messages to p in the next timestep. In time j + 1, p will hear from them and
decide.

Induction Step: Let xi = (εL/4)i(log log n)i−1. Assume the induction hypothesis
holds for i − 1. Then if there is a processor with Knowp = FALSE at time
i+ j, then there must be a set S of size xi−1 of blocked processors at time step
j+1. Then it must be the case that at time j, reasoning as in the base case, each
element of S must have at least x1 blocked children (i.e., elements of its poll-list).
We show that w.h.p. there is no set S′ of size less than xi which satisfies this
condition.

Fix a set S, a set of x1 children for each element of S, and a set S′. Since
the children are picked randomly and independently, the probability of having
x1 children for each element of S coming from S′ is

(xi/n)x1xi−1 ≤ (xi/n)xi log logn.

The number of ways to choose these sets is no more than(
n

xi−1

)
Lx1xi−1

(
n

xi

)
= (ne/xi−1)xi−1Lx1xi−1(ne/xi)xi ≤ (ne/xi)cxi ;

where the last inequality holds since we can assume that xi ≤ n/2. Taking the
union bound over all possible such sets, we find that the probability of there
existing a set S′ is less than

(xi/n)(log logn−O(1))((εL/4)/ log logn)i

< 1/nc
′

for any constant c′ and xi/n ≤ n/ log n. Taking the union bound over all i yields
the claim.

Remaining Proof of Lemma: For i = O(log n/ log logn), the required number
of blocked processors exceeds cn/ log n, the maximum number the adversary is
able to block. Hence, every processor decides by time O(log n/ log log n).

5 Conclusion and Open Problems
We have shown that classical problems in distributed computing, like Byzan-
tine agreement, universe reduction, and leader election, can be solved with high
probability using only Õ(n3/2) bits of communication, even if the adversary has
unlimited resources.

Several open problems remain including the following. First, we believe that
the protocol from [12] for electing a committee that contains a 2/3+ε fraction of
good processors using polylogarithmic bits per processor can be made to work
in the asynchronous model. This would imply, together with the results in this
paper that universe reduction, Byzantine agreement, and leader election could
all be performed with Õ(n3/2) bits in the asynchronous model.

Second, we conjecture that the number of bits required for Byzantine agree-
ment in the full information model with a nonadaptive adversary is Ω(n3/2) in
both the synchronous and asynchronous models unless a superpolylogarithmic
time is incurred. Third, we ask: Is there is a load-balanced version of the protocol
presented here in which each processor needs to send only Õ(

√
n) bits? Fourth,

we ask: Can this bound be beaten if cryptographic assumptions are incorporated
into the model? Finally, can other problems like secure mulitparty computation
be solved with o(n2) bits of communication?

6 Acknowledgements
The authors would like to thank the program committee for a careful, extensive
review.

References
1. Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simula-

tions and Advanced Topics (2nd edition). John Wiley Interscience, March 2004.
2. Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine agreement

in the full-information model in o(log n) rounds. In STOC, pages 179–186, 2006.
3. Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander

Shraer. Brahms: byzantine resilient random membership sampling. In PODC ’08:
Proceedings of the twenty-seventh ACM symposium on Principles of distributed
computing, pages 145–154, New York, NY, USA, 2008. ACM.

4. Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. J. ACM, 32(1):191–204, 1985.

5. Uriel Feige. Noncryptographic selection protocols. In FOCS ’99: Proceedings of the
40th Annual Symposium on Foundations of Computer Science, page 142, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

6. Juan A. Garay and Rafail Ostrovsky. Almost-everywhere secure computation. In
EUROCRYPT, pages 307–323, 2008.

7. Chryssis Georgiou, Seth Gilbert, Rachid Guerraoui, and Dariusz R. Kowalski. On
the complexity of asynchronous gossip. In PODC, pages 135–144, 2008.

8. Shafi Goldwasser, Elan Pavlov, and Vinod Vaikuntanathan. Fault-tolerant dis-
tributed computing in full-information networks. In FOCS, pages 15–26, 2006.

9. Ronen Gradwohl, Salil P. Vadhan, and David Zuckerman. Random selection with
an adversarial majority. In CRYPTO, pages 409–426, 2006.

10. Dan Holtby, Bruce M. Kapron, and Valerie King. Lower bound for scalable byzan-
tine agreement. Distributed Computing, 21(4):239–248, 2008.

11. Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani.
Fast asynchronous byzantine agreement and leader election with full information.
In SODA, pages 1038–1047, 2008.

12. Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election.
In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 990–999, New York, NY, USA, 2006. ACM Press.

13. Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and
scalable computation in peer-to-peer networks. In FOCS ’06: Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06),
pages 87–98, Washington, DC, USA, 2006. IEEE Computer Society.

14. Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. Zyzzyva: speculative byzantine fault tolerance. SIGOPS Oper. Syst. Rev.,
41(6):45–58, 2007.

Appendix: Sketch of almost everywhere universe reduction

Here, we include a sketch of the protocol to compute almost everywhere
universe reduction, excerpted from [12]. The processors are assigned to groups
of polylogarithmic size; each processor is assigned to multiple groups. In parallel,
each group then elects a small number of processors from within their group to
move on. We then recursively repeat this step on the set of elected processors
until the number of processors left is polylogarithmic.

The method used to run elections is a simple adaptation from the atomic
broadcast model to the synchronous distributed model of a subroutine in [5]:
Elect-Subcommittee: Input is processors p1, . . . , pk
with k = Ω(ln8 n).
1 For i = 1 to k,
2 Processor pi randomly selects one of k/(c1 ln3 n)

“bins” and tells the other processors in its
committee which bin it has selected.

3 The other processors in the committee run
Byzantine Agreement to come to a consensus on
which bin pi has selected.

4 Let B be the bin with the least number of processors
in it, and let SB be the set of processors in that bin.
Arbitrarily add enough processors to SB to ensure
|SB | = c1 ln3 n.

5 Return SB as the elected subcommittee.
Although this approach is intuitively simple, there are several complications

that must be addressed.

(1) The groups must be determined in such a way that the election mechanism
cannot be sabotaged by the bad processors.

(2) After each step, each elected processor must determine the identities of cer-
tain other elected processors, in order to hold the next election.

(3) Election results must be communicated to the processors.
(4) To ensure load balancing, a processor which wins too many elections in one

round cannot be allowed to participate in too many groups in the next round.

Item (1): we use a layered network with extractor-like properties. Every pro-
cessor is assigned to a specific set of nodes on layer 0 of the network. In order to
assign processors to a node A on layer ` > 0, the set of processors assigned to
nodes on layer `−1 that are connected to A hold an election. In other words, the
topology of the network determines how the processors are assigned to groups.
By choosing the network to have certain desired properties, we can ensure that
the election mechanism is robust against malicious adversaries.

To accomplish item (2), we use monitoring sets. Each node A of the layered
network is assigned a set of nodes from layer 0, which we denote m(A). The job
of the processors from m(A) is simply to know which processors are assigned
to node A. Since the processors of m(A) are fixed in advance and known to all

processors, any processor that needs to know which processors are assigned to A
can simply ask the processors from m(A). (In fact, the querying processor only
needs to randomly select a polylogarithmic subset of processors from m(A) in
order to learn the identities of the processors in A with high probability. This
random sampling will be used to ensure load balancing.)

Since the number of processors that need to know the identities of processors
in node A is polylogarithmic, the processors of m(A) will not need to send too
many messages, but they need to know which processors need to know so they
do not respond to too many bad processors’ queries. Hence the monitoring sets
need to inform relevant other monitoring sets of this information.

Item (3): We use a communication tree connecting monitoring sets of children
in the layered networks with monitoring sets of parents to inform the monitoring
sets which processors won each of their respective elections and otherwise pass
information to and from the individual processors on layer 0.

Item (4) is addressed by having such processors refrain from further partici-
pation.

The protocol results in almost everywhere agreement rather than everywhere
agreement, because the adversary can control a small fraction of the monitoring
sets by corrupting their nodes. Thus communication paths to some of the nodes
are controlled by the adversary.

