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We describe an algorithm for Byzantine agreement that is scalable in the sense that each proces-

sor sends only Õ(
√
n) bits, where n is the total number of processors. Our algorithm succeeds

with high probability against an adaptive adversary, which can take over processors at any time

during the protocol, up to the point of taking over arbitrarily close to a 1/3 fraction. We assume

synchronous communication but a rushing adversary. Moreover, our algorithm works in the pres-
ence of flooding: processors controlled by the adversary can send out any number of messages.

We assume the existence of private channels between all pairs of processors but make no other

cryptographic assumptions. Finally, our algorithm has latency that is polylogarithmic in n. To
the best of our knowledge, ours is the first algorithm to solve Byzantine agreement against an

adaptive adversary, while requiring o(n2) total bits of communication.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Analysis of Algorithms

and Problem Complexity—Nonnumerical Algorithms and Problems

General Terms: Theory

Additional Key Words and Phrases: Byzantine agreement, consensus, Samplers, Peer-to-peer,

secret-sharing, Monte Carlo Algorithms, distributed computing

1. INTRODUCTION

Recent years have seen rapid growth in networks that are characterized by large
sizes and little admission control. Such networks are open to attacks by malicious
users, who may subvert the network for their own gain. To address this problem,
the research community has been recently revisiting techniques for dealing with
nodes under the control of a malicious adversary [Kotla et al. 2007; Clement et al.
2009; Clement et al. 2008; Anderson and Kubiatowicz 2002].

The Byzantine agreement problem, defined in 1982, is the sine qua non of han-
dling malicious nodes. With a solution to Byzantine agreement, it is possible to
create a network that is reliable, even when its components are not. Without a so-
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lution, a compromised network cannot perform even the most basic computations
reliably. A testament to the continued importance of the problem is its appearance
in modern domains such as sensor networks [Shi et al. 2004]; mediation in game
theory [Abraham et al. 2006; Abraham et al. 2008]; grid computing [Anderson and
Kubiatowicz 2002]; peer-to-peer networks [Rhea et al. 2003]; and cloud comput-
ing [Wright 2009]. However, despite decades of work and thousands of papers, we
still have no practical solution to Byzantine agreement for large networks. One im-
pediment to practicality is suggested by the following quotes from recent systems
papers (see also [Castro and Liskov 2002; Malkhi and Reiter 1997; Amir et al. 2006;
Agbaria and Friedman 2003; Yoshino et al. 2005]):

—“Unfortunately, Byzantine agreement requires a number of messages quadratic
in the number of participants, so it is infeasible for use in synchronizing a large
number of replicas” [Rhea et al. 2003]

—“Eventually batching cannot compensate for the quadratic number of messages
[of Practical Byzantine Fault Tolerance (PBFT)]” [Cowling et al. 2005]

—“The communication overhead of Byzantine Agreement is inherently large” [Cheng
et al. 2009]

In this paper, we describe an algorithm for Byzantine agreement with only
Õ(n1/2) bit communication per processor overhead. Our techniques also lead to
an algorithm with Õ(n1/2) bit complexity which is a distributed version of a bit-
fixing random source. That is, the algorithm generates a polylogarithmic length
sequence consisting of mostly global coinflips generated uniformly and indepen-
dently at random and agreed upon by all the good processors. Our algorithms are
polylogarithmic in time and succeed with high probability.

Our algorithm has a small probability of error which is necessary to overcome the
lower bound in [Dolev and Reischuk 1985]. That work shows that any deterministic
algorithm using o(n2) messages in the synchronous model must err. Thus, any
randomized algorithm which always uses o(n2) messages must necessarily err with
positive probability, since the adversary can guess the random coinflips and cause
the algorithm to err if the guess is correct. By way of comparison, we note that
any algorithm that uses cryptography will also err with a certain probability, since
the adversary may get lucky and break the cryptography.

1.1 Model and Problem Definition

We assume a fully connected network of n processors p1, p2, ..., pn whose ID’s are
common knowledge. Each processor has a private random coin. We assume that
all communication channels are private and that whenever a processor sends a
message directly to another, the identity of the sender is known to the recipient,
but we otherwise make no cryptographic assumptions.

We assume an adaptive adversary. That is, the adversary can take over processors
at any point during the protocol, up to a total of 1/3− ε fraction of the processors
for any positive constant ε. When an adversary takes over a processor, it learns
the processor’s state. The adversary chooses the input bits of every processor, bad
processors can engage in any kind of deviations from the protocol, including false
messages and collusion, or crash failures, while the remaining processors are good
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and follow the protocol. Bad processors can send any number of messages. Finally,
we assume the adversary is malicious and is actively trying to thwart the protocol
run by the good processors.

We assume a synchronous model of communication. In particular, we assume
there is a known upper bound on the transit time of any message and communica-
tion proceeds in rounds determined by this transit time. The time complexity of
our protocols are given in the number of rounds. However, we assume a rushing ad-
versary. That is we assume that the bad processors may wait to receive all messages
sent by the good processors before they need to send out their own messages.

In the Byzantine agreement problem, each processor begins with either a 0 or
1. An execution of a protocol is successful if all processors terminate and, upon
termination, agree on a bit held by at least one good processor at the start.

We define a variant of a bit-fixing (random) source, see [Chor et al. 1985], which
we call a distributed (s, t) random source or (s, t) random source, for short. This
produces a (s, t) random sequence of words w1, ..., ws such that t are generated uni-
formly and independently at random, and are agreed upon by all good processors.
An adversary chooses the indices of these t words and the values received by the
processors of each remaining word (these values may not be agreed upon). In fixing
the value(s) of a word at index j the adversary knows the values only of the words
which appear in positions i < j. A simple algorithm to generate a (n, 2n/3) random
sequence which takes O(n) time and O(wn) bit complexity per processor for words
of length w is as follows: For i = 1, .., n, each pi randomly picks a word and sends it
to all other processors. The challenge here is to reduce the length of the sequence
and the communication cost per processor.

1.2 Results

We use the phrase with high probability (w.h.p.) to mean that an event happens
with probability at least 1− 1/nc for every constant c and sufficiently large n. For
readability, we treat log n as an integer throughout. In particular, we omit the floor
or ceiling operation for log n when the necessary operation is clear from context.

In all of our results, n is the number of processors in a synchronous message
passing model with an adaptive, rushing adversary that controls a less than 1/3− ε
fraction of processors, for any positive constant ε. We have three main results. The
first result makes use of the second and third ones, but these latter two results may
be of independent interest. First, we show:

Theorem 1. [BA ] There exists a protocol which w.h.p. computes Byzantine
agreement, runs in polylogarithmic time, and uses Õ(n1/2) bits of communication
per processor.

Our second result concerns almost-everywhere (“a.e.”) Byzantine agreement,
where a 1 − 1/ log n fraction of the good processors come to agreement on a good
processor’s input bit; and almost-everywhere (“a.e.”) (s, t) random source, where
a 1 − 1/ log n fraction of the good processors come to agreement on the t random
words in the sequence of s words generated by the random source. For the defini-
tion of a.e. (s, t) random source, we allow the possibility that a different 1−1/ log n
fraction of good processors agrees on each of the t random words in the sequence
of s words generated.
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Theorem 2. [Almost Everywhere Byzantine agreement] For any δ > 4,
there exists a protocol that w.h.p. computes a.e. Byzantine agreement; uses Õ(n4/δ)
bits of communication per processor; and runs in time O((log6+δ n/(log log n)2).
In addition, this protocol can be used as an a.e. (s, 2s/3) random source for an
additional cost of O(log n/ log log n) time and Õ(n4/δ) bits of communication per
bit of the sequence generated, for s = Ω(log4+δ n).

Our third result concerns going from a.e. Byzantine agreement to Byzantine
agreement. It makes use of the a.e. (s, t) random source in Theorem 2. We actually
prove a result below that is stronger than what is necessary to establish Theorem 1.

Theorem 3. Let c and ε be any positive constants. Assume n/2 + εn good
processors agree on a message m in a synchronous model with private channels and
that we have an a.e. (s, t) random source that generates numbers between 1 and

√
n,

with a latency of f(s) per number and a cost of g(s) bits per processor per number.
Then, there is an algorithm that ensures with probability at least 1 − 1/nc that all
good processors output m. Moreover this algorithm runs in O(sf(s)) time and uses
Õ(s(n1/2 + g(s))) bits of communication per processor.

1.3 Techniques

Our algorithm uses a sparse network construction and tournament tree similar
to the network and tournament network in [King et al. 2006a]. This past result
gives a bandwidth efficient a.e. Byzantine agreement algorithm for a non-adaptive
adversary, which must take over all its processors at the start of the algorithm.
The basic idea of the algorithm from [King et al. 2006a] is that processors compete
in local elections in a tournament network, where the winners advance to the next
highest level, until finally a small set is elected that is representative in the sense
that the fraction of bad processors in this set is not much more than the fraction
of bad processors in the general population. The local elections are held based on
a variant of Feige’s bin selection protocol [Feige 1999].

This approach is prima facie impossible with an adaptive adversary, which can
simply wait until a small set is elected and then can take over all processors in that
set. To avoid this problem, we make use of two novel techniques. First, instead
of electing processors, we elect arrays of random numbers, each generated initially
by a processor. Second, we use secret sharing on the contents of the arrays to
make sure that: 1) the arrays are split among an increasingly larger numbers of
processors as the array is elected higher up in the tournament; as the nodes higher
in the tree have more processors (and the memories of previously held shares are
erased), the adversary must corrupt an increasingly larger number of processors to
learn the secret; 2) the secrets in the arrays cannot be reconstructed except at the
appropriate time in the protocol. Critical to our approach is the need to iteratively
reapply secret sharing on shares of secrets that were computed previously, in order
to increase the number of processors the adversary must corrupt as elections occur
higher up in the tournament.

Another contribution of this paper is a method a.e.BA-with-random-source for
computing a.e. Byzantine Agreement given an a.e. random source. In [King et al.
2006a], each election was run by a small group of participants using Feige’s bin selec-
tion protocol [Feige 1999]. Adapting Feige’s bin selection protocol from an atomic
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broadcast model to a message-passing model requires a Byzantine agreement proto-
col. In [King et al. 2006a], this was run by the small group of election participants.
Because we are now faced with an adaptive adversary which can adaptively corrupt
small groups, we instead need to implement BA on a much larger sets of proces-
sors. To achieve this, we use our algorithm, a.e.BA-with-random-source, which is
an a.e. version of Rabin’s algorithm [Rabin 1983] (which requires a global coin),
run on a sparse network. To run an a.e. version of Rabin’s algorithm in a node on
a particular level, we supply coinflips using an a.e.random-source generated from
the arrays which won on the previous tournament level.

Our final new technique is a simple but non-obvious protocol for going from a.e.
Byzantine agreement and an a.e. random source to Byzantine agreement, with an
adaptive adversary (Section 4). A past result [King and Saia 2009] shows that it is
possible to do this with a non-adaptive adversary, even without private channels.
However, the technique presented in this paper for solving the problem with an
adaptive adversary is significantly different from the approach from [King and Saia
2009].

1.4 Map of the algorithms

Initially, processor pi provides an array of random bits to leaf i of the tourna-
ment tree. There are five algorithms: BA, a.e.BA, a.e.BA-with-random-source,
a.e.random-source, and a.e.BA-to-BA.

—BA (Section 5) solves Byzantine agreement and yields Theorem 1.

—BA calls a.e.BA (Section 3) which solves a.e. Byzantine agreement, yielding The-
orem 2, and then calls a.e.BA-to-BA (Section 4) which yields Theorem 3.

—a.e.BA-to-BA uses a.e.random-source to go from a.e. Byzantine agreement to
Byzantine agreement.

—a.e.random-source (Section 3.7) is a simple modification of a.e.BA to provide an
a.e. (s, t) random source.

—a.e.BA calls a.e.BA-with-random-source (Section 3.3) for each set of processors
in each node of the tournament tree. This protocol produces a.e. Byzantine
agreement for each set, given an a.e. random sequence for that set.

—Each call of a.e.BA-with-random-source uses an a.e.random-source created by
the subtree of the node in question. This implementation of a.e.random-source
is implicit in the description of a.e.BA in Section 3.

2. RELATED WORK

As mentioned previously, this paper builds on a main idea from [King et al. 2006a]
which gives a polylogarithmic time protocol with polylogarithmic bits of commu-
nication per processor for a. e. Byzantine agreement, leader election, and universe
reduction in the synchronous full information message passing model with a non-
adaptive rushing adversary. The result from [King and Saia 2009] shows how the
a.e. universe reduction problem (i.e., to select a small representative subset of pro-
cessors known to almost all the processors) can be used to go from a.e. Byzantine
agreement to Byzantine agreement with a non-adaptive adversary. Empirical re-
sults in [King et al. 2010] suggest that the algorithms from [King et al. 2006a;
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King and Saia 2009] use less bandwidth in practice than other popular Byzantine
agreement algorithms once the network size reaches about 1,000 nodes.

A.e. agreement in sparse networks has been studied since 1986. See [King et al.
2006a; 2006b] for references. The problem of almost everywhere agreement for
secure multiparty computation on a partially connected network was defined and
solved in 2008 in [Garay and Ostrovsky 2008], albeit with Ω(n2) message cost.

In [King et al. 2006b], the authors give a sparse network implementation of their
protocols from [King et al. 2006a]. It is easy to see that everywhere agreement is
impossible in a sparse network where the number of faulty processors t is sufficient
to surround a good processor. A protocol in which processors use o(n) bits may
seem as vulnerable to being isolated as in a sparse network, but the difference is
that without access to private random bits, the adversary can’t anticipate at the
start of the protocol where communication will occur. In [Holtby et al. 2008], it is
shown that even with private channels, if a processor must pre-specify the set of
processors it is willing to listen to at the start of a round, where its choice in each
round can depend on the outcome of its random coin tosses, at least one processor
must send Ω(n1/3) messages to compute Byzantine agreement with probability at
least 1/2 + 1/ log n. Hence the only hope for a protocol where every processor
sends o(n1/3) messages is to design outside this constraint. We note that a.e.BA
falls within this restrictive model, but a.e.BA-to-BA does not, as the decision of
whether a message is listened to (or acted upon) depends on how many messages
carrying a certain value are received so far.

3. ALMOST EVERYWHERE BYZANTINE AGREEMENT

We now outline our main algorithm, a.e.BA. The processors are arranged into nodes
in a q-ary tree. Each processor appears in polylogarithmic places in each level of
the tree, so that a large fraction of nodes on each level must contain a majority
of good processors. The levels of the tree are numbered from the leaf nodes (level
1) to the root (level `∗). Nodes at higher levels contain more processors; the root
contains all processors.

At the start, each processor pi, generates an array of random bits, consisting
of one block for each level of the network and secret shares each block with the
processors in the ith node on level 1.

Beginning with the lowest level of the tree, (the processors of) each node runs
an election among r arrays from which a subset of w arrays are selected. To run
this election at level `, the ` block of each array supplies a random bin choice and
random bits to run a.e.BA-with-random-source to agree on each bin choice of every
competing array. The shares of the remaining blocks of arrays which remain in
the competition are further subdivided into more shares and split among the larger
number of processors in the parent node (and erased from the current processors’
memories.) In this way, as an array becomes more important, an adversary cannot
learn its secret value by taking over the smaller number of processors on lower levels
which used to share the secret.

Random bits are revealed as needed by sending the iterated shares of secrets
down paths to all the leaves of the subtree rooted at the node where the election
is occurring. In particular, at each level `, `-shares are collected to reconstruct
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(` − 1)-shares. In the level 1 nodes, each processor sends the other processors its
1-share to reconstruct the original secret.

The winning arrays of a node’s election compete in elections at the next higher
level. At the root which contains all processors, there are a small number of arrays
which can be used to run a.e.BA or a.e.random-source, to produce the output of
the protocol.

The method of secret sharing and iterative secret sharing is described in Sec-
tion 3.1. Networks and communication protocols are described in Section 3.2; the
election routine is described in Section 3.4. The procedure for running a.e.BA-
with-random-source is described in Section 3.3. The main procedure for a.e.BA
is in Section 3.5. The extension of the almost everywhere Byzantine Agreement
protocol to a solution for a.e.random-source is in Section 3.7. Finally the analysis
and correctness proof can be found in Sections 3.8 and 3.9, respectively.

3.1 Secret sharing

We assume any secret sharing scheme which is a (n, τ) threshold scheme, for τ =
n/3. That is, each of n players are given shares of size proportional to the message
M and τ shares are required to reconstruct M . Every message which is the size
of M is consistent with any subset of fewer than τ shares, so no information as
to the contents of M is gained about the secret from holding fewer than τ shares.
Furthermore, we require that if a player possesses all the shares and less than n/3
are falsified by an adversary, the player can reconstruct the secret. See [McEliece
and Sarwate 1981] for details on constructing such a scheme. We will make extensive
use of the following definition.

Definition 1. secretShare(s): To share a sequence of secret words s with n1
processes (including itself) of which τ1 − 1 may be corrupt, a processor (dealer)
creates and distributes shares of each of the words using a (n1, τ1) secret sharing
mechanism. Note that if a processor knows a share of a secret, it can treat that
share as a secret. To share that share with n2 processors of which at most τ2 − 1
processors are corrupt, it creates and distributes shares of the share using a (n2, τ2)
mechanism and deletes its original share from memory. This can be iterated many
times. We define a 1-share of a secret to be a share of a secret and an i-share of a
secret to be a share of an (i− 1)-share of a secret.

To reveal a secret sequence s, all processors which receive a share of s from a dealer
send these shares to a processor p which computes the secret. This also may be
iterated to first reconstruct i−1 shares from i shares, etc., and eventually the secret
sequence.

Lemma 1. If a secret is shared in this manner up to i iterations, then an adver-
sary which possesses less than τ1 1-shares of a secret and for 1 < j ≤ i, less than τj
j-shares of each (j − 1)-share that it does not possess, learns no information about
the secret.

Proof. The proof is by induction. For level 1, it is true by definition of secret
sharing. Suppose it is true up to i iterations.

Let v be any value. By induction, it is consistent with the known τj − 1 shares
on all levels j ≤ i and some assignment Si of values to sets of unknown ni − τi + 1
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i-shares. Then consider the shares of these shares that have been spread to level
i+1. For each value of an i-share given by Si, there is an assignment Si+1 of values
to the unknown ni+1−τi+1+1 shares consistent with that value. Hence knowing in
addition the τi+1 − 1 (i+ 1)-shares of each i-share does not reveal any information
about the secret.

3.2 Network and Communication

We first describe the topology of the network and then the communications pro-
toocols.

3.2.1 Samplers. Key to the construction of the network is the definition of an
averaging sampler which was also used heavily in [Kapron et al. 2009; King et al.
2006b]. We repeat the definition here for convenience. Our protocols rely on the use
of averaging (or oblivious) samplers to determine the assignment of processors to
nodes on each level and to determine the communication links between processors.
Samplers are families of bipartite graphs which define subsets of elements such
that all but a small number contain at most a fraction of “bad” elements close
to the fraction of bad elements of the entire set. Intuitively, they are used in our
algorithm in order to generate samples that do not have too many bad processors.
We assume either a nonuniform model in which each processor has a copy of the
required samplers for a given input size, or else that each processor initializes by
constructing the required samplers in exponential time.

Definition 2. Let [r] denote the set of integers {1, . . . , r}, and [s]d the multisets
of size d consisting of elements of [s]. Let H : [r] → [s]d be a function assigning
multisets of size d to integers. We define the size of the intersection of a multiset
A and a set B to be the number of elements of A which are in B.

Then we say H is a (θ, δ) sampler if for every set S ⊂ [s] at most a δ fraction

of all inputs x have |H(x)∩S|
d > |S|

s + θ.

The following lemma establishing the existence of samplers can be shown using
the probabilistic method. For s′ ∈ [s], let deg(s′) = |r′ ∈ [r] | s.t. s ∈ H(r′)}|. A
slight modification of Lemma 2 in [Kapron et al. 2009] yields:

Lemma 2. For every r, s, d, θ, δ > 0 such that 2 log2(e) ·dθ2δ > s/r+1− δ, there
exists a (θ, δ) sampler H : [r]→ [s]d and for all s ∈ [s], deg(s) = O((rd/s) log n).

Note that limiting the degree of s limits the number of subsets that any one
element appears in.

For this paper we will use the term sampler to refer to a (1/ log n, 1/ log n) sam-
pler, where d = O((s/r + 1) log3 n), unless otherwise specified.

3.2.2 Network structure. Let P be the set of all n processors. The network is
structured as a complete q-ary tree. The level 1 nodes (leaves) contain k1 = log3 n
processors. Each node at height ` > 1 contains k` = q`k1 processors; there are
(n/k`) log3 n nodes on level `; and the root node at height `∗ = logq(n/k1) contains
all the processors. The contents of each node on level ` is determined by a sampler
where [r] is the set of nodes, [s] = P and d = k`.
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There are n leaves, each assigned to a different processor, assuming n is a power
of q. If n is not a power of q, we will blow up the size of the problem by a factor
between q and q2 as follows: let a be the smallest power of q such that qa > nq.
Assume the leaves are numbered 1 through qa. Assign processor i to all leaves
numbered i mod n. For each leaf, the processor generates a new array. In this way,
each processor is assigned to either x = bqa/nc or x + 1 leaves, where q2 > x > q.
In the worst case, each bad processor is assigned to x + 1 leaves and each good
processor is assigned to x leaves. If there are 2/3 + ε fraction of good processors
then there are more than 2/3 + ε− 1/q fraction of leaves which have been assigned
to good processors. As q will be set to a function which is polylogarithmic in n,
this fraction remains 2/3+ε′ for a constant ε′. Note that changing the problem size
by a polylogarithmic factor does not affect the complexity as stated in the main
results. From now on, we will describe the algorithm assuming that n is a power
of q.

The edges in the network are of three types:

(1) Uplinks: The uplinks from processors in a child node on level ` to processors in
a parent node on level `+ 1 are determined by a sampler of degree d = q log3 n,
[r] is the set of processors in the child node and [s] is the set of processors in
the parent node. Let C,C ′ be child nodes of a node A. Then the mapping of
processors in C,C ′ to [r] (and A to [s]) determines a correspondence between
the uplinks of C and C ′.

(2) `− links: The `− links between processors in a node C at any level ` > 1 to
C’s descendants at level 1 are determined by a sampler where [r] is the set of
processors in the node C and [s] is C’s level 1 descendants. Here, r = q`k1;
s = q`−1; d = O(log3 n) and the maximum number of ` − links incident to a
level 1 node is O(qk1 log4 n).

(3) Links between processors in a node are also determined by a sampler of poly-
logarithmic degree. These are described in a.e.BA-with-random-source.

Definition 3. Call a node good if it contains at least a 2/3 + ε fraction of good
processors. Call it bad otherwise.

From the properties of samplers, we have:

(1) Less than a 1/ log n fraction of the nodes on any level are bad.

(2) Less than a 1/ log n fraction of processors in every node whose uplinks are
connected to fewer than a 2/3 + ε− 1/ log n fraction of good processors, unless
the parent or child, resp. is a bad node. We call such a set of uplinks for a
processor bad.

(3) If a level ` node C has less than a 1/2− ε fraction of bad level 1 descendants,
then less than a 1/ log n fraction of processors in C are connected through
`− links to a majority of bad nodes on level 1.

3.2.3 Communication protocols. We use the following three subroutines for com-
munication. Initially each processor pi shares its secret with all the processors in
the ith node at level 1.

sendSecretUp(s): To send up a sequence s of secret words, a processor in a node
uses secretShare(w) to send to each of its neighbors in its parent node (those
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connected by uplinks) a share of each word w of s. Then the processor erases s
from its own memory.

sendDown(w, i): After a secret w has been passed up a path to a node C, the
secret can be recovered by passing it down to the processors in the 1-nodes in the
subtree. To send a secret word w down the tree, each processor in a node C on
level i sends its i-shares of w down the uplinks it came from plus the corresponding
uplinks from each of its other children. The processors on level i−1 receiving the i-
shares use these shares to reconstruct (i−1)-shares of w. This is repeated for lower
levels until all the 1-shares are reconstructed by the processors in all the 1-nodes
in C’s subtree. The processors in the 1-node each send each other all their shares
and reconstruct the secrets received. Note that a processor may have received an
i-share generated from more than one i− 1 share because of the overlapping of sets
(of uplinks) in the sampler.

sendOpen(w, `) : This procedure is used by a node C on any level ` to learn a word
w held by the set of level 1 nodes in C’s subtree. Each processor in each level 1
node A sends w up the `− links from A to a subset of processors in C. A processor
in C receiving a version of w from each of the processors in a level 1 node takes a
majority to determine the node A’s version of w. Then it takes a majority over the
values obtained from each of the level 1 nodes it is linked to.

3.2.4 Correctness of communications

Definition 4. A good path up the tree is a path from leaf to root which has no
nodes which become bad during the protocol.

Lemma 3. (1 ) If sendSecretUp(s) is executed up a path in the tree and if the
adversary learns a word of the secret s before sendDown(w, `) is executed for
any `, there must be at least one bad node on that path.

(2 ) Assume that s is generated by a good processor and sendSecretUp(s) is executed
up a good path in a tree to a node A on level `, followed by sendDown(w, `)
where w is a word of s, and then sendOpen(w). Further assume there are at
least a 1/2 + ε fraction of nodes among A’s descendants on level 1 which are
good, and whose paths to A are good. Then a 1 − 1/ log n fraction of the good
processors in A learn w.

Proof. Proof of (1): If sendSecretUp(s) is executed up a good path of length
`, then all secrets passed up uplinks incident to a 2/3 majority of good processors
will remain secret, by Lemma 1.

We consider the effect of secrets passed up uplinks incident to less than 2/3
majority of good processors. For the purpose of this proof, let us redefine a processor
in a node as bad if it is controlled by the adversary, or it is good and its share is
learned by the adversary. We show by induction on the level number that when
secrets are passed from a leaf to level ` for any level `, the level i node on a good
path up to level ` contains no more than 1/3 − ε + 1/ log n fraction of processors
which are bad.

For the basis case, i = `, only the shares received by bad processors in the level `
node are learned by the adversary. Since the node is good, there are no more than
a 1/3− ε fraction of bad processors.
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We assume by induction that no more than 1/3− ε+ 1/ log n processors in nodes
on levels i through ` are bad. We show it is true for level i−1. Since the uplinks are
determined by a (1/ log n, 1/ log n)-sampler, when the processors in a node on level
i− 1 pass the secret shares up the uplinks, no more than a 1/ log n fraction of the
uplink sets are incident to more than 1/3−ε+2/ log n fraction of bad processors on
level i. The adversary through these processors may thus learn a 1/ log n fraction
of (i−1)-shares sent by processors in the level i−1 node in the path. Thus no more
than a 1/ log n fraction of processors holding the (i− 1)-shares are bad in addition
to the bad processors in the level i−1 node, for a total fraction of 1/3− ε−1/ log n
bad processors. This completes the induction.

We have shown that no more than a 1/3 − ε + 1/ log n fraction of 1-shares will
be learned by the adversary. Thus, the adversary cannot learn the secret, which
completes the proof of part (1) of the lemma.

Proof of (2): The proof of part (1) shows that on each level of a good path, no
more than a 1/ log n fraction of good processors in the path have uplinks which are
incident to less than a 2/3 fraction of good processors. Hence when the i-shares
are returned down the uplinks they were sent, for all but 1/ log n processors, each
receives enough shares to recover the i− 1 share that it once had. The same is true
for the processors in the other good paths of the subtree rooted at A. In particular,
all but a 1/ log n fraction of processors learn the secret in each of the leaves of the
subtree rooted at A, for all leaves on good paths to A. If there are at least a 1/2+ ε
fraction of such leaves then by property (3) of the samplers, at least a 1− 1/ log n
fraction of the processors in A will be connected by `-links to a majority of such
leaves. Thus when sendOpen is executed, a 1− 1/ log n fraction of processors in A
will learn the secret correctly when they take the majority of values held by each
leaf to which they are connected by `-links, where that value is determined by a
majority of processors in the leaf.

3.3 a.e.BA with random sequence

In this section, we present the a.e.BA-with-random-source algorithm and the proof
of its correctness (Theorem 4). We assume this is run on a subset of size k of the n
processors where the fraction of bad processors in the subset is no more than 1/3−ε
for some fixed ε > 0. We assume access to a sequential (s, t) a.e.random-source,
where s and t are polylogarithmic, which outputs sequences of bits, one per call.

The algorithm is an implementation of Rabin’s global coin toss Byzantine agree-
ment protocol except that the coin toss is a.e., rather than global. In addition,
only some of the coin tosses are random, and broadcast is replaced by sampling a
fraction of the other processors according to the edges of a certain type of sparse,
directed mulitgraph. This graph has the property that almost all of the samples
contain a majority of processors whose value matches the value of the majority of
the whole set. In the algorithm, the value ε0 is set to any quantity less than (3/4)ε
(e.g. ε/2), as will be shown in the analysis.

Theorem 4. [a.e.BA-with-random-source] Given a set of processors such that a
2/3 + ε fraction are good and given a (s, t) a.e. random sequence of s bits, then for
any fixed, positive integer d, a.e.BA-with-random-source runs in time O(s) with bit
complexity O(s logd n) per processor. With probability at least 1 − 1/2t−1, all but
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Algorithm 1 a.e.BA-with-random-source

Set vote← bi; For s rounds do the following:
(1) Send vote to all its successors in G;
(2) Collect votes from its predecessors in G;
(3) maj ← majority bit among votes received;
(4) fraction← fraction of votes received for maj;
(5) coin← result of call to a.e.random-source;
(6) If fraction ≥ (1− ε0)(2/3 + ε/2) then vote← maj
(7) else

(a) If coin = “heads”, then vote← 1, else vote← 0;
At the end of all rounds, commit to vote as the output bit;

a 1/ logd n fraction of the good processors commit to the same vote b. Further, if
all but a 1/ log n fraction of good processors have the same input bit b then b is the
output bit.

We’ll need an easy corollary which is the same except the goal is to agree on a
word rather than a bit and s is a sequence of words.

Corollary 1. Given a set of processors such that a 2/3 + ε fraction are good
and given a (s, t) a.e.random-source which generates s words of size w, there is an
algorithm which runs in time O(s) with bit complexity O(sw logd n) per processor,
such that with probability at least 1 − w/2t−1, all but a w/ logd n fraction of the
good processors output the same word. Moreover, if all but a 1/ log n fraction of
good processors have the same input word b then b is the word output by all but a
w/ logd n fraction of the good processors.

Proof. We can regard s as w separate streams. By a union bound, the proba-
bility that any bit of the word is not decided correctly is less than the sum of the
probabilities of failure or w/2t−1. For each bit of b, fewer than 1/ logd fraction of
good processors are not in agreement, for a total of less than w/ logd n fraction of
good processors.

Before proving Theorem 4 we establish the following lemmas.
For a fixed round, let b′ ∈ {0, 1} be the bit that the majority of good processors

vote for in that round. Let S′ be the set of good processors that will vote for b′ and
let f ′ = |S′|/k. Let 0 ≤ ε0 ≤ be a fixed constant to be determined later. We call a
processor informed for the round if the fraction value for that processor obeys the
following inequalities:

(1− ε0)f ′ ≤ fraction ≤ (1 + ε0)(f ′ + 1/3− ε)
The following lemma establishes the existence of sparse graphs that ensure all

but a 1/ logd n fraction of the good processors are informed in every round of the
algorithm. Note that it is straightforward to show that a graph with the desired
properties can be constructed with probability 1−1/nc for any fixed c in polynomial
time.

Lemma 4 Graph existence. For any positive k and positive constants ε0 and
d, there exists a directed multigraph G on k vertices with maximum out-degree no
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more than C3 logd n, where C3 depends only on ε0 and d, such that if this communi-
cation graph is used in Algorithm 1, then in every round all but a 1/ logd n fraction
of the good processors are informed.

Proof. Let G be a multigraph with k nodes which is constructed as follows:
each node chooses C3 log n neighbors uniformly at random with replacement. Fix
the set S′. We know that S′ is of size at least (1/3 + ε/2)k since at least half of
the good processors must vote for the majority bit. Let f ′ = |S′|/k. We will also
fix a set T which consists of all the processors that have fraction < (1− ε0)f ′. We
will first show that the probability that T is of size k/2 logd n is very small for fixed
S′ and T , and will then show, via a union bound, that with high probability, for
any S′ there is no set of k/2 logd n processors with fraction < (1− ε0)f ′. Finally,
we will use a similar technique to show that with high probability, no more than
k/2 logd n processors have fraction > (1 + ε0)(f ′+ 1/3− ε). This will complete the
proof.

To begin, we fix the set S′ of size at least (1/3+ε/2)k and fix T of size k/(2 logd n).
Let ξ(S′, T ) be the event that all processors in T have fraction < (1 − ε0)f ′. We
let X be the number of edges to nodes in T from nodes in S′ and let Y be the
number of total edges into T . If every node in T has fraction < (1 − ε0)f ′, then
X/Y < (1 − ε0)f ′. We now bound the probability of that event. Let ε1 = ε0

2−ε0 ,

Note that E[X] = |S′|C3 logd n|T |/k = f ′kC3/2, and E[Y ] = kC3/2. Each edge
out of S′ falls into T independently with probability |T |/k. Thus we can apply
Chernoff bounds to say that

Pr(X < (1− ε1)E[X]) < e−E[X]ε21/2 = e−f
′kC3ε

2
1/4.

Similarly, we can use Chernoff bounds to say that

Pr(Y > (1 + ε1)E[Y ]) < e−E[Y ]ε21/3 = e−C3kε
2
1/6.

Hence the probability that either of these bounds is violated is no greater than
the sum of these two probabilities, or less than 1/eCk for any constant C and

C3 = 6C/ε1
2. Thus, Pr(X/Y < (1−ε1)f ′

1+ε1
) < e−Ck. Substituting for ε1 we have that

Pr(X/Y < (1− ε0)f ′)) < e−Ck.
Let ξ be the union of events ξ(S′, T ) for all possible values of S′ and T . Then we

know by union bounds that

Pr(ξ) =
∑
S′,T

Pr(ξ(S′, T ))

≤ 2k2ke−Ck

< 1/2

Where the last equation holds provided that C is sufficiently large, but depending
only on ε0. We have thus shown that with probability greater than 1/2, the number
of processors with fraction < (1− ε0)f ′ is no more than k/(2 logd n).

We note that the set of processors violating the upper bound is maximized when
all bad processors vote for the majority bit. By a similar analysis, letting S′′

consist of the union of S′ and the set of bad processors, we can show that with
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high probability, the number of processors with fraction > (1 + ε0)(f ′ + 1/3 − ε)
is no more than k/(2 logd n). The proof is straightforward, but is included here
for completeness. Let T now consist of all processors that have fraction > (1 +
ε0)(f ′ + 1/3− ε). Let f ′′ = f ′ + 1/3− ε. For fixed sets S′′ and T , let ξ′(S′′, T ) be
the event that all processors in T have fraction > (1 + ε0)f ′′.

We let X be the number of edges to nodes in T from nodes in S′′ and let Y be the
number of total edges into T . If every node in T has fraction > (1 + ε0)f ′′, then
X/Y > (1 + ε0)f ′′. We now bound the probability of that event. Let ε1 = ε0

2+ε0

Note that E[X] = |S′′|C3 logd n|T |/k = f ′′kC3/2 and E[Y ] = C3k/2. Each edge
out of S′′ falls into T independently with probability |T |/k. Thus we can apply
Chernoff bounds to say that

Pr(X > (1 + ε1)E[X]) < e−E[X]ε21/3 = e−f
′′kC3/6.

Similarly, we can use Chernoff bounds to say that

Pr(Y < (1− ε1)E[Y ]) < e−E[Y ]ε21/2 = e−C3kε
2
1/4.

Hence the probability that either of these bounds is violated is no greater than
the sum of these two probabilities, or less than 1/eCk for any constant C and

C3 = 4C/ε21. Thus, Pr(X/Y > (1+ε1)f
′′

1−ε1 ) < e−Ck. Substituting for ε1 we have that

Pr(X/Y > (1 + ε0)f”)) < e−Ck.
Let ξ be the union of events ξ(S′′, T ) for all possible values of S′′ and T . Then

we know by union bounds that

Pr(ξ) =
∑
S′′,T

Pr(ξ(S′′, T ))

≤ 2k2ke−Ck

< 1/2

Where the last equation holds provided that C is sufficiently large, but depending
only on ε0. We have thus shown that with probability greater than 1/2, the number
of processors with fraction > (1 + ε0)f” is no more than k/(2 logd n).

These two results together establish that the existence of a graph with k nodes
and outdegree min{k,C3 logd n} such that in any round of the algorithm, all but a
1/ logd n fraction of processors are informed provided that C3 is chosen sufficiently
large with respect to ε0.

We can now show the following lemma.

Lemma 5. Let n be sufficiently large compared to ε. Then, in any given round
if all but a 2/ log n fraction of good processors vote for the same value b′, then for
every remaining round, all but a 1/ log n fraction of good processors will vote for b′.

Proof. We will show that if all but a 2/ log n fraction of good processors vote
for the same value b′ in some round i, then in round i+1, all but a 1/ log n fraction
of good processors will vote for b′; the result then follows by induction. Consider
what happens after the votes are received in round i. We know that for this round,
f ′ ≥ 2/3 + ε − 2/ log n ≥ 2/3 + ε/2 for n sufficiently large. Thus, every informed
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processor in round i will have fraction ≥ (1− ε0)f ′ ≥ (1− ε0)(2/3 + ε/2); and so
every informed processor will set its vote value, at the end of the round, to b′. It
follows that all the processors that were informed in round i will vote for b′ in round
i + 1. By Lemma 4, we can ensure that in every round, all but a 1/ log n fraction
of processors are informed. Note that this result holds irrespective of the outcome
of a.e.random-source for the given round and successive rounds, even including the
case where different processors receive different outcomes from that subroutine.

Lemma 6. If the call to a.e.random-source succeeds in some round, i.e. all but
a 1/ log n fraction of good processors receive an unbiased random bit, then with
probability at least 1/2, at the end of that round, all but a 2/ log n fraction of good
processors will have a vote value equal to the same bit.

Proof. Fix a round where the call to a.e.random-source succeeds. There are
two main cases
Case 1: No informed processor has fraction ≥ (1 − ε0)(2/3 + ε/2). In this case,
at the end of the round, all informed processors who receive the a.e.random-source
random bit will set their vote to the same bit. By Lemma 4, this means that all
but 2/ log n processors will set their vote to the same bit.

Case 2: At least one informed processor has fraction ≥ (1−ε0)(2/3+ε/2). We first
show that in this case, all informed processors that have fraction ≥ (1− ε0)(2/3 +
ε/2) will set their vote to the same value at the end of the round. We show this
by contradiction. Assume there are two processors, x and y, where fractionx
(fractiony) are the fraction values of x (y, resp.), such that both fractionx and
fractiony are greater than or equal to (1− ε0)(2/3 + ε/2), and x sets its vote to 0
at the end of the round, while y sets its vote to 1.

Let f ′0 (f ′1) be the fraction of good processors that vote for 0 (1) during the round.
Then we have that fractionx ≥ (1− ε0)(2/3 + ε/2). By the definition of informed,
we also know that fractionx ≤ (1 + ε0)(f ′0 + 1/3− ε). This implies that

(1− ε0)(2/3 + ε/2) ≤ (1 + ε0)(f ′0 + 1/3− ε).
Isolating f ′0 in this inequality, we get that

f ′0 ≥
1/3 + (3/2)ε− ε0 + (1/2)εε0

1 + ε0
.

A similar analysis for fractiony implies that

f ′1 ≥
1/3 + (3/2)ε− ε0 + (1/2)εε0

1 + ε0
.

But then we have that,

f ′0 + f ′1 ≥
2/3 + 3ε− 2ε0 + εε0

1 + ε0
> 2/3 + ε

where the last line is clearly a contradiction that holds provided that ε0 < (3/4)ε.
Now, let b′ be the value that all good and informed processors with fraction ≥

(1 − ε0)(2/3 + ε/2) set their value to at the end of the round. With probability
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1/2, the outcome of a.e.random-source is equal to b′ and in this case, all informed
processors that receive the a.e.random-source random bit will set their vote to the
same bit, i.e. all but 2k/ log n good processors.

We can now prove Theorem 4.

Proof. Lemma 5 establishes that if all but 1/ log n processors initially start
with the same input bit, then all but a 1/ log n fraction of the good processors
will eventually commit to that bit. Lemmas 6 and 5 together establish that the
probability of having a round in which all but a 2/ log n fraction of good processors
come to agreement, and after which all but a 1/ log n fraction of good processors
will stay in agreement, is at least 1−2t−1 where t is the number of rounds in which
a.e.random-source succeeds. A simple union bound on the probabilities of error
implies the theorem.

3.4 Arrays and the election subroutine

Here we describe the array of random bits generated by each processor. Each
processor generates a sequence of blocks, each except the last to be used for the
elections in the nodes along the path to the root. The last block is only used
to decide the final output bit, and contains only the one bit needed to compute
a.e.BA-with-random-source. To understand the blocks, we first describe Feige’s
election procedure, which is designed for an atomic broadcast model, and present
a lemma about its performance.

Feige’s election procedure[Feige 1999]:
Each candidate announces a bin number in some small range. The good candidates
choose a bin number selected uniformly at random in this range. The winners are
the candidates which choose the bin picked by the fewest.

Lemma 7. [Feige 1999] Given a set of r numbers in the range [1, .., numBin],
let S be subset of these numbers which are generated independently at random by
good processors, where the remaining numbers are chosen by an adversary which
can view S before deciding on its values. For any constant c and sufficiently large n,
if |S|/numBin ≥ (2c+2) log3 n, then with probability at least 1−1/nc, the fraction
of winners which are from S is at least |S|/r − 1/ log n.

Proof. The expected number of winners from S in any bin is |S|/numBin. The
probability that the fraction of winners deviates from its expectation for one bin
by more than 1/ log n is 1 − e−|S|/(2numBin log2 n) = 1 − 1/nc+1, using a Chernoff
bound. The probability that this occurs for any bin, including the bin chosen by
the fewest candidates, is 1− 1/nc, by a union bound.

We show how to adapt Feige’s election method to a set of processors which com-
municate by message-passsing.

The input to an election is an a.e. sequential (r, s) random sequence of blocks
labelled B1, ..., Br. Each block B is a sequence of bits, beginning with an initial
word (bin choice) B(0) followed by r words B(1), B(2), .., B(r). The number of bins
is numBins and each word has log(numBins) bits. After the election, the output
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of each processor is a set of winning indices W . Let w = |W |. Given r ≥ 2 log4 n,
we set numBins so that w = r/numBins = log4 n.

We now describe the election subroutine.
(1) In parallel, for i = 1, ..., r, the processors run a.e.BA-with-random-source on

the bin choice of each of the r candidate blocks. Round j of a.e.BA-with-
random-source to determine i’s bin choice is run using the ith word of the jth

processor’s block Bj(i).
Let b1, ..., br be the decided bin choices.

(2) Let min = i s.t. |{j | bj = i}| is minimal.
W ← {j | bj = min}.
(If |W | < r/numBins then W is augmented by adding the first r/numBins−
|W | indices that would otherwise be omitted.)

Then Feige’s result can be extended to this context as follows:

Lemma 8. In the election subroutine, let the number of candidate blocks be r ≥
2 log4 n. Let S be the subset of candidate blocks generated independently at random
by good processors and assume |S| ≥ (2c+2)r/ log n. If the set of processors running
the election subroutine has a 2/3+ε fraction of good processors, then with probability
1−1/nc the election results in agreement on a set of winners such that the fraction
of winners from S is at least |S|/r − 1/ log n and the winners are agreed to by a
1−1/ log n fraction of good processors. Choosing d so that r log numBins < logd n,
the election algorithm runs in time O(r) and O(r logd n) bits per processor.

Proof. Consider the r bin choices together as one word of r log numBins bits.
Then let St consist of the sequence of blocks Bi without their first words containing
the bin choices. Let s = |S|. Then St is an a.e. (r, s) random sequence of words of
length r log numBins. By Corollary 1 all but a r log numBins/ logd n < 1/ log n
fraction of good processors agree on the bin choices and hence the winners, with
probability 1− r log numBins/2s > 1−1/nc+1 for any constant c. Since numBins
was chosen so that r/numBins = log4 n, it follows that s/numBins ≥ (2c +
2)r/(numBins log n) ≥ (2c + 2) log3 n. Therefore, by Lemma 7, the fraction of
winners that are good is |S|/r − 1/ log n with probability 1 − 1/nc+1 for any con-
stant c. Taking the union bound, both conditions hold w.h.p. The time and bit
complexity follow from Corollary 1.

3.5 Main protocol for a.e. BA

The main protocol for a.e.BA is given as Algorithm 2. Figure 1, which we now
describe, outlines the main ideas behind the algorithm. The left part of Figure
1 illustrates the algorithm when run on a 3-ary network tree. The processors are
represented with the numbers 1 through 9 and the ovals represent the nodes of the
network, where a link between a pair of nodes illustrates a parent-child relationship.
The numbers in the bottom part of each node are the processors contained in that
nodes. Note that the size of these sets increase as we go up the tree. Further
note that each processor is contained in more than one node at a given level. The
numbers in the top part of each node represent the processors whose arrays are
candidates at that node. Note that the size of this set (3) remains constant as
we go from level 2 to level 3. Further note that the array of each processor is a
candidate in at most one node at a given level.
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Fig. 1. Left: Example run of Algorithm 2 a.e.BA on a small tree; Right: Commu-
nication in different phases of Algorithm 2 for a fixed level `.

The right part of Figure 1 illustrates communication in a.e.BA for the election
subroutine occurring at a fixed node at level `. This figure illustrates three main
parts of the election subroutine algorithm (time moves from left to right). First,
on the left, is “Expose bin choices”. Here, the bin choices of the candidates at the
level ` node are revealed in two parts: (1) hop-by-hop communication down the
network using the sendDown protocol from level ` to level 1, at the end of which
the nodes at level 1 know the relevant bin choices; and (2) direct communication
up the network using the sendOpen protocol of these bin choices from the level 1
nodes to the level ` node.

The second part of the election subroutine is “Agree on bin choices”. This in-
volves running a.e.BA-with-random-source which uses “horizontal” communication
among the processors in the node at level ` that are running a.e.BA-with-random-
source. It requires the output of an a.e.random-source. This is provided by com-
munication within the subtree rooted at the node via hop-by-hop communication
down the network, using sendDown, at the end of which the nodes at level 1 know
the outcome of the next coin toss; and direct communication up the network, using
sendOpen, of the coin toss outcome from the level 1 nodes to the level ` node.

The third and final part of the election subroutine is “Send shares of winners”,
where shares of the arrays of the winners at the level ` node are sent to the level
`+ 1 parent node, via use of the procedure sendSecretUp.

3.6 Specifics of Algorithm 2

We set q = logδ n for δ > 4 a constant. Recall that w = log4 n; r denotes the number
of candidates in an election; and the number of bins in the election subroutine is
numBins which is chosen so that r/numBins = w.

In Step 1, each processor i generates an array of `∗−1 blocks of random bits. Each
block except the last contain 1 + r words of length log numBins. Each processor
is assigned one of the n nodes on level 1. The processor secret shares each of its
blocks individually with the processors in that level 1 node.

In Step 2, in an election in a level 2 node C, there is one candidate per child, or a
total of r = q candidates. At elections on higher levels there are r = wq candidates
since there are w candidates which won in each child node. If an array wins every
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election it participates in, up to level ` < `∗, then its `− 1 block is used as input to
to decide the election at the level ` ancestor of its assigned level 1 node. The first
word of the block is its bin choice. The r remaining words in the block are used as
a random source for one round of the a.e.BA-with-random-source to concurrently
decide all the bits of all bin choices of all the r candidates in the election. Each
random word required by each of the r rounds of the a.e.BA-with-random-source
is provided by a different candidate array.

As mentioned above, a.e.BA-with-random-source is carried out using “horizon-
tal communication,” links between processors in the same node C. These links
are determined by a sampler of degree logd n where d is chosen so that logd n >
r log numBins as described in Lemma 8. Note that d is a constant which depends
linearly on the δ in Theorem 2.

In Step 3, a.e.BA-with-random-source is carried out by all the processors (which
are all in the root node) to decide on one of their input bits, using as a random
source the sequence of single bits provided by the last blocks of the r = wq winners
from the previous level. These are exposed in turn, using sendDown and sendOpen
as described above.

3.7 Modification to a.e. random-sequence

The protocol a.e.BA can be modified easily to solve (s, 2s/3)-a.e.random-source
for s a sequence of wq words. Add one more block of the desired length to each
processor’s array at the start. At level `∗, use sendDown and sendOpen to recover
each word, one from each of the wq contestants. The time and bit complexity is
given in Theorem 2.

3.8 Bit complexity and running time analysis

We now show:

Lemma 9. For any δ > 0, the Almost Everywhere Byzantine Agreement protocol
requires Õ(n4/δ) bits per processor and runs in time O((log n)6+δ/(log log n)2).

Proof. We first analyze running time. The running times of Step 1 and Step
2(c) is O(1). For an election on level `, Step 2(a) requires O(`) time to execute
sendDown. Step 2(b) requires r rounds, each dominated by the cost of sendDown
for a total running time of O(r`). There are r = q rounds in the first execution
of Step 2(b) and r = wq rounds on the second and later executions of Step 2(b)
and in Step 3. Each round a.e.BA-with-random-source takes O(1) time plus the
time needed to execute sendDown which is proportional to the level of the node

running the election. Thus, the total running time is O(
∑`∗

`=2 `wq) = O((`∗)2wq) =

O((log n/ log log n)2 log4 n logδ n) = O(log6+δ /(log log n)2).
We now consider the number of bits communicated per processor. The assign-

ment of processors to nodes on a given level is determined by a sampler. By Lemma
2, no processor is assigned to more than deg(s) = O(log4 n) nodes in a level, or
O(`∗ log4 n) over all levels. Hence it suffices to bound the cost per appearance of a
processor in a node to get a Õ result. Step 1 requires each processor to generate
less than `∗wq random words of log numBins = O(log log n) number of bits. Each
share takes the same number of bits as the shared secret, and there are k1 shares.
When a processor in a level 1 node receives its share, it shares it with its parent
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Algorithm 2 a.e.BA

(1) Generate Secrets and Send Up Shares:
For all i in parallel
(a) Each processor pi generates an array of `∗ − 1 blocks Bi and uses

secretshare to share its array with the ith level 1 node;
(b) Each processor in the ith level 1 node uses sendSecretUp to share its

1-share of Bi with its parent node and then erases its shares from memory.

(2) Elect Winners at Root Node:
Repeat for ` = 2 to `∗ − 1
(a) Expose bin choices:

For each processor in each node C on level `:
(Define the following: For t = 1, ..., w and i = 1, ..., q, let B(i−1)w+t be the

tth array sent up from child i. If ` = 2 then w is replaced by 1 and r = q;
else r = wq
W ← B1||B2||...||Br
Let F be the sequence of first blocks of the arrays of W , i.e., the ith array
of F is the first block of the ith array of W . Let S be the sequence of the
remaining blocks of each array of W .)
In parallel, for all candidates i = 1, 2, .., r
i. sendDown(Fi(1));
ii. sendOpen(Fi(1), `).

(b) Agree on bin choices:
If ` < `∗ then for rounds i = 1, ..., r
i. Expose coin flips: Generate r random words for the ith round of

a.e.BA-with-random-source to decide each of r bin choices.
In parallel, for all contestants j = 1, .., r
A. sendDown(Fi(j)); upon receiving all 1-shares, level 1 processors

compute the secret bits Fi(j));
B. sendOpen(Fi(j), `).

ii. Run the ith round of a.e.BA-with-random-source in parallel to decide
the bin choice of all contestants.

(c) Send Shares of Winners Up to Next Level: (Define the following:
Let W ′ be the winners of the election decided from the previous step i.e.
the lightest bin. Let S′ be the subsequence of S from W ′.) All processors
in a node at level ` use sendSecretUp(S′) to send S′ to its parent node
and erase S′ from memory.

(3) Root Node Runs BA using Arrays of Winners:
All processes in the single node on level `∗ run a.e.BA-with-random-source once
using their initial inputs as inputs to the protocol (instead of bin choices) and
the remaining block (of one bit) of each candidate.
For rounds i = 1, 2, ..., qw of a.e.BA-with-random-source,
(a) sendDown(Fi(1), i);
(b) sendOpen(Fi(1), `).
(c) Use Fi(1) as the coin for this round of a.e.BA-with-random-source.
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node via q log3 n uplinks, for a total of O((q log3 n+ k1)(`∗wq)) words sent by each
processor.

We next consider Step 2(c). Let dm be the maximum number of uplinks incident
to a processor in C which are incident to processors in a child node. By Lemma 2,
dm = O(log4 n). We show by induction on ` that the number of `-shares received
by a processor in a level ` node which are shares of any one candidate is O(d`−1m ). A
processor in a level 1 node receives one 1-share of the array for the processor assigned
to that node. A processor on level 2 is incident to dm uplinks from processors from
any child node, and so receives no more than dm 2-shares of the arrays passed up
from that child. A processor C on level ` is incident to dm uplinks from processors
in its child. By induction, each processor in a level `− 1 node has received O(d`−2m )
`− 1-shares of any one candidate, so each of dm processors in a child will pass up
O(d`−2m ) `-shares for any one candidate, for a total of d`−1m `-shares for any one
candidate. There are no more than w candidates whose shares are passed up by a
child node. The size of each share is proportional to the size of the secret and the
secrets consist of O(`∗wq) words. Hence, the total cost of Step 2(c) for a processor
in a level ` node which is holding an election is O(`∗d`−1m w2q) words.

A processor in a node C at level ` receives O(`∗d`−1m w2q) words from each of its q
children. Step 2(a) and 2(b) require q copies of these words, which were sent up, to
be sent down the tree for each level. These copies are for the corresponding uplinks
in every child, which adds a factor of q2, for a total of O(`∗d`

∗

m ∗ (w2q3) words
sent down. At the level 1 nodes, all k1 = O(log3 n) processors exchange 1-shares
of the (wq)2 words used for the election, for a total cost of O(k1(wq)2) bits and
then send these values up its O(qk1 log4 n) `-links to C. In addition, by Lemma 8,
each execution of a.e.BA-with-random-source requires O(r logd) bits per processor
where d is a constant which is O(δ). Since r ≤ wq, the total cost for an election
in any node for Step 2 is the cost of O(`∗d`

∗

m(w2q3 +wq logd +(k1)2(w2q3 log4 n) =
Õ(d`

∗

m(w2q3 + w2q3) = Õ(d`
∗

m) words.
The cost of Step 3 is dominated by the cost of Step 2, as it requires a single

execution of a.e.BA-with-random-source with a sequence of bits rather than words.
Hence the total cost per processor is Õ(d`

∗

m). Since `∗ = log(n/k1)/ log q, this
is Õ((c log4 n)logn/k1/ log q) = Õ(2(log c

′+4 log logn)(log(n/k1)/ log q). Substituting k1 =
O(log3 n) and q = (logδ n), this is Õ(n4/δ) for δ > 4.

The total running time is O((`∗)wq). Substituting `∗ = log(n/k1)/ log q, w =
log4 n, and q = logδ n, we have O(log6+δ n/(log log n)2).

3.9 Proof of correctness

Here we give some definitions. The first two are repeated from Section 3.2.
—A good node is a node which contains 2/3+ε−1/ log n fraction of good processors.
—A good path to a node A is a path of good nodes from a leaf node up the tree to

node A.
—An array is good on level `: for ` = 1, if it was generated by a good processor

which was assigned to a good leaf node; for ` > 1, if it was good on level ` − 1
and the winner of a good election on level `− 1.

—An election at node A is good if 2/3 + ε processors in A are good and all but at
most a 1/ log n fraction of good processors agree on a set of w winners which are
representative, i.e., if f fraction of candidate arrays are good on level `− 1 then
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at least f − 1/ log n fraction of the winning arrays are good on level `.

Lemma 10. An election at node A on level ` is good w.h.p. if the following
conditions hold
(1 ) A is a good node;
(2 ) The number of arrays that are used as input to the election is r ≥ 2 log4 n and

the number of these which are good is at least (2c+ 2)r/ log n; and
(3 ) There is a 1/2+ε fraction of level 1 nodes in A’s subtree which have good paths

to A.

Proof. We claim the prefix of the arrays which are used as input to the election
form an a.e. (r, s) random sequence, where s ≥ (2c+2)r/ log n. From Condition (2),
this fraction of arrays is good which by definition implies they have been generated
by good processors uniformly at random. Also by definition of a good array, they
have been passed up good paths. By Lemma 3(1), each word of each array which
is passed up a good path will be unknown to the adversary before execution of
sendDown for that word. Therefore, the adversary has no knowledge of words in
good arrays which come later in the sequence when the values of words which come
earlier are exposed and decided upon by the good processors. Condition (3) and
the fact that good arrays are passed up good paths show that the pre-conditions of
Lemma 3(2) are satisfied, which implies that the exposed words from good arrays
will be known a.e. in A.

Condition (1) ensures that there are sufficiently many good processors to run
a.e.BA-with-random-source to agree on the bin choices. Condition (2) ensures that
w.h.p., the set of winners of the election will be representative by Lemma 8.

We now lower bound the fraction of arrays that remain that are good.

Lemma 11. In the a.e.BA algorithm, w.h.p., at least a 2/3 − 5`/ log n fraction
of winning arrays are good on every level `. In particular, w.h.p., the protocol can
generate a sequence of random words, of length r = wq (one from each array at the
root of the tournament tree) of which a 2/3 + ε − 5/ log logn fraction are random
and known to 1− 1/ log n fraction of good processors.

Proof. With high probability, each good election causes an increase of no more
than 1/ log n in the fraction of arrays that are bad. We now consider the number
of good arrays discarded because of bad elections.

A violation of Condition (1) (the election node is bad) affects at most a 1/ log n
fraction of arrays per level since at most a 1/ log n fraction of nodes are bad per
level.

A violation of Condition (2) (< (2c+2)r/ log n good arrays participating) cannot
happen too often. As each array participates in one election on a level, an upper
bound is a (2c + 2)/ log n fraction of the total number of arrays. As long as the
fraction of bad arrays on a level is less than 1/3, this is a (2c+2)2/(3 log n) fraction.

A violation of Condition (3) (< 1/2 + ε fraction of level 1 nodes have good paths
to the current node) also cannot happen too often. In particular, a 1/ log n fraction
of bad nodes can be responsible for making a 2/ log n fraction of elections bad
in every level at above it , by making bad half the paths of those elections, thus
eliminating an additional 2/ log n fraction of arrays that are good. Note that a bad
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election at a good node does not make additional paths bad, as information and
secrets can still be passed through a good node that held a bad election.

From the possible violation of these three conditions, we lose no more than a
c′/ log n fraction of arrays that are good. Adding in good arrays lost from good
elections, we lose no more than a total of (c′ + 1)/ log n fraction of arrays that are
good at any level, for a constant c′.

Initially a 2/3+ε fraction of the arrays are good. As we have shown, at any given
level, the fraction of arrays that are good decreases by at most c′/ log n. Thus,
the fraction of arrays that are good at level `∗ is at least 2/3 + ε − c`∗/ log n =
2/3 + ε− c′/ log log n.

Hence there are wq arrays at the top of the election tree of which at least a
2/3 fraction were generated by good processors, uniformly and independently at
random. For each array, there is a block which is secret shared among the processors
of the root node, so that for all but a 1/ log n fraction of the `∗-shares, at least a 2/3
fraction of `-shares are held by good processors. Sequentially, the protocol exposes
a word from each of the arrays. By Lemma 3, each word generated by a good
processor is learned by 1 − 1/ log n fraction of good processors in the root (which
contains all the processors).

We now prove Theorem 2. Lemma 11 shows that a.e.random-source is an a.e.(s, t)
random source with s = Θ(log4+δ n) and t ≥ 2/3s with probability 1−1/nC1 for any
constant C1. Its output can be used as input to a.e.BA-with-random-source. The
correctness of a.e.BA follows from the correctness of a.e.BA-with-random-source.
By Theorem 4 the probability of failure of a.e.BA-with-random-source is 1/2t−1

given a.e.random-source is correct. The probability that either algorithm fails is
given by the union bound of 1/2t−1 +1/nC1 . Choosing C1 appropriately this is less
than1/nc, for any c. The running time follows from Lemma 9.

4. A.E. BYZANTINE AGREEMENT TO BYZANTINE AGREEMENT

We call a processor knowledgeable if it is good and agrees on a message m. Other-
wise, if it is good, it is confused. In this section, we assume that (1/2+ε)n processors
are knowledgeable. We give an algorithm which uses a sequential (s, t) a.e.random-
source which generates a sequence of s numbers in [1, ...,

√
n] described in Section

3.7 to produce everywhere agreement on m with private channels, proving Theorem
3.

In the following algorithm, the constant a depends on c and ε and will be specified
in the proof of correctness.

4.1 Proof of correctness

We first prove the following lemma. In the proofs below, we refer to a loop as good
if the number k generated in the loop was generated uniformly at random and is
almost everywhere agreed on.

Lemma 12. Assume at the start of the protocol (1/2 + ε)n good processors agree
on a message m. Let c be any positive constant. Then after a single execution of a
loop:
(1 ) With probability at least 1− 4/(ε log n)− 1/nc, if the loop is good the protocol

results in agreement on m; and
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Algorithm 3 a.e.BA-to-BA

Repeat s times:
(1) Each processor p does the following in parallel:

Randomly pick a set of a
√
n log n processors without replacement; for each of

these processors j, randomly pick i ∈ [1, . . . ,
√
n], with replacement, and send

a request with label i to processor j.
(2) Each processor p decides on the next number k in [1, ...,

√
n] generated by

a.e.random-source.
(3) For each processor p, if p receives a request with label i from q and i = k then

if p has not received more than
√
n log n such requests (it is not overloaded), p

returns a message to q.
(4) Let xi be the number of messages returned to p by processors sent the request

label i. Let imax be an i such that xi ≥ xj for all j. If the same message m is
returned by (1/2 + 5ε/16)a log n processors which were sent the request label
imax then p decides m. Otherwise, p is undecided.

(2 ) With probability 1− 1/nc, for any loop, every processor either agrees on m or
is undecided.

To prove Lemma 12 we first prove several other lemmas.

Lemma 13. Let δ ≤ 1/2 be a fixed positive constant and let S be a set of at least
(1/2 + δ)n good processors. Then, w.h.p., for any one loop, for every processor p
and every request label i, at least (1/2 + δ/2)a log n processors which are sent i by
p are in S, and fewer than (1/2 − δ/2)a log n processors which are sent i by p are
not in S. This is true even if S is chosen by the adversary at any point during the
execution of the loop.

Proof. Since the channels are private, the adversary does not know p’s requests
other than those sent to bad processors. Hence the choice of S is independent of
the queries received by bad processors.

Let X be the number of processors in S sent a request by processor p. X
is a hypergeometric distribution and E(X) = (1/2 + δ)a

√
n log n. By concen-

tration bounds on the hypergeometric (see e.g. [Janson 1999]), we know that:

Pr(X ≤ E(X) − (δ/8)a
√
n log n) ≤ 2e−(δ/8a

√
n logn)2/2E(X). This is less than

n−c for a ≥ 128c(1/2 + δ)(ln 2)/(
√
nδ2)). Thus, for appropriate a, w.h.p., X ≥

(1/2 + (7/8)δ)a
√
n log n.

Now for a given label i, let Xi be the number of processors in S that are sent a
request with label i. Assuming that X ≥ (1/2 + (7/8)δ)a

√
n log n, we know that

E(Xi) ≥ µL = (1/2 + (7/8)δ)a log n. Moreover, Xi is the sum of i.i.d. random

variables so by Chernoff bounds, Pr(Xi ≤ µL− (δ/8)a log n) ≤ e−((δ/8)a logn)2/2µL .
This is less than n−c for a ≥ 128c(1/2 + (7/8)δ)(ln 2)/δ2)). Thus, for appropriate
a, w.h.p., Xi ≥ (1/2 + (3/4)δ)a log n.

Finally, let Yi be the total number of requests with label i. We know that E(Yi) =

a log n, and by Chernoff bounds, Pr(Yi ≥ E(Yi)+(δ/4)a log n) ≤ e−((δ/4)a logn)2/2E(Xi).
This is less than n−c for a = 32c(ln 2)/δ2. Thus, for appropriate a, w.h.p.,
Yi ≤ (1 + δ/4)a log n. Hence, for a fixed processor p and request label i, at
least (1/2 + δ/2)a log n processors which are sent i by p are in S, and fewer than
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(1/2− δ/2)a log n processors which are sent i by p are not in S.
Taking a union bound over all labels i, we have that for fixed processor and for

all labels, the lemma fails to hold with probability no more than 2n−c+1/2. Then,
taking a union bound over all processors, we have that for all processors and for all
labels, the lemma fails to hold with probability no more than 2n−c+3/2. Clearly,
this probability of failure can be made smaller than any arbitrary polynomial for
appropriate choice of c.

The following corollary is immediate from Lemma 13 by letting S be the set of
knowledgable processors and δ = ε.

Corollary 2. Suppose there are at least (1/2 + ε)n knowledgeable processors.
W.h.p., for any one loop, for every processor p and every request label i, at least
A = (1/2+ε/2)a log n processors which are sent i by p are knowledgeable, and fewer
than B = (1/2− ε/2)a log n processors which are sent i by p are bad or confused.

Corollary 2 immediately implies statement (2) of Lemma 12.
We need a couple of lemmas to establish the correctness of Lemma 12 (1). A

knowledgeable processor p which is sent i = k will respond unless overloaded. Each
processor can receive no more than n − 1 requests, since if two or more requests
come from the same sender, that sender is evidently bad. Thus, there can be no
more than

√
n/ log n values of i for which there are more than

√
n log n requests

labelled i. Then we claim:

Lemma 14. The probability that more than εn/4 knowledgeable processors are
overloaded in any one good loop of the algorithm is less than 4/(ε log n).

Proof. We call a value i for a processor overloaded if
√
n log n request labels

equal i. A processor is only overloaded if k = i and the value i is overloaded.
Since the loop is good, k is randomly chosen and each processor has at most a
1/ log n chance of being overloaded. Let X be a random variable giving the number
of overloaded knowledgeable processors and y be the number of knowledgeable
processors. Then E[X] = y/logn. Using Markov’s Inequality, Pr[X ≥ y(ε/4)] <
(y/ log n)/(yε/4) = 4/(ε log n).

We can now prove Lemma 12 (1). With probability at least 1− 4/(ε log n), there
are (1/2 + 3ε/4)n knowledgeable processors that are not overloaded. By the defini-
tion of an a.e.random-source, all but n/ log n, or all but εn/8 for sufficiently large
n, processors will receive the same random value k in a good loop of the protocol.
Thus, there is a set of at least (1/2+5ε/8)n processors that are knowledgeable, not
overloaded and that received the same value k. Thus, setting S to be this set, and
δ to be 5ε/8 in Lemma 13, we have w.h.p., for every processor and request label
i that at least A = (1/2 + 5ε/16)n processors sent i by p are knowledgeable, not
overloaded and received the same value k. Therefore, for any c, with probability at
least 1− 4/(ε log n)− 1/nc, a good loop of this protocol results in agreement on m.

We can now prove Theorem 3. The correctness of Algorithm a.e.BA-to-BA pro-
ceeds from Lemma 12 as follows: Set c to c + 1 in Lemma 12. After s loops,
including t = ((c + 1)/3)ε ln2 n good loops, Algorithm 4 ends without agreement
by some processor on m only if no good loop brings agreement on m, or some loop
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results in a bad decision. As each repetition of a loop is independent, the prob-
ability of the first type of failure is the product of the individual failures, or no
more than (1 − 4/(ε log n) − 1/nc)t = 1/nc+1, by Lemma 12 (1). The probability
of the second type of failure is no greater than the sum of the individual failures
or s/nc+1, by Lemma 12 (2). Hence the probability of failure is less than the sum
of the probabilities of these failures or (s + 1)/nc+1 which is less than 1/nc for
s < n− 1.

The running time of a.e.BA-to-BA is f(s) per loop for a total of O(sf(s)). The
number of bits is Õ(g(s) + n1/2) per processor per loop or Õ(s(g(s) + n1/2)). This
concludes the proof of Theorem 3.

5. BYZANTINE AGREEMENT (BA)

Here we give an algorithm to compute (everywhere) Byzantine agreement:

Algorithm 4 BA

(1) Run a.e.BA to come to almost everywhere consensus on a bit b.
(2) Run a.e.BA-to-BA to ensure that all processors output b.

We next use this algorithm to prove Theorem 1.

5.1 Proof of Theorem 1

Proof. Let δ = 8 in Theorem 2. By Theorem 2, there is a polylogarithmic time
algorithm (a.e.BA) which uses Õ(

√
n) bits per processor to compute a.e. Byzantine

agreement and an a.e. (s, 2s/3) random source with s = Θ(log8 n) and t = 2s/3.
Then (1 − 1/ log n)(2/3 + ε)n > (1/2 + ε′)n fraction of processors are good and
knowledgeable, for ε′ = 1/6 and sufficiently large n. To generate a sequence s
of numbers log n/2 in length requires g(s) = Õ(n4/δs log n/2) = Õ(n1/2) bits of
communication and f(s) = O(s log n/2(log n/ log log n) = Õ(1) time. By Theorem
3, since t is ω(log2 n), then for any constants c and ε, and sufficiently large n,
a.e.BA-to-BA ensures with probability 1 − 1/nc that all processors output m in
time O(s + f(s)) = O(log8 n) + Õ(1) = Õ(1) time and Õ(sn1/2 + g(s)) = Õ(n1/2)
bits of communication per processor. This concludes the proof of Theorem 1.

6. CONCLUSION

We have described an algorithm that solves the Byzantine agreement problem with
each processor sending only Õ(

√
n) bits. Our algorithm succeeds against an adap-

tive, rushing adversary in the synchronous communication model. It assumes pri-
vate communication channels but makes no other cryptographic assumptions. Our
algorithm succeeds with high probability and has latency that is polylogarithmic
in n. Several important problems remain including the following: Can we use
o(
√
n) bits per processor, or alternatively prove that Ω(

√
n) bits are necessary for

agreement against an adaptive adversary? Can we adapt our results to the asyn-
chronous communication model? Can we use the ideas in this paper to perform
scalable, secure multi-party computation for other functions? Finally, can the tech-
niques in this paper be used to create a practical Byzantine agreement algorithm
for real-world, large networks?
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